3,415
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1722-1751 | Received 10 May 2022, Accepted 28 Jul 2022, Published online: 24 Aug 2022

References

  • Aguayo-Orozco A, Taboureau O, Brunak S. 2019. The use of systems biology in chemical risk assessment. Curr Opin Toxicol. 15:48–54.
  • Akahoshi M, Amasaki Y, Soda M, Hida A, Imaizumi M, Nakashima E, Maeda R, Seto S, Yano K. 2003. Effects of radiation on fatty liver and metabolic coronary risk factors among atomic bomb survivors in Nagasaki. Hypertens Res. 26(12):965–970.
  • Amundson SA. 2021. Transcriptomics for radiation biodosimetry: progress and challenges. Int J Radiat Biol. 1–9. doi:10.1080/09553002.2021.1928784
  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 29(3):730–741.
  • Aryankalayil MJ, Martello S, Bylicky MA, Chopra S, May JM, Shankardass A, MacMillan L, Sun L, Sanjak J, Vanpouille-Box C, et al. 2021. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J Transl Med. 19(1):336.
  • Awad EM, Khan SY, Sokolikova B, Brunner PM, Olcaydu D, Wojta J, Breuss JM, Uhrin P. 2013. Cold induces reactive oxygen species production and activation of the NF-kappa B response in endothelial cells and inflammation in vivo. J Thromb Haemost. 11(9):1716–1726.
  • Aypar U, Morgan WF, Baulch JE. 2011. Radiation-induced epigenetic alterations after low and high LET irradiations. Mutat Res. 707(1–2):24–33.
  • Azimzadeh O, von Toerne C, Subramanian V, Sievert W, Multhoff G, Atkinson MJ, Tapio S. 2021. Data-independent acquisition proteomics reveals long-term biomarkers in the. Serum of C57BL/6J mice following local high-dose heart irradiation. Front Public Health. 9:678856.
  • Azimzadeh O, Atkinson MJ, Tapio S. 2014. Proteomics in radiation research: present status and future perspectives. Radiat Environ Biophys. 53(1):31–38.
  • Azimzadeh O, Azizova T, Merl-Pham J, Blutke A, Moseeva M, Zubkova O, Anastasov N, Feuchtinger A, Hauck SM, Atkinson MJ, et al. 2020. Chronic occupational exposure to ionizing radiation induces alterations in the structure and metabolism of the heart: a proteomic analysis of human formalin-fixed paraffin-embedded (FFPE) cardiac tissue. Int J Mol Sci. 21(18):6832.
  • Azimzadeh O, Azizova T, Merl-Pham J, Subramanian V, Bakshi MV, Moseeva M, Zubkova O, Hauck SM, Anastasov N, Atkinson MJ, et al. 2017. A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers. Oncotarget. 8(6):9067–9078.
  • Azimzadeh O, Gomolka M, Birschwilks M, Saigusa S, Grosche B, Moertl S. 2021. Advanced omics and radiobiological tissue archives: the future in the past. Appl Sci. 11(23):11108.
  • Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, et al. 2011. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics. 11(16):3299–3311.
  • Azimzadeh O, Scherthan H, Yentrapalli R, Barjaktarovic Z, Ueffing M, Conrad M, Neff F, Calzada-Wack J, Aubele M, Buske C, et al. 2012. Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation. J Proteomics. 75(8):2384–2395.
  • Azimzadeh O, Sievert W, Sarioglu H, Merl-Pham J, Yentrapalli R, Bakshi MV, Janik D, Ueffing M, Atkinson MJ, Multhoff G, et al. 2015. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 14(2):1203–1219.
  • Azimzadeh O, Sievert W, Sarioglu H, Yentrapalli R, Barjaktarovic Z, Sriharshan A, Ueffing M, Janik D, Aichler M, Atkinson MJ, et al. 2013. PPAR alpha: a novel radiation target in locally exposed Mus musculus heart revealed by quantitative proteomics. J Proteome Res. 12(6):2700–2714. eng.
  • Azimzadeh O, Subramanian V, Sievert W, Merl-Pham J, Oleksenko K, Rosemann M, Multhoff G, Atkinson MJ, Tapio S. 2021. Activation of PPARα by fenofibrate attenuates the effect of local heart high dose irradiation on the mouse cardiac proteome. Biomedicines. 9(12):1845.
  • Azimzadeh O, Subramanian V, Ständer S, Merl-Pham J, Lowe D, Barjaktarovic Z, Moertl S, Raj K, Atkinson MJ, Tapio S. 2017. Proteome analysis of irradiated endothelial cells reveals persistent alteration in protein degradation and the RhoGDI and NO signalling pathways. Int J Radiat Biol. 93(9):920–928.
  • Azimzadeh O, Tapio S. 2017. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics. 14(11):987–996.
  • Azizova TV, Bannikova MV, Briks KV, Grigoryeva ES, Hamada N. 2022. Incidence risks for subtypes of heart diseases in a Russian cohort of Mayak Production Association nuclear workers. Radiat Environ Biophys. 61: in press.
  • Babini G, Baiocco G, Barbieri S, Morini J, Sangsuwan T, Haghdoost S, Yentrapalli R, Azimzadeh O, Rombouts C, Aerts A, et al. 2022. A systems radiation biology approach to unravel the role of chronic low-dose-rate gamma-irradiation in inducing premature senescence in endothelial cells. PLoS One. 17(3):e0265281.
  • Baker JE, Moulder JE, Hopewell JW. 2011. Radiation as a risk factor for cardiovascular disease. Antioxid Redox Signal. 15(7):1945–1956.
  • Bakshi MV, Barjaktarovic Z, Azimzadeh O, Kempf SJ, Merl J, Hauck SM, Eriksson P, Buratovic S, Atkinson MJ, Tapio S. 2013. Long-term effects of acute low-dose ionizing radiation on the neonatal mouse heart: a proteomic study. Radiat Environ Biophys. 52(4):451–461.
  • Barjaktarovic Z, Anastasov N, Azimzadeh O, Sriharshan A, Sarioglu H, Ueffing M, Tammio H, Hakanen A, Leszczynski D, Atkinson MJ, et al. 2013. Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation. Radiat Environ Biophys. 52(1):87–98.
  • Barjaktarovic Z, Kempf SJ, Sriharshan A, Merl-Pham J, Atkinson MJ, Tapio S. 2015. Ionizing radiation induces immediate protein acetylation changes in human cardiac microvascular endothelial cells. J Radiat Res. 56(4):623–632.
  • Barjaktarovic Z, Merl-Pham J, Azimzadeh O, Kempf SJ, Raj K, Atkinson MJ, Tapio S. 2017. Low-dose radiation differentially regulates protein acetylation and histone deacetylase expression in human coronary artery endothelial cells. Int J Radiat Biol. 93(2):156–164.
