10
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Effect of Hyperthermia on the Internal Microviscosity of Erythrocytes and Lymphocytes: A Spin-label Study

Pages 157-164 | Received 15 Sep 1989, Accepted 08 Jan 1990, Published online: 03 Jul 2009

References

  • Bartosz G., Leyko W. Aging of the erythrocyte. I. Increase in the microviscosity of cell interior as determined by the spin label method. Blut 1980; 41: 131–136
  • Bartosz G., Gaczyńska M., Grzelińska E., Judkiewicz L. A spin-label study of membrane proteins and internal microviscosity of erythrocytes in hereditary spherocytosis. Life Science 1987; 41: 2285–2288
  • Bartosz G., Grzelińska E., Koter M., Kedziora J. Increased internal microviscosity of erythrocytes in Down's syndrome. Medical Science Research 1988; 16: 45–46
  • Bates D.A., Mackillop W.J. Effect of hyperthermia on the sodium-potassium pump in Chinese hamster ovary cells. Radiation Research 1985; 103: 441–451
  • Bates D.A., Mackillop W.J. The effect of hyperthermia on intracellular K+ in Chinese hamster ovary cells. Cancer Letters 1987; 37: 181–187
  • Bhuyan B.K. Kinetics of cell killing by hyperthermia. Cancer Research 1979; 39: 2277–2284
  • Bryszewska M., Gwoździński K. Increased erythrocyte internal microviscosity in diabetes. The effect of glycation in vitro. Medical Science Research 1989, In press
  • Chien S. Red cell deformability and its relevance to blood flow. Annual Reviews of Physiology 1987; 49: 177–192
  • Daveloose D., Fabre G., Berleur F., Testylier G., Leterrier F. A new spin label method for the measurement of erythrocyte internal microviscosity. Biochimica et Biophysica Acta 1983; 763: 41–49
  • Dewey W.C., Westra A., Miller H.H., Nagasawa H. Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. International Journal of Radiation Biology 1971; 20: 505–520
  • Gershfeld N.L., Murayama M. Thermal instability of red blood cell membrane bilayers: temperature dependence of hemolysis. Journal of Membrane Biology 1988; 101: 67–72
  • Hahn G.M. Hyperthermia and Cancer. Plenum Press, New York and London 1982
  • Hedrick W.R., Mathew A., Zimbrick J.D. Intracellular viscosity of lymphocytes determined by a 15N spin label probe. Journal of Magnetic Resonance 1979; 36: 207–214
  • Hedrick W.R., Zimbrick J.D., Mathew A. Phytohaemagglutin-induced changes in spin label reduction in lymphocytes from tumor-bearing rats. Biochemical and Biophysical Research Communications 1982; 109: 180–185
  • Henle K.J., Leeper D.B. Effects of hyperthermia (45°) on macromolecular synthesis in Chinese hamster ovary cells. Cancer Research 1979; 39: 2665–2674
  • Herrmann A., Muller P. Correlation of the internal microviscosity of human erythrocytes to the cell volume and the viscosity of hemoglobin solutions. Biochimica et Biophysica Acta 1986; 885: 80–87
  • Herrmann A., Lentzsch P., Lassmann G., Ladhoff A.M., Donath E. Spectroscopic characterization of vesicle formation on heated human erythrocytes and the influence of the antiviral agent amantadine. Biochimica et Biophysica Acta 1985; 812: 277–285
  • Izumi A., Shigenasa K., Maeta M. Effects of in vitro hyperthermia on murine and human lymphocytes. Cancer 1983; 55: 2061–2065
  • Keith A.D., Mastro A.M. Membrane fluidity and cytoplasmic viscosity. Membrane Fluidity in Biology, R.C. Aloia. Academic Press, New York 1983; 2: 237–257
  • Keith A.D., Snipes W. Viscosity of cellular protoplasm. Science (Washington, DC) 1974; 183: 666–668
  • Konings A.W.T. Effects of heat and radiation on mammalian cells. Radiation Physics and Chemistry 1987; 30: 339–349
  • Koter M., Gwoździński K. Effect of hyperthermia on lymphocyte membrane. 2. Spin-labelled non-electrolyte permeability. Cytobios 1988; 53: 95–98
  • Koter M., Laski J. Does thermotolerance occur in human red cells?. International Journal of Radiation Biology 1989; 56: 59–66
