285
Views
17
CrossRef citations to date
0
Altmetric
Articles

Characteristics, distribution, source apportionment, and potential health risk assessment of polycyclic aromatic hydrocarbons in urban street dust of Kerman metropolis, Iran

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 668-685 | Received 05 Aug 2018, Accepted 03 Jan 2019, Published online: 04 Feb 2019

References

  • Abba EJ, Unnikrishnan S, Kumar R, Yeole B, Chowdhury Z. 2012. Fine aerosol and PAH carcinogenicity estimation in outdoor environment of Mumbai City, India. Int J Environ Health Res. 22(2):134–149.
  • Abdel-Shafy HI, Mansour MS. 2016. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 25(1):107–123.
  • Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T. 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos Environ. 43(9):1650–1659.
  • Aryal R, Furumai H, Nakajima F, Boller M. 2006. Characteristics of particle-associated PAHs in a first flush of a highway runoff. Water Sci Technol. 53(2):245–251.
  • Baek S, Field R, Goldstone M, Kirk P, Lester J, Perry R. 1991. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut. 60(3–4):279–300.
  • Caricchia AM, Chiavarini S, Pezza M. 1999. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Environ. 33(23):3731–3738.
  • Christensen ER, Arora S. 2007. Source apportionment of PAHs in sediments using factor analysis by time records: application to Lake Michigan, USA. Water Res. 41(1):168–176.
  • Chung M, Hu R, Cheung K, Wong M. 2007. Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons. Chemosphere. 67(3):464–473.
  • Dahle S, Savinov VM, Matishov GG, Evenset A, Næs K. 2003. Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. Sci Total Environ. 306(1):57–71.
  • Dehbandi R, Aftabi A. 2016. Geochemical provenance of soils in Kerman urban areas, Iran: implications for the influx of Aeolian dust. Aeolian Res. 21:109–123.
  • Dong TT, Lee B-K. 2009. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere. 74(9):1245–1253.
  • Duan Y, Shen G, Tao S, Hong J, Chen Y, Xue M, Li T, Su S, Shen H, Fu X. 2015. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere. 127:64–69.
  • Hamzeh MA, Aftabi A, Mirzaee M. 2011. Assessing geochemical influence of traffic and other vehicle-related activities on heavy metal contamination in urban soils of Kerman city, using a GIS-based approach. Environ Geochem Health. 33(6):577.
  • Harrison RM, Smith D, Luhana L. 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol. 30(3):825–832.
  • Hassanien MA, Abdel-Latif NM. 2008. Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. J Hazard Mater. 151(1):247–254.
  • Hussain K, Rahman M, Prakash A, Hoque RR. 2015. Street dust bound PAHs, carbon and heavy metals in Guwahati city–seasonality, toxicity and sources. Sustain Cities Soc. 19:17–25.
  • Islam MN, Park M, Jo Y-T, Nguyen XP, Park -S-S, Chung S-Y, Park J-H. 2017. Distribution, sources, and toxicity assessment of polycyclic aromatic hydrocarbons in surface soils of the Gwangju City, Korea. J Geochem Explor. 180:52–60.
  • Jia J, Bi C, Guo X, Wang X, Zhou X, Chen Z. 2017. Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China. Environ Sci Pollut Res. 24(1):605–615.
  • Katsoyiannis A, Terzi E, Cai Q-Y. 2007. On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere. 69(8):1337–1339.
  • Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Von Baer D, Oyola P. 2001. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol. 35(11):2288–2294.
  • Ke C-L, Gu Y-G, Liu Q. 2017. Polycyclic aromatic hydrocarbons (PAHs) in exposed-lawn soils from 28 urban parks in the megacity Guangzhou: occurrence, sources, and human health implications. Arch Environ Contam Toxicol. 72(4):496–504.
  • Keshavarzi B, Abbasi HS, Moore F, Delshab H, Soltani N. 2017. Polycyclic aromatic hydrocarbons in street dust of Bushehr City, Iran: status, source, and human health risk assessment. Polycycl Aromat Compd. 1–15. doi: 10.1080/10406638.2017.1354897
  • Keshavarzi B, Abbasi S, Moore F, Mehravar S, Sorooshian A, Soltani N, Najmeddin A. 2018. Contamination level, source identification and risk assessment of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in street dust of an important commercial center in Iran. Environ Manage. 62(4):803–818.
  • Khalili NR, Scheff PA, Holsen TM. 1995. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ. 29(4):533–542.