  • Barjaktarovic Z, Merl-Pham J, Braga-Tanaka I, Tanaka S, Hauck SM, Saran A, Mancuso M, Atkinson MJ, Tapio S, Azimzadeh O. 2019. Hyperacetylation of cardiac mitochondrial proteins is associated with metabolic impairment and sirtuin downregulation after chronic total body irradiation of ApoE (-/-) mice. Int J Mol Sci. 20(20):5239.
  • Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Schäfer A, Atkinson MJ, et al. 2011. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One. 6(12):e27811.
  • Barjaktarovic Z, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Atkinson MJ, Zischka H, Tapio S. 2013. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure. Radiother Oncol. 106(3):404–410.
  • Barnard SGR, Hamada N. 2022. Individual response of the ocular lens to ionizing radiation. Int J Radiat Biol. 1–17. doi:10.1080/09553002.2022.2074166
  • Barnette BL, Yu Y, Ullrich RL, Emmett MR. 2021. Mitochondrial effects in the liver of C57BL/6 mice by low dose, high energy, high charge irradiation. Int J Mol Sci. 22(21):11806.
  • Baselet B, Azimzadeh O, Erbeldinger N, Bakshi MV, Dettmering T, Janssen A, Ktitareva S, Lowe DJ, Michaux A, Quintens R, et al. 2017. Differential impact of single-dose fe ion and x-ray irradiation on endothelial cell transcriptomic and proteomic responses. Front Pharmacol. 8(570):570.
  • Baselet B, Belmans N, Coninx E, Lowe D, Janssen A, Michaux A, Tabury K, Raj K, Quintens R, Benotmane MA, et al. 2017. Functional gene analysis reveals cell cycle changes and inflammation in endothelial cells irradiated with a single x-ray dose. Front Pharmacol. 8:213.
  • Baselet B, Sonveaux P, Baatout S, Aerts A. 2019. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci. 76(4):699–728.
  • Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, et al. 2020. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18(1):e3000599.
  • Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, Van Der Burg B, Villeneuve DL, et al. 2015. Increasing scientific confidence in adverse outcome pathways: application of tailored bradford-hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol. 72(3):514–537.
  • Becker BV, Majewski M, Abend M, Palnek A, Nestler K, Port M, Ullmann R. 2018. Gene expression changes in human iPSC-derived cardiomyocytes after X-ray irradiation. Int J Radiat Biol. 94(12):1095–1103.
  • Boerma M, Hauer-Jensen M. 2010. Preclinical research into basic mechanisms of radiation-induced heart disease. Cardiol Res Pract. 2011:1–8.
  • Boerma M, van der Wees CG, Vrieling H, Svensson JP, Wondergem J, van der Laarse A, Mullenders LH, van Zeeland AA. 2005. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation. BMC Genomics. 6:6.
  • Boguszewicz Ł, Bieleń A, Ciszek M, Wendykier J, Szczepanik K, Skorupa A, Mrochem-Kwarciak J, Składowski K, Sokół M. 2021. NMR-based metabolomics in investigation of the radiation induced changes in blood serum of head and neck cancer patients and its correlation with the tissue volumes exposed to the particulate doses. Int J Mol Sci. 22(12):6310.
  • Bridges J, Sauer UG, Buesen R, Deferme L, Tollefsen KE, Tralau T, van Ravenzwaay B, Poole A, Pemberton M. 2017. Framework for the quantitative weight-of-evidence analysis of 'omics data for regulatory purposes. Regul Toxicol Pharmacol. 91( 1):S46–s60.
  • Brockmeier EK, Hodges G, Hutchinson TH, Butler E, Hecker M, Tollefsen KE, Garcia-Reyero N, Kille P, Becker D, Chipman K, et al. 2017. The role of omics in the application of adverse outcome pathways for chemical risk assessment. Toxicol Sci. 158(2):252–262.
  • Brown JM, Hazen SL. 2018. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 16(3):171–181.
  • Cartier A, Hla T. 2019. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science. 366(6463):eaar5551.
  • Chang CW, Dalgliesh AJ, Lopez JE, Griffiths LG. 2016. Cardiac extracellular matrix proteomics: challenges, techniques, and clinical implications. Proteomics Clin Appl. 10(1):39–50.
  • Chauhan V, Beaton D, Hamada N, Wilkins R, Burtt J, Leblanc J, Cool D, Garnier-Laplace J, Laurier D, Le Y, et al. 2022. Adverse outcome pathway: a path toward better data consolidation and global co-ordination of radiation research. Int J Radiat Biol. 1–10. doi:10.1080/09553002.2021.2020363
  • Chauhan V, Hamada N, Garnier-Laplace J, Laurier D, Beaton D, Tollefsen KE, Locke PA. 2022. Establishing a communication and engagement strategy to facilitate the adoption of the adverse outcome pathways in radiation research and regulation. Int J Radiat Biol. 1–8. doi:10.1080/09553002.2022.2086716
  • Chauhan V, Hamada N, Monceau V, Ebrahimian T, Adam N, Wilkins RC, Sebastian S, Patel ZS, Huff JL, Simonetto C, et al. 2021. Expert consultation is vital for adverse outcome pathway development: a case example of cardiovascular effects of ionizing radiation. Int J Radiat Biol. 97(11):1516–1525.
  • Chauhan V, Kuo B, McNamee JP, Wilkins RC, Yauk CL. 2016. Transcriptional benchmark dose modeling: exploring how advances in chemical risk assessment may be applied to the radiation field. Environ Mol Mutagen. 57(8):589–604.
  • Chauhan V, Leblanc J, Sadi B, Burtt J, Sauvé K, Lane R, Randhawa K, Wilkins R, Quayle D. 2021. COHERE - strengthening cooperation within the Canadian government on radiation research. Int J Radiat Biol. 97(9):1153–1165.
  • Chauhan V, Rowan-Carroll A, Gagné R, Kuo B, Williams A, Yauk CL. 2019. The use of in vitro transcriptional data to identify thresholds of effects in a human lens epithelial cell-line exposed to ionizing radiation. Int J Radiat Biol. 95(2):156–169.
  • Chauhan V, Said Z, Daka J, Sadi B, Bijlani D, Marchetti F, Beaton D, Gaw A, Li C, Burtt J, et al. 2019. Is there a role for the adverse outcome pathway framework to support radiation protection? Int J Radiat Biol. 95(2):225–232.
  • Chauhan V, Sherman S, Said Z, Yauk CL, Stainforth R. 2021. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int J Radiat Biol. 97(1):68–84.
  • Chauhan V, Stricklin D, Cool D. 2021. The integration of the adverse outcome pathway framework to radiation risk assessment. Int J Radiat Biol. 97(1):60–67.
  • Chauhan V, Wilkins RC, Beaton D, Sachana M, Delrue N, Yauk C, O'Brien J, Marchetti F, Halappanavar S, Boyd M, et al. 2021. Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. Int J Radiat Biol. 97(4):431–441.
  • Cheema AK, Li Y, Girgis M, Jayatilake M, Fatanmi OO, Wise SY, Seed TM, Singh VK. 2020. Alterations in tissue metabolite profiles with amifostine-prophylaxed mice exposed to gamma radiation. Metabolites. 10(5):211.
