1,762
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Do 50/60 Hz magnetic fields influence oxidative or DNA damage responses in human SH-SY5Y neuroblastoma cells?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1581-1591 | Received 16 Dec 2021, Accepted 03 Mar 2022, Published online: 21 Apr 2022

References

  • Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, McBride M, Michaelis J, Olsen JH, et al. 2000. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 83(5):692–698.
  • Akbarnejad Z, Eskandary H, Dini L, Vergallo C, Nematollahi-Mahani SN, Farsinejad A, Abadi MFS, Ahmadi M. 2017. Cytotoxicity of temozolomide on human glioblastoma cells is enhanced by the concomitant exposure to an extremely low-frequency electromagnetic field (100Hz, 100G). Biomed Pharmacother. 92:254–264.
  • Benassi B, Filomeni G, Montagna C, Merla C, Lopresto V, Pinto R, Marino C, Consales C. 2016. Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-Parkinson’s disease toxin MPP(±). Mol Neurobiol. 53(6):4247–4260.
  • Bertuchi FR, Bourgeon DM, Landemberger MC, Martins VR, Cerchiaro G. 2012. PrPC displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrPC knockout mice. Biochem Biophys Res Commun. 418(1):27–32.
  • Calabrò E, Condello S, Currò M, Ferlazzo N, Caccamo D, Magazù S, Ientile R. 2013. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics. 34(8):618–629.
  • Cortes-Wanstreet MM, Giedzinski E, Limoli CL, Luderer U. 2009. Overexpression of glutamate-cysteine ligase protects human COV434 granulosa tumour cells against oxidative and gamma-radiation-induced cell death. Mutagenesis. 24(3):211–224.
  • Costantini E, Sinjari B, D’Angelo C, Murmura G, Reale M, Caputi S. 2019. Human gingival fibroblasts exposed to extremely low-frequency electromagnetic fields: in vitro model of wound-healing improvement. IJMS. 20(9):2108.
  • Gelain DP, Dalmolin RJ, Belau VL, Moreira JC, Klamt F, Castro MA. 2009. A systematic review of human antioxidant genes. Front Biosci. 14(12):4457–4463.
  • Hore PJ. 2019. Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. eLife. 8:e44179.
  • Hore PJ, Mouritsen H. 2016. The radical-pair mechanism of magnetoreception. Annu Rev Biophys. 45:299–344.
  • Hou Y, Wang X, Li L, Fan R, Chen J, Zhu T, Li W, Jiang Y, Mittal N, Wu W, et al. 2015. FHL2 regulates hematopoietic stem cell functions under stress conditions. Leukemia. 29(3):615–624.
  • Höytö A, Herrala M, Luukkonen J, Juutilainen J, Naarala J. 2017. Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity. Int J Radiat Biol. 93(6):646–652.
  • [IARC] International Agency for Research on Cancer. 2002. Non-ionizing radiation, part 1: static and extremely low frequency (ELF) electric and magnetic fields. Vol. 80. Lyon: France.
  • Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ. 2018. Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc R Soc B. 285(1879):20180590. 1879.
  • Kesari KK, Juutilainen J, Luukkonen J, Naarala J. 2016. Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields. J R Soc Interface. 13(114):20150995.
  • Kesari KK, Luukkonen J, Juutilainen J, Naarala J. 2015. Genomic instability induced by 50Hz magnetic fields is a dynamically evolving process not blocked by antioxidant treatment. Mutation research. Mutat Res Genet Toxicol Environ Mutagen. 794:46–51.
  • Lagroye I, Percherancier Y, Juutilainen J, De Gannes FP, Veyret B. 2011. ELF magnetic fields: animal studies, mechanisms of action. Prog Biophys Mol Biol. 107(3):369–373.
  • LeBel CP, Ischiropoulos H, Bondy SC. 1992. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 5(2):227–231.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25(4):402–408.
  • Lundberg L, Sienkiewicz Z, Anthony DC, Broom KA. 2019. Effects of 50 Hz magnetic fields on circadian rhythm control in mice. Bioelectromagnetics. 40(4):250–259.
  • Luukkonen J, Höytö A, Sokka M, Liimatainen A, Syväoja J, Juutilainen J, Naarala J. 2017. Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Int J Radiat Biol. 93(2):240–248.
  • Luukkonen J, Liimatainen A, Höytö A, Juutilainen J, Naarala J. 2011. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells. PLOS One. 6(3):e18021.