  • Kwock L., Lin P.S., Hefter K., Wallach D.F.H. Impairment of Na+-dependent aminoacid transport in cultured human T-cell line by hyperthermia and radiation. Cancer Research 1978; 38: 83–87
  • Lacavalier D., Mackillop W.J. The effect of hyperthermia on glucose transport in normal and thermaltolerant Chinese hamster ovary cells. Cancer Letters 1985; 29: 223–231
  • Lepock J. Involvement of membranes in cellular responses to hyperthermia. Radiation Research 1982; 92: 433–438
  • Lepock J.R., Cheng K.H., Campbell S.D., Kruuv J. Rotational diffusion of tempone in the cytoplasm of Chinese hamster lung cells. Biophysical Journal 1983; 44: 405–412
  • Leyko W., Bartosz G. Membrane effects of ionizing radiation and hyperthermia. International Journal of Radiation Biology 1986; 49: 743–770
  • Lindquist S. The heat shock response. Annual Reviews of Biochemistry 1986; 55: 1151–1191
  • Mondovi B., Finazzi Agro A., Rotilio G., Strom R., Morricca G., Rossi-Fanelli A. The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on nucleic acid and protein synthesis. European Journal of Cancer 1969; 5: 137–146
  • Morse II P.D. Use of the spin label tempoamine for measuring the internal viscosity of red blood cells. Biochemical and Biophysical Research Communication 1977; 77: 1486–1491
  • Morse II P.D. A comparison of the spin labels MAL-3 and Tempoamine for measuring the internal microviscosity of human erythrocytes. Biochimica et Biophysica Acta 1985; 844: 337–345
  • Morse II P.D. Determining intracellular viscosity from the rotational motion of spin labels. Methods in Enzymology, L. Packer. Academic Press, New York 1986; 127: 239–249
  • Morse II P.D., Lusczakoski D.M., Simpson D.A. Internal microviscosity of red blood cells and hemoglobin free resealed ghosts: a spin-label study. Biochemistry (USA) 1979; 18: 5021–5029
  • Morse II P.D., Ruhlig M., Snipes W., Keith A.D. A spin-label study of the viscosity profile of sarcoplasmic reticular vesicles. Archives of Biochemistry and Biophysics 1975; 168: 40–56
  • Norton J.M., Baker N.D., Rand P.W. Effect of cell geometry, internal viscosity and pH on erythrocyte filterability. Proceedings of the Society for Experimental Biology and Medicine 1981; 166: 449–456
  • Parkes A., Bradley D.M. Isolation and fraction of porcine peripheral lymphocytes. Biochimica et Biophysica Acta 1974; 362: 527–533
  • Roti-Roti J.L. Heat-induced cell death and radiosensitization: molecular mechanism. National Cancer Institute Monograph 1982; 61: 3–10
  • Sagan Z., Kendziorek A., Uscinowicz B. Prosta metoda izolacji limfocytów. Biognostyka Laboratoryjna 1975; XI: 405–509
  • Schlesinger M.J. Heat shock proteins: the research for function. Journal of Cell Biology 1986; 103: 321–325
  • Sportelli L., Rosi A., Indovina P.L., Brancati C., Tragarelli A. Physical properties of pathological human erythrocytes. I. A spin label study on the internal microviscosity of homozygous thalassemic erythrocytes. Il Nuovo Cimento 1983; 2: 993–1003
  • Stevenson M.A., Minton K.W., Kahn G.M. Survival and concanavalin A induced capping in CHO fibroblasts after exposure to hyperthermia, ethanol, X-irradiation. Radiation Research 1981; 86: 467–479
  • Szekely J.G., Lobreau A.U., Einspenner M., Raaphorst G.P. The use of flow cytometry to measure X-ray survival in cultured T lymphocytes. International Journal of Radiation Biology 1985; 47: 681–688
  • van der Walt J.H., Russell W.J. Effect of heating on the osmotic fragility of store blood. British Journal of Anaesthesia 1978; 50: 815–820
  • Wagner G.M., Chiu D.T.Y., Yee M.C., Lubin B.H. Red cell vesiculation–a common membrane physiologic event. Journal of Laboratory and Clinical Medicine 1986; 108: 315–324
  • Warters R.L., Henle K.J. DNA degradation in Chinese hamster ovary cells after exposure to hyperthermia. Cancer Research 1982; 42: 4427–4432
  • Zijlstra L.G., van Kampen E. Standardization of hemoglobinometry. Clinica Chimica Acta 1960; 5: 719–720

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.