  • Cheema AK, Li Y, Moulton J, Girgis M, Wise SY Carpenter A, Fatanmi OO, Singh VK. 2022. Identification of novel biomarkers for acute radiation injury using multi-omics approach and nonhuman primate model. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2022.05.046
  • Cheema AK, Mehta KY, Rajagopal MU, Wise SY, Fatanmi OO, Singh VK. 2019. Metabolomic studies of tissue injury in nonhuman primates exposed to gamma-radiation. Int J Mol Sci. 20(13):3360.
  • Chen Y, Cui J, Gong Y, Wei S, Wei Y, Yi L. 2021. MicroRNA: a novel implication for damage and protection against ionizing radiation. Environ Sci Pollut Res Int. 28(13):15584–15596.
  • Chen Z, Schunkert H. 2021. Genetics of coronary artery disease in the post-GWAS era. J Intern Med. 290(5):980–992.
  • Chong Nguyen C, Duboc D, Rainteau D, Sokol H, Humbert L, Seksik P, Bellino A, Abdoul H, Bouazza N, Treluyer JM, et al. 2021. Circulating bile acids concentration is predictive of coronary artery disease in human. Sci Rep. 11(1):22661.
  • Clement C, Rühm W, Harrison J, Applegate K, Cool D, Larsson CM, Cousins C, Lochard J, Bouffler S, Cho K, et al. 2021. Keeping the ICRP recommendations fit for purpose. J Radiol Prot. 41(4):1390.
  • Cobbold CA, Sherratt JA, Maxwell SR. 2002. Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull Math Biol. 64(1):65–95.
  • Coleman MA, Sasi SP, Onufrak J, Natarajan M, Manickam K, Schwab J, Muralidharan S, Peterson LE, Alekseyev YO, Yan X, et al. 2015. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes. Am J Physiol Heart Circ Physiol. 309(11):H1947–1963.
  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. 2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6(12):2853–2868.
  • da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, et al. 2020. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell. 183(5):1185–1201. e1120.
  • Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante B, et al. 2013. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 368(11):987–998. eng.
  • Dawood A, Mothersill C, Seymour C. 2021. Low dose ionizing radiation and the immune response: what is the role of non-targeted effects? Int J Radiat Biol. 97(10):1368–1382.
  • de Freitas RB, Boligon AA, Rovani BT, Piana M, de Brum TF, da Silva Jesus R, Rother FC, Alves NM, Teixeira da Rocha JB, Athayde ML, et al. 2013. Effect of black grape juice against heart damage from acute gamma TBI in rats. Molecules. 18(10):12154–12167.
  • Stefano D, Leonardi I, Casciati S, Pasquali A, Giardullo E, Antonelli P, Novelli F, Babini F, Tanori G, Tanno M, et al. 2021. Contribution of genetic background to the radiation risk for cancer and non-cancer diseases in Ptch1+/- mice. Radiat Res. 197:43–56.
  • Desjardins AU. 1937. The action of roentgen rays or radium on inflammatory processes. Radiology. 29(4):436–445.
  • Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, Entman ML, Taegtmeyer H. 2005. Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation. 112(3):407–415.
  • Diez J. 2010. Altered degradation of extracellular matrix in myocardial remodelling: the growing role of cathepsins and cystatins. Cardiovasc Res. 87(4):591–592.
  • Dundar HA, Kiray M, Kir M, Kolatan E, Bagriyanik A, Altun Z, Aktas S, Ellidokuz H, Yilmaz O, Mutafoglu K, et al. 2016. Protective effect of acetyl-L-carnitine against doxorubicin-induced cardiotoxicity in Wistar Albino rats. Arch Med Res. 47(7):506–514.
  • Dupont C, Armant DR, Brenner CA. 2009. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 27(5):351–357.
  • Esplugas R, Arenas M, Serra N, Bellés M, Bonet M, Gascón M, Vallvé JC, Linares V. 2019. Effect of radiotherapy on the expression of cardiovascular disease-related miRNA-146a, -155, -221 and -222 in blood of women with breast cancer. PLoS One. 14(5):e0217443.
  • Esplugas R, Bellés M, Serra N, Arenas M, Hernández V, Vallvé JC, Linares V. 2019. Effect of radiation on the expression of CVD-related miRNAs, inflammation and endothelial dysfunction of HUVECs. Anticancer Res. 39(2):771–780.
  • Filipsson AF, Sand S, Nilsson J, Victorin K. 2003. The benchmark dose method–review of available models, and recommendations for application in health risk assessment. Crit Rev Toxicol. 33(5):505–542.
  • Finck BN. 2007. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res. 73(2):269–277.
  • Foray N, Bourguignon M, Hamada N. 2016. Individual response to ionizing radiation. Mutat Res Rev Mutat Res. 770(Pt B):369–386.
  • Freeman JL, Weber GJ, Peterson SM, Nie LH. 2014. Embryonic ionizing radiation exposure results in expression alterations of genes associated with cardiovascular and neurological development, function, and disease and modified cardiovascular function in zebrafish. Front Genet. 5:268.
  • Freund A, Orjalo AV, Desprez PY, Campisi J. 2010. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 16(5):238–246.
  • Furusawa Y, Zhao QL, Hattori Y, Tabuchi Y, Iwasaki T, Nomura T, Kondo T. 2016. Comprehensive and computational analysis of genes in human umbilical vein endothelial cells responsive to X-irradiation. Genom Data. 8:126–130.
  • Gaboury JP, Anderson DC, Kubes P. 1994. Molecular mechanisms involved in superoxide-induced leukocyte-endothelial cell interactions in vivo. Am J Physiol. 266(2 Pt 2):H637–642.
  • Gallina C, Turinetto V, Giachino C. 2015. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int. 2015:765846.
  • Gao S, Wu R, Zeng Y. 2012. Up-regulation of peroxisome proliferator-activated receptor gamma in radiation-induced heart injury in rats. Radiat Environ Biophys. 51(1):53–59.
  • Garikipati VNS, Arakelyan A, Blakely EA, Chang PY, Truongcao MM, Cimini M, Malaredy V, Bajpai A, Addya S, Bisserier M, et al. 2021. Long-term effects of very low dose particle radiation on gene expression in the heart: degenerative disease risks. Cells. 10(2):387.
  • Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, et al. 2019. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 364(0 ):eaau8650.
  • Goetz W, Morgan MN, Baulch JE. 2011. The effect of radiation quality on genomic DNA methylation profiles in irradiated human cell lines. Radiat Res. 175(5):575–587.
  • Gonzalez-Jaramillo V, Portilla-Fernandez E, Glisic M, Voortman T, Ghanbari M, Bramer W, Chowdhury R, Nijsten T, Dehghan A, Franco OH, et al. 2019. Epigenetics and inflammatory markers: a systematic review of the current evidence. Int J Inflam. 2019:6273680.