  • Luukkonen J, Liimatainen A, Juutilainen J, Naarala J. 2014. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat Res. 760:33–41.
  • Mailloux RJ, Harper ME. 2011. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med. 51(6):1106–1115.
  • Manzella N, Bracci M, Ciarapica V, Staffolani S, Strafella E, Rapisarda V, Valentino M, Amati M, Copertaro A, Santarelli L. 2015. Circadian gene expression and extremely low-frequency magnetic fields: an in vitro study. Bioelectromagnetics. 36(4):294–301.
  • Markkanen A, Juutilainen J, Naarala J. 2008. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced DNA damage response in murine L929 cells. Int J Radiat Biol. 84(9):742–751.
  • Mattsson MO, Simkó M. 2014. Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in in vitro studies. Front Public Health. 2:132.
  • Mori MP, Costa RA, Soltys DT, Freire TS, Rossato FA, Amigo I, Kowaltowski AJ, Vercesi AE, de Souza-Pinto NC. 2017. Lack of XPC leads to a shift between respiratory complexes I and II but sensitizes cells to mitochondrial stress. Sci Rep. 7(1):155.
  • Mustafa E, Luukkonen J, Makkonen J, Naarala J. 2021. The duration of exposure to 50 Hz magnetic fields: influence on circadian genes and DNA damage responses in murine hematopoietic FDC-P1 cells. Mutat Res. 823:111756.
  • Naarala J, Kesari KK, McClure I, Chavarriaga C, Juutilainen J, Martino CF. 2017. Direction-dependent effects of combined static and ELF magnetic fields on cell proliferation and superoxide radical production. Biomed Res Int. 2017:5675086.
  • Park WH. 2020. Upregulation of thioredoxin and its reductase attenuates arsenic trioxide-induced growth suppression in human pulmonary artery smooth muscle cells by reducing oxidative stress. Oncol Rep. 43(1):358–367.
  • Patruno A, Amerio P, Pesce M, Vianale G, Di Luzio S, Tulli A, Franceschelli S, Grilli A, Muraro R, Reale M. 2010. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br J Dermatol. 162(2):258–266.
  • Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. 2018. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 17:297–314.
  • Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 73:39–85.
  • Schuermann D, Mevissen M. 2021. Manmade electromagnetic fields and oxidative stress-biological effects and consequences for health. IJMS. 22(7):3772.
  • Shackelford RE, Kaufmann WK, Paules RS. 2000. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med. 28(9):1387–1404.
  • Singh N, Lai H. 1998. 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res. 400(1–2):313–320.
  • Song K, Im SH, Yoon YJ, Kim HM, Lee HJ, Park GS. 2018. A 60 Hz uniform electromagnetic field promotes human cell proliferation by decreasing intracellular reactive oxygen species levels. PLOS One. 13(7):e0199753.
  • Streiner DL, Norman GR. 2011. Correction for multiple testing: is there a resolution? Chest. 140(1):16–18.
  • Vanderstraeten J, Verschaeve L, Burda H, Bouland C, de Brouwer C. 2012. Health effects of extremely low-frequency magnetic fields: reconsidering the melatonin hypothesis in the light of current data on magnetoreception. J Appl Toxicol. 32(12):952–958.
  • Vergallo C, Ahmadi M, Mobasheri H, Dini L. 2014. Impact of inhomogeneous static magnetic field (31.7–232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration. PLOS One. 9(11):e113530.
  • Wang H, Zhang T, Sun W, Wang Z, Zuo D, Zhou Z, Li S, Xu J, Yin F, Hua Y, et al. 2016. Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 7(6):e2247.
  • Wang H, Zhang X. 2017. Magnetic fields and reactive oxygen species. IJMS. 18(10):2175.
  • Yoshida T, Maulik N, Ho YS, Alam J, Das DK. 2001. H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: a study with transgenic mice heterozygous for targeted disruption of the heme oxygenase-1 gene. Circulation. 103(12):1695–1701.
  • Zhou J, Gao YH, Zhu BY, Shao JL, Ma HP, Xian CJ, Chen KM. 2019. Sinusoidal electromagnetic fields increase peak bone mass in rats by activating wnt10b/β-catenin in primary cilia of osteoblasts. J Bone Miner Res. 34(7):1336–1351.
  • Zmyslony M, Rajkowska E, Mamrot P, Politanski P, Jajte J. 2004. The effect of weak 50 Hz magnetic fields on the number of free oxygen radicals in rat lymphocytes in vitro. Bioelectromagnetics. 25(8):607–612.