  • Goudarzi M, Mak TD, Chen C, Smilenov LB, Brenner DJ, Fornace AJ. 2014. The effect of low dose rate on metabolomic response to radiation in mice. Radiat Environ Biophys. 53(4):645–657.
  • Goudarzi M, Weber WM, Mak TD, Chung J, Doyle-Eisele M, Melo DR, Brenner DJ, Guilmette RA, Fornace AJ. Jr. 2015. Metabolomic and lipidomic analysis of serum from mice exposed to an internal emitter, cesium-137, using a shotgun LC-MS(E) approach. J Proteome Res. 14(1):374–384.
  • Gramatyka M, Skorupa A, Sokół M. 2018. Nuclear magnetic resonance spectroscopy reveals metabolic changes in living cardiomyocytes after low doses of ionizing radiation. Acta Biochim Pol. 65(2):309–318.
  • Gramatyka M, Widłak P, Gabryś D, Kulik R, Sokół M. 2020. Resveratrol administration prevents radiation-related changes in metabolic profiles of hearts 20 weeks after irradiation of mice with a single 2 Gy dose. Acta Biochim Pol. 67(4):629–632.
  • Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. 2000. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 20(10):2175–2183.
  • Grison S, Kereselidze D, Cohen D, Gloaguen C, Elie C, Lestaevel P, Legendre A, Manens L, Habchi B, Benadjaoud MA, et al. 2019. Applying a multiscale systems biology approach to study the effect of chronic low-dose exposure to uranium in rat kidneys. Int J Radiat Biol. 95(6):737–752.
  • Guo Y, Cui L, Jiang S, Zhang A, Jiang S. 2017. Proteomics of acute heart failure in a rat post-myocardial infarction model. Mol Med Rep. 16(2):1946–1956.
  • Gupta S, Gangenahalli G. 2019. Analysis of molecular switch between leukocyte and substrate adhesion in bone marrow endothelial cells. Life Sci. 238:116981.
  • Halle M, Gabrielsen A, Paulsson-Berne G, Gahm C, Agardh HE, Farnebo F, Tornvall P. 2010a. Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J Am Coll Cardiol. 55(12):1227–1236.
  • Hamada N, Fujimichi Y. 2014. Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. J Radiat Res. 55(4):629–640.
  • Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, Minamino T, Nomura T, Sato H. 2014. Emerging issues in radiogenic cataracts and cardiovascular disease. J Radiat Res. 55(5):831–846.
  • Hamada N, Kawano K, Nomura T, Furukawa K, Yusoff F, Maruhashi T, Maeda M, Nakashima A, Higashi Y. 2022. Temporal changes in sparing and enhancing dose protraction effects of ionizing irradiation for aortic damage in wild-type mice. Cancers. 14(14):3319.
  • Hamada N, Kawano KI, Nomura T, Furukawa K, Yusoff FM, Maruhashi T, Maeda M, Nakashima A, Higashi Y. 2021. Vascular damage in the aorta of wild-type mice exposed to ionizing radiation: sparing and enhancing effects of dose protraction. Cancers (Basel. 13(21):5344.
  • Hladik D, Bucher M, Endesfelder D, Oestreicher U. 2022. The potential of omics in biological dosimetry. Radiation. 2(1):78–90.
  • ICRP. 1984. Nonstochastic effects of ionizing radiation. Annals of the ICRP. Vol. 18. London: ICRP.
  • Impey S, Pelz C, Tafessu A, Marzulla T, Turker MS, Raber J. 2016. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus. BMC Genomics. 17:273.
  • Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, Lai FY, Kaptoge S, Brozynska M, Wang T, et al. 2018. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol. 72(16):1883–1893.
  • Isermann A, Mann C, Rube CE. 2020. Histone variant H2A.J marks persistent DNA damage and triggers the secretory phenotype in radiation-induced senescence. Int J Mol Sci. 21(23):9130.
  • Jabbari N, Nawaz M, Rezaie J. 2019. Bystander effects of ionizing radiation: conditioned media from X-ray irradiated MCF-7 cells increases the angiogenic ability of endothelial cells. Cell Commun Signal. 17(1):165.
  • Jang WG, Park JY, Lee J, Bang E, Kim SR, Lee EK, Yun HJ, Kang CM, Hwang GS. 2016. Investigation of relative metabolic changes in the organs and plasma of rats exposed to X-ray radiation using HR-MAS (1)H NMR and solution (1)H NMR. NMR Biomed. 29(4):507–518.
  • Jelonek K, Krzywon A, Jablonska P, Slominska EM, Smolenski RT, Polanska J, Rutkowski T, Mrochem-Kwarciak J, Skladowski K, Widlak P. 2020. Systemic effects of radiotherapy and concurrent chemo-radiotherapy in head and neck cancer patients-comparison of serum metabolome profiles. Metabolites. 10(2):60.
  • Jiang XCL. 2017. Sphingosine-1-phosphate and HDL metabolism. In Komoda T, editor. The HDL handbook; biological functions and clinical implications. Amsterdam, Netherlands: Elsevier.
  • Joshi A, Rienks M, Theofilatos K, Mayr M. 2021. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol. 18(5):313–330.
  • Kaiser JC, Blettner M, Stathopoulos GT. 2021. Biologically based models of cancer risk in radiation research. Int J Radiat Biol. 97(1):2–11.
  • Kawamura K, Qi F, Kobayashi J. 2018. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J Radiat Res. 59(2):ii91–ii97.
  • Kerns SL, Fachal L, Dorling L, Barnett GC, Baran A, Peterson DR, Hollenberg M, Hao K, Narzo AD, Ahsen ME, et al. 2020. Radiogenomics consortium genome-wide association study meta-analysis of late toxicity after prostate cancer radiotherapy. J Natl Cancer Inst. 112(2):179–190.
  • Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH, Kim JR. 2007. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell. 18(11):4543–4552.
  • Kojima H, Inoue T, Kunimoto H, Nakajima K. 2013. IL-6-STAT3 signaling and premature senescence. JAKSTAT. 2(4):e25763.
  • Koturbash I, Boyko A, Rodriguez-Juarez R, McDonald RJ, Tryndyak VP, Kovalchuk I, Pogribny IP, Kovalchuk O. 2007. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis. 28(8):1831–1838.
  • Koturbash I, Miousse IR, Sridharan V, Nzabarushimana E, Skinner CM, Melnyk SB, Pavliv O, Hauer-Jensen M, Nelson GA, Boerma M. 2016. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res. 787:43–53.
  • Kraemer A, Anastasov N, Angermeier M, Winkler K, Atkinson MJ, Moertl S. 2011. MicroRNA-mediated processes are essential for the cellular radiation response. Radiat Res. 176(5):575–586.
  • Kreuzer M, Auvinen A, Cardis E, Hall J, Jourdain JR, Laurier D, Little MP, Peters A, Raj K, Russell NS, et al. 2015. Low-dose ionising radiation and cardiovascular diseases–Strategies for molecular epidemiological studies in Europe. Mutat Res Rev Mutat Res. 764:90–100.
  • Kuch B, Heier M, von Scheidt W, Kling B, Hoermann A, Meisinger C. 2008. 20-year trends in clinical characteristics, therapy and short-term prognosis in acute myocardial infarction according to presenting electrocardiogram: the MONICA/KORA AMI Registry (1985–2004). J Intern Med. 264(3):254–264.
  • Kumar P, Wang P, Farese AM, MacVittie TJ, Kane MA. 2021. Metabolomics of multiorgan radiation injury in non-human primate model reveals system-wide metabolic perturbations. Health Phys. 121(4):395–405.
  • Kura B, Babal P, Slezak J. 2017. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol. 95(10):1236–1244.
  • Kura B, Yin C, Frimmel K, Krizak J, Okruhlicova L, Kukreja RC, Slezak J. 2016. Changes of microRNA-1, -15b and -21 levels in irradiated rat hearts after treatment with potentially radioprotective drugs. Physiol Res. 65(1):S129–S137.
  • Laiakis EC, Mak TD, Anizan S, Amundson SA, Barker CA, Wolden SL, Brenner DJ, Fornace AJ. Jr. 2014. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat Res. 181(4):350–361.
  • Laiakis EC, Pannkuk EL, Chauthe SK, Wang YW, Lian M, Mak TD, Barker CA, Astarita G, Fornace AJ. Jr. 2017. A serum small molecule biosignature of radiation exposure from total body irradiated patients. J Proteome Res. 16(10):3805–3815.
  • Laiakis EC, Shuryak I, Deziel A, Wang YW, Barnette BL, Yu Y, Ullrich RL, Fornace AJ, Jr., Emmett MR. 2021. Effects of low dose space radiation exposures on the splenic metabolome. Int J Mol Sci. 22(6):3070.
  • Laiakis EC, Strawn SJ, Brenner DJ, Fornace AJ. Jr. 2016. Assessment of saliva as a potential biofluid for biodosimetry: a pilot metabolomics study in mice. Radiat Res. 186(1):92–97.
  • Laurier D, Rühm W, Paquet F, Applegate K, Cool D, Clement C; International Commission on Radiological Protection (ICRP). 2021. Areas of research to support the system of radiological protection. Radiat Environ Biophys. 60(4):519–530.
  • Li HH, Lin YT, Laiakis EC, Goudarzi M, Weber W, Fornace AJ. Jr. 2020. Serum metabolomic alterations associated with cesium-137 internal emitter delivered in various dose rates. Metabolites. 10(7):270.
  • Li W, Shu S, Cheng L, Hao X, Wang L, Wu Y, Yuan Z, Zhou J. 2020. Fasting serum total bile acid level is associated with coronary artery disease, myocardial infarction and severity of coronary lesions. Atherosclerosis. 292:193–200.
  • Li M, You L, Xue J, Lu Y. 2018. Ionizing radiation-induced cellular senescence in normal, non-transformed cells and the involved DNA damage response: a mini review. Front Pharmacol. 9:522.
  • Li X, Zhao D, Guo Z, Li T, Qili M, Xu B, Qian M, Liang H, E X, Chege Gitau S, et al. 2016. Overexpression of serpinE2/protease nexin-1 contribute to pathological cardiac fibrosis via increasing collagen deposition. Sci Rep. 6:37635.
  • Libby P. 2002. Inflammation in atherosclerosis. Nature. 420(6917):868–874.
  • Lindner JR, Davidson BP, Song Z, Maier CS, Minnier J, Stevens JF, Ferencik M, Taqui S, Belcik JT, Moccetti F, et al. 2021. Plasma lipidomic patterns in patients with symptomatic coronary microvascular dysfunction. Metabolites. 11(10):648.
  • Lindsey ML, Hall ME, Harmancey R, Ma Y. 2016. Adapting extracellular matrix proteomics for clinical studies on cardiac remodeling post-myocardial infarction. Clin Proteomics. 13:19.
  • Little MP. 2016. Radiation and circulatory disease. Mutat Res Rev Mutat Res. 770:299–318.
  • Little MP, Azizova TV, Hamada N. 2021. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol. 97(6):782–803.
  • Little MP, Gola A, Tzoulaki I. 2009. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput Biol. 5(10):e1000539.
  • Little MP, Pawel D, Misumi M, Hamada N, Cullings HM, Wakeford R, Ozasa K. 2020. Lifetime mortality risk from cancer and circulatory disease predicted from the Japanese atomic bomb Survivor life span study data taking account of dose measurement error. Radiat Res. 194(3):259–276.
  • Little MP, Wakeford R, Bouffler SD, Abalo K, Hauptmann M, Hamada N, Kendall GM. 2022a. Cancer risks among studies of medical diagnostic radiation exposure in early life without quantitative estimates of dose. Sci Total Environ. 832:154723.
  • Little MP, Wakeford R, Bouffler SD, Abalo K, Hauptmann M, Hamada N, Kendall GM. 2022b. Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses. Environ Int. 159:106983.
  • Liu Q, Piao H, Wang Y, Zheng D, Wang W. 2021. Circulating exosomes in cardiovascular disease: novel carriers of biological information. Biomed Pharmacother. 135:111148.
  • Liu X, Zhou Y, Wang S, Guan H, Hu S, Huang R, Zhou P. 2019. Impact of low-dose ionising radiation on the composition of the gut microbiota of mice. Toxicol Sci. 171(1):258–268.
  • Livingston K, Schlaak RA, Puckett LL, Bergom C. 2020. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside. Front Cardiovasc Med. 7:20.
  • Lowe D, Raj K. 2014. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell. 13(5):900–910.
  • Lu Y, Zhu X, Li J, Fang R, Wang Z, Zhang J, Li K, Li X, Bai H, Yang Q, et al. 2017. Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem Pharmacol. 123:40–51.
  • Luo L, Yan C, Fuchi N, Kodama Y, Zhang X, Shinji G, Miura K, Sasaki H, Li TS. 2021. Mesenchymal stem cell-derived extracellular vesicles as probable triggers of radiation-induced heart disease. Stem Cell Res Ther. 12(1):422.
  • Luzhna L, Ilnytskyy Y, Kovalchuk O. 2015. Mobilization of LINE-1 in irradiated mammary gland tissue may potentially contribute to low dose radiation-induced genomic instability. Genes Cancer. 6(1–2):71–81.
  • Maes OC, An J, Sarojini H, Wu H, Wang E. 2008. Changes in MicroRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Biochem. 105(3):824–834.
  • Martins-Marques T, Hausenloy DJ, Sluijter JPG, Leybaert L, Girao H. 2021. Intercellular communication in the heart: therapeutic opportunities for cardiac ischemia. Trends Mol Med. 27(3):248–262.
  • Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM. 1993. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 92(4):1866–1874.
  • Mc Auley MT. 2022. Modeling cholesterol metabolism and atherosclerosis. WIREs Mech Dis. 14(3):e1546.
  • McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. 2018. Cardiovascular metabolomics. Circ Res. 122(9):1238–1258.
  • McPherson R, Tybjaerg-Hansen A. 2016. Genetics of coronary artery disease. Circ Res. 118(4):564–578.
  • Mildner CS, Copic D, Zimmermann M, Lichtenauer M, Direder M, Klas K, Bormann D, Gugerell A, Moser B, Hoetzenecker K, et al. 2022. Secretome of stressed peripheral blood mononuclear cells alters transcriptome signature in heart, liver, and spleen after an experimental acute myocardial infarction: an in silico analysis. Biology (Basel). 11(1):116.
  • Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. 2002. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation. 105(13):1541–1544.
  • Miousse IR, Chang J, Shao L, Pathak R, Nzabarushimana É, Kutanzi KR, Landes RD, Tackett AJ, Hauer-Jensen M, Zhou D, et al. 2017. Inter-strain differences in LINE-1 DNA methylation in the mouse hematopoietic system in response to exposure to ionizing radiation. Int J Mol Sci. 18(7):1430.
  • Miousse IR, Skinner CM, Sridharan V, Seawright JW, Singh P, Landes RD, Cheema AK, Hauer-Jensen M, Boerma M, Koturbash I. 2019. Changes in one-carbon metabolism and DNA methylation in the hearts of mice exposed to space environment-relevant doses of oxygen ions ((16)O). Life Sci Space Res (Amst). 22:8–15.
  • Moertl S, Buschmann D, Azimzadeh O, Schneider M, Kell R, Winkler K, Tapio S, Hornhardt S, Merl-Pham J, Pfaffl MW, et al. 2020. Radiation exposure of peripheral mononuclear blood cells alters the composition and function of secreted extracellular vesicles. Int J Mol Sci. 21(0 ):2336.
  • Moertl S, Mutschelknaus L, Heider T, Atkinson MJ. 2016. MicroRNAs as novel elements in personalized radiotherapy. Transl Cancer Res. 5(S6):S1262–S1269.
  • Mortensen HM, Chamberlin J, Joubert B, Angrish M, Sipes N, Lee JS, Euling SY. 2018. Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment. Mamm Genome. 29(1–2):190–204.
  • Muka T, Koromani F, Portilla E, O’Connor A, Bramer WM, Troup J, Chowdhury R, Dehghan A, Franco OH. 2016. The role of epigenetic modifications in cardiovascular disease: a systematic review. Int J Cardiol. 212:174–183.
  • Muka T, Nano J, Voortman T, Braun KVE, Ligthart S, Stranges S, Bramer WM, Troup J, Chowdhury R, Dehghan A, et al. 2016. The role of global and regional DNA methylation and histone modifications in glycemic traits and type 2 diabetes: a systematic review. Nutr Metab Cardiovasc Dis. 26(7):553–566.
  • Mukherjee P, Mani S. 2013. Methodologies to decipher the cell secretome. Biochim Biophys Acta. 1834(11):2226–2232.
  • NASEM. 2022. Leveraging advances in modern science to revitalize low-dose radiation research in the United States. Washington (DC): The National Academies Press.
  • NCRP. 2020. Report No. 186 – approaches for integrating information from radiation biology and epidemiology to enhance low-dose health risk assessment (2020). Bethesda (MD): NCRP.
  • Nouraee N, Mowla SJ. 2015. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet. 6:232.
  • OECD. 2018. Handbook supplement to the guidance document for developing and assessing adverse outcome pathways. Paris, France: OECD.
  • Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, Ylä-Herttuala S, et al. 2021. Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. Circ Res. 129(2):240–258.
  • Pannkuk EL, Fornace AJ, Jr., Laiakis EC. 2017. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol. 93(10):1151–1176.
  • Pannkuk EL, Laiakis EC, Girgis M, Garty GY, Morton SR, Pujol-Canadell M, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ. Jr. 2021. Biofluid metabolomics of mice exposed to external low-dose rate radiation in a novel irradiation system, the variable dose-rate external (137)Cs irradiator. J Proteome Res. 20(11):5145–5155.
  • Papiez A, Azimzadeh O, Azizova T, Moseeva M, Anastasov N, Smida J, Tapio S, Polanska J. 2018. Integrative multiomics study for validation of mechanisms in radiation-induced ischemic heart disease in Mayak workers. PLoS One. 13(12):e0209626.
  • PDAY. 1993. Natural history of aortic and coronary atherosclerotic lesions in youth. Findings from the PDAY Study. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb. 13(9):1291–1298.
  • Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, et al. 2012. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res Rev Mutat Res. 751(2):258–286.
  • Philipp J, Azimzadeh O, Subramanian V, Merl-Pham J, Lowe D, Hladik D, Erbeldinger N, Ktitareva S, Fournier C, Atkinson MJ, et al. 2017. Radiation-induced endothelial inflammation is transferred via the secretome to recipient cells in a STAT-mediated process. J Proteome Res. 16(10):3903–3916.
  • Philipp J, Le Gleut R, Toerne CV, Subedi P, Azimzadeh O, Atkinson MJ, Tapio S. 2020. Radiation response of human cardiac endothelial cells reveals a central role of the cGAS-STING pathway in the development of inflammation. Proteomes. 8(4):30.
  • Pluder F, Barjaktarovic Z, Azimzadeh O, Mörtl S, Krämer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, et al. 2011. Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. Radiat Environ Biophys. 50(1):155–166.
  • Pogribny I, Koturbash I, Tryndyak V, Hudson D, Stevenson SM, Sedelnikova O, Bonner W, Kovalchuk O. 2005. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res. 3(10):553–561.
  • Preston RJ. 2015. Integrating basic radiobiological science and epidemiological studies: why and how. Health Phys. 108(2):125–130.
  • Preston RJ. 2017. Can radiation research impact the estimation of risk? Int J Radiat Biol. 93(10):1009–1014.
  • Preston RJ, Rühm W, Azzam EI, Boice JD, Bouffler S, Held KD, Little MP, Shore RE, Shuryak I, Weil MM. 2021. Adverse outcome pathways, key events, and radiation risk assessment. Int J Radiat Biol. 97(6):804–814.
  • Proia RL, Hla T. 2015. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest. 125(4):1379–1387.
  • Rahman A, Bando M, Kefer J, Anwar KN, Malik AB. 1999. Protein kinase C-activated oxidant generation in endothelial cells signals intercellular adhesion molecule-1 gene transcription. Mol Pharmacol. 55(3):575–583.
  • Rajaraman P, Hauptmann M, Bouffler S, Wojcik A. 2018. Human individual radiation sensitivity and prospects for prediction. Ann ICRP. 47(3–4):126–141.
  • Ramadan R, Baatout S, Aerts A, Leybaert L. 2021. The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci. 78(7):3087–3103.
  • Ramadan R, Claessens M, Cocquyt E, Mysara M, Decrock E, Baatout S, Aerts A, Leybaert L. 2021. X‑irradiation induces acute and early term inflammatory responses in atherosclerosis‑prone ApoE‑/‑ mice and in endothelial cells. Mol Med Rep. 23(6):399.
  • Ramadan R, Vromans E, Anang DC, Decrock E, Mysara M, Monsieurs P, Baatout S, Leybaert L, Aerts A. 2019. Single and fractionated ionizing radiation induce alterations in endothelial connexin expression and channel function. Sci Rep. 9(1):4643.
  • Ramadan R, Vromans E, Anang DC, Goetschalckx I, Hoorelbeke D, Decrock E, Baatout S, Leybaert L, Aerts A. 2020. Connexin43 hemichannel targeting with TAT-Gap19 alleviates radiation-induced endothelial cell damage. Front Pharmacol. 11(212):212.
  • Rehammar JC, Jensen MB, McGale P, Lorenzen EL, Taylor C, Darby SC, Videbaek L, Wang Z, Ewertz M. 2017. Risk of heart disease in relation to radiotherapy and chemotherapy with anthracyclines among 19,464 breast cancer patients in Denmark, 1977–2005. Radiother Oncol. 123(2):299–305.
  • Ren JL, Pan JS, Lu YP, Sun P, Han J. 2009. Inflammatory signaling and cellular senescence. Cell Signal. 21(3):378–383.
  • Rombouts C, Aerts A, Quintens R, Baselet B, El-Saghire H, Harms-Ringdahl M, Haghdoost S, Janssen A, Michaux A, Yentrapalli R, et al. 2014. Transcriptomic profiling suggests a role for IGFBP5 in premature senescence of endothelial cells after chronic low dose rate irradiation. Int J Radiat Biol. 90(7):560–574.
  • Rufini A, Tucci P, Celardo I, Melino G. 2013. Senescence and aging: the critical roles of p53. Oncogene. 32(43):5129–5143.
  • Rühm W, Eidemüller M, Kaiser JC. 2017. Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data. Int J Radiat Biol. 93(10):1093–1117.
  • Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, et al. 2015. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. Radiat Environ Biophys. 54(4):379–401.
  • Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. 2022. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics. 17(1):59–80.
  • Satyamitra MM, Cassatt DR, Hollingsworth BA, Price PW, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. 2020. Metabolomics in radiation biodosimetry: current approaches and advances. Metabolites. 10(8):328.
  • Sauer UG, Deferme L, Gribaldo L, Hackermüller J, Tralau T, van Ravenzwaay B, Yauk C, Poole A, Tong W, Gant TW. 2017. The challenge of the application of 'omics technologies in chemicals risk assessment: background and outlook. Regul Toxicol Pharmacol. 91(1):S14–s26.
  • Schäfer J, Strimmer K. 2005. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics. 21(6):754–764.
  • Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, Trimarco B, Esposito G, Perrino C. 2017. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 38(39):2948–2956.
  • Schofield PN, Kulka U, Tapio S, Grosche B. 2019. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int J Radiat Biol. 95(7):861–878.
  • Seawright JW, Samman Y, Sridharan V, Mao XW, Cao M, Singh P, Melnyk S, Koturbash I, Nelson GA, Hauer-Jensen M, et al. 2017. Effects of low-dose rate γ-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart. PLoS One. 12(7):e0180594.
  • Seemann I, Gabriels K, Visser NL, Hoving S, te Poele JA, Pol JF, Gijbels MJ, Janssen BJ, van Leeuwen FW, Daemen MJ, et al. 2012. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol. 103(2):143–150.
  • Seemann I, Te Poele JA, Luikinga SJ, Hoving S, Stewart FA. 2013. Endoglin haplo-insufficiency modifies the inflammatory response in irradiated mouse hearts without affecting structural and mircovascular changes. PLoS One. 8(7):e68922.
  • Selvarajan I, Toropainen A, Garske KM, López Rodríguez M, Ko A, Miao Z, Kaminska D, Õunap K, Örd T, Ravindran A, et al. 2021. Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. Am J Hum Genet. 108(3):411–430.
  • Shaikh S, Channa NA, Talpur FN, Younis M, Tabassum N. 2017. Radiotherapy improves serum fatty acids and lipid profile in breast cancer. Lipids Health Dis. 16(1):92.
  • Shore RE, Beck HL, Boice JD, Caffrey EA, Davis S, Grogan HA, Mettler FA, Preston RJ, Till JE, Wakeford R, et al. 2018. Implications of recent epidemiologic studies for the linear nonthreshold model and radiation protection. J Radiol Prot. 38(3):1217–1233.
  • Simonetto C, Heier M, Peters A, Kaiser JC, Rospleszcz S. 2022. From atherosclerosis to myocardial infarction - a process-oriented model investigating the role of risk factors. Am J Epidemiol. doi:10.1093/aje/kwac038
  • Simonetto C, Heier M, Rospleszcz S, Meisinger C, Then C, Seißler J, Peters A, Kaiser JC. 2020. Risk for cardiovascular events responds nonlinearly to carotid intima-media thickness in the KORA F4 study. Atherosclerosis. 296:32–39.
  • Simonetto C, Kaiser JC, van den Bogaard VAB, Langendijk JA, Crijns APG. 2022. Breast cancer radiotherapy and the risk of acute coronary events–insights from a process oriented model. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2022.06.082
  • Simonetto C, Rospleszcz S, Heier M, Meisinger C, Peters A, Kaiser JC. 2021. Simulating the dynamics of atherosclerosis to the incidence of myocardial infarction, applied to the KORA population. Stat Med. 40(14):3299–3312.
  • Smit T, Schickel E, Azimzadeh O, von Toerne C, Rauh O, Ritter S, Durante M, Schroeder IS. 2021. A human 3D cardiomyocyte risk model to study the cardiotoxic influence of x-rays and other noxae in adults. Cells. 10(10):2608.
  • Sotoudeh H, Sarrami AH, Roberson GH, Shafaat O, Sadaatpour Z, Rezaei A, Choudhary G, Singhal A, Sotoudeh E, Tanwar M. 2021. Emerging applications of radiomics in neurological disorders: a review. Cureus. 13(12):e20080.
  • Sriharshan A. 2014. Radiation-induced crosstalk between microRNAs and proteins of the endothelium: in silico analysis. J Proteomics Bioinform. 07(10):327–331.
  • Sriharshan A, Boldt K, Sarioglu H, Barjaktarovic Z, Azimzadeh O, Hieber L, Zitzelsberger H, Ueffing M, Atkinson MJ, Tapio S. 2012. Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: four key pathways. J Proteomics. 75(8):2319–2330.
  • Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, et al. 2012. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 41(1–2):1–322.
  • Subedi P, Moertl S, Azimzadeh O. 2022. Omics in radiation biology: surprised but not disappointed. Radiation. 2(1):124–129.
  • Subramanian V, Borchard S, Azimzadeh O, Sievert W, Merl-Pham J, Mancuso M, Pasquali E, Multhoff G, Popper B, Zischka H, et al. 2018. PPARalpha is necessary for radiation-induced activation of noncanonical TGFbeta signaling in the heart. J Proteome Res. 17(4):1677–1689.
  • Subramanian V, Seemann I, Merl-Pham J, Hauck SM, Stewart FA, Atkinson MJ, Tapio S, Azimzadeh O. 2017. Role of TGF beta and PPAR alpha signaling pathways in radiation response of locally exposed heart: integrated global transcriptomics and proteomics analysis. J Proteome Res. 16(1):307–318.
  • Sun W, Jiao Y, Cui B, Gao X, Xia Y, Zhao Y. 2013. Immune complexes activate human endothelium involving the cell-signaling HMGB1-RAGE axis in the pathogenesis of lupus vasculitis. Lab Invest. 93(6):626–638.
  • Sun W, Ni X, Sun S, Cai L, Yu J, Wang J, Nie B, Sun Z, Ni X, Cao X. 2016. Adipose-derived stem cells alleviate radiation-induced muscular fibrosis by suppressing the expression of TGF-beta1. Stem Cells Int. 2016:5638204.
  • Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. 2021. Ionizing radiation-induced circulatory and metabolic diseases. Environ Int. 146:106235.
  • Tirziu D, Giordano FJ, Simons M. 2010. Cell communications in the heart. Circulation. 122(9):928–937.
  • Vailati-Riboni M, Palombo V, Loor JJ. 2017. What are omics sciences? In: Ametaj BN, editor. Periparturient diseases of dairy cows: a systems biology approach. Cham, Switzerland: Springer International Publishing; p. 1–7.
  • van den Bogaard VAB, Spoor DS, van der Schaaf A, van Dijk LV, Schuit E, Sijtsema NM, Langendijk JA, Maduro JH, Crijns APG. 2021. The importance of radiation dose to the atherosclerotic plaque in the left anterior descending coronary artery for radiation-induced cardiac toxicity of breast cancer patients? Int J Radiat Oncol Biol Phys. 110(5):1350–1359.
  • Van Der Meeren A, Squiban C, Gourmelon P, Lafont H, Gaugler MH. 1999. Differential regulation by IL-4 and IL-10 of radiation-induced IL-6 and IL-8 production and ICAM-1 expression by human endothelial cells. Cytokine. 11(11):831–838.
  • van Wieringen WN, Chen Y. 2021. Penalized estimation of the Gaussian graphical model from data with replicates. Stat Med. 40(19):4279–4293.
  • Vera NB, Coy SL, Laiakis EC, Fornace AJ, Jr., Clasquin M, Barker CA, Pfefferkorn JA, Vouros P. 2020. Quantitation of urinary acylcarnitines by DMS-MS/MS uncovers the effects of total body irradiation in cancer patients. J Am Soc Mass Spectrom. 31(3):498–507.
  • Vernice NA, Meydan C, Afshinnekoo E, Mason CE. 2020. Long-term spaceflight and the cardiovascular system. Precis Clin Med. 3(4):284–291.
  • Vicente E, Vujaskovic Z, Jackson IL. 2020. A systematic review of metabolomic and lipidomic candidates for biomarkers in radiation injury. Metabolites. 10(6):259.
  • Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, et al. 2014. Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci. 142(2):312–320.
  • Wagner T, Traxler D, Simader E, Beer L, Narzt MS, Gruber F, Madlener S, Laggner M, Erb M, Vorstandlechner V, et al. 2018. Different pro-angiogenic potential of gamma-irradiated PBMC-derived secretome and its subfractions. Sci Rep. 8(1):18016.
  • Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber PE. 2010. MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol. 5:25.
  • Wang Y, Boerma M, Zhou D. 2016. Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Radiat Res. 186(2):153–161.
  • Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10(1):57–63.
  • Wang Y, Li C, Chuo W, Liu Z, Ouyang Y, Li D, Han J, Wu Y, Guo S, Wang W. 2013. Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Mol Biosyst. 9(12):3135–3145. eng.
  • Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, et al. 2000. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem. 275(29):22293–22299.
  • Westermann D, Mersmann J, Melchior A, Freudenberger T, Petrik C, Schaefer L, Lüllmann-Rauch R, Lettau O, Jacoby C, Schrader J, et al. 2008. Biglycan is required for adaptive remodeling after myocardial infarction. Circulation. 117(10):1269–1276.
  • Wiench B, Chen YR, Paulsen M, Hamm R, Schroder S, Yang NS, Efferth T. 2013. Integration of different “-omics” technologies identifies inhibition of the IGF1R-Akt-mTOR signaling cascade involved in the cytotoxic effect of Shikonin against leukemia cells. Evid Based Complement Alternat Med. 2013:818709.
  • Wu K, Chen Z, Peng Q, Chen G, Yan W, Chen X. 2019. Ku86 alleviates human umbilical vein endothelial cellular apoptosis and senescence induced by a low dose of ionizing radiation. J Int Med Res. 47(2):893–904.
  • Wu Q, Fang Y, Zhang X, Song F, Wang Y, Chen H, Du J, Zheng CB, Shen B. 2020. Effect of X-rays on transcript expression of rat brain microvascular endothelial cells: role of calcium signaling in X-ray-induced endothelium damage. Biosci Rep. 40(4):BSR20193760.
  • Xu P, Yi Y, Luo Y, Liu Z, Xu Y, Cai J, Zeng Z, Liu A. 2021. Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Mol Med Rep. 24(6):842.
  • Yahyapour R, Salajegheh A, Safari A, Amini P, Rezaeyan A, Amraee A, Najafi M. 2018. Radiation-induced non-targeted effect and carcinogenesis; implications in clinical radiotherapy. J Biomed Phys Eng. 8(4):435–446.
  • Yao Y, Chen LF, Li J, Chen J, Tian XL, Wang H, Mei ZJ, Xie CH, Zhong YH. 2022. Altered DNA methylation and gene expression profiles in radiation-induced heart fibrosis of sprague-dawley rats. Radiat Res. 198(2):154–161.
  • Yentrapalli R, Azimzadeh O, Barjaktarovic Z, Sarioglu H, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Haghdoost S, Tapio S. 2013. Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma-radiation. Proteomics. 13(7):1096–1107.
  • Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, et al. 2013. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One. 8(8):e70024.
  • Zalesak-Kravec S, Huang W, Wang P, Yu J, Liu T, Defnet AE, Moise AR, Farese AM, MacVittie TJ, Kane MA. 2021. Multi-omic analysis of non-human primate heart after partial-body radiation with minimal bone marrow sparing. Health Phys. 121(4):352–371.
  • Zanfardino M, Franzese M, Pane K, Cavaliere C, Monti S, Esposito G, Salvatore M, Aiello M. 2019. Bringing radiomics into a multi-omics framework for a comprehensive genotype-phenotype characterization of oncological diseases. J Transl Med. 17(1):337.
  • Zhang DM, Navara R, Yin T, Szymanski J, Goldsztejn U, Kenkel C, Lang A, Mpoy C, Lipovsky CE, Qiao Y, et al. 2021. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun. 12(1):5558.
  • Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L. 2018. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 39(7):1073–1084.