  • Krein A, Udelhoven T, Audinot J-N, Hissler C, Guignard C, Pfister L, Migeon H-N, Hoffmann L. 2008. Imaging chemical patches on near-surface atmospheric dust particles with NanoSIMS 50 to identify material sources. Water Air Soil Pollut. 8(5–6):495–503.
  • Larsen RK, Baker JE. 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol. 37(9):1873–1881.
  • Liao C, Lv J, Fu J, Zhao Z, Liu F, Xue Q, Jiang G. 2012. Occurrence and profiles of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in soils from a typical e-waste recycling area in Southeast China. Int J Environ Health Res. 22(4):317–330.
  • Liu E, Yan T, Birch G, Zhu Y. 2014. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci Total Environ. 476:522–531.
  • Liu S, Xia X, Yang L, Shen M, Liu R. 2010. Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city’s urbanization history. J Hazard Mater. 177(1–3):1085–1092.
  • Long Y, Dai T, Wu Q. 2013. Sources and distribution of polycyclic aromatic hydrocarbons in street dust from the Chang-Zhu-Tan Region, Hunan, China. Environ Monit Assess. 185(2):1377–1390.
  • Maertens RM, Yang X, Zhu J, Gagne RW, Douglas GR, White PA. 2008. Mutagenic and carcinogenic hazards of settled house dust I: polycyclic aromatic hydrocarbon content and excess lifetime cancer risk from preschool exposure. Environ Sci Technol. 42(5):1747–1753.
  • Malcolm H, Dobson S. 1994. The calculation of an Environmental Assessment Level (EAL) for atmospheric PAHs using relative potencies. London: Department of the Environment.
  • Maliszewska-Kordybach B. 1996. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem. 11(1–2):121–127.
  • Marusenko Y, Herckes P, Hall SJ. 2011. Distribution of polycyclic aromatic hydrocarbons in soils of an arid urban ecosystem. Water Air Soil Pollut. 219(1–4):473–487.
  • Mohit A, Keshavarzi B, Moore F. 2018. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of Ahvaz metropolis; contamination, composition, distribution, potential sources, and cancer risk. Hum Ecol Risk Assess. 1–14.
  • Moore F, Akhbarizadeh R, Keshavarzi B, Khabazi S, Lahijanzadeh A, Kermani M. 2015. Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environ Monit Assess. 187(4):207.
  • Najmeddin A, Keshavarzi B. 2018. Health risk assessment and source apportionment of polycyclic aromatic hydrocarbons associated with PM 10 and road deposited dust in Ahvaz metropolis of Iran. Environ Geochem Health. 1–24. doi: 10.1007/s10653-018-0209-6.
  • Najmeddin A, Keshavarzi B, Moore F, Lahijanzadeh A. 2017. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environ Geochem Health. 1–22. doi: 10.1007/s10653-017-0035-2
  • Najmeddin A, Moore F, Keshavarzi B, Sadegh Z. 2018. Pollution, source apportionment and health risk of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Mashhad, the second largest city of Iran. J Geochem Explor. 190:154–169.
  • Nielsen T. 1996. Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos Environ. 30(20):3481–3490.
  • Nisbet IC, LaGoy PK. 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol. 16(3):290–300.
  • Pandey PK, Patel KS, Lenicek J. 1999. Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environ Monit Assess. 59(3):287–319.
  • Peng C, Chen W, Liao X, Wang M, Ouyang Z, Jiao W, Bai Y. 2011. Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut. 159(3):802–808.
  • Rastegari Mehr M, Keshavarzi B, Moore F, Sacchi E, Lahijanzadeh AR, Eydivand S, Jaafarzadeh N, Naserian S, Setti M, Rostami S. 2016. Contamination level and human health hazard assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in street dust deposited in Mahshahr, southwest of Iran. Hum Ecol Risk Assess. 22(8):1726–1748.
  • Ravindra K, Sokhi R, Van Grieken R. 2008. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ. 42(13):2895–2921.
  • Ray S, Khillare P, Agarwal T, Shridhar V. 2008. Assessment of PAHs in soil around the international airport in Delhi, India. J Hazard Mater. 156(1–3):9–16.
  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BR. 1993. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol. 27(4):636–651.
  • Ryan J, Estefan G, Rashid A. 2007. Soil and plant analysis laboratory manual. Aleppo, Syria: ICARDA.
  • Simcik MF, Eisenreich SJ, Lioy PJ. 1999. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ. 33(30):5071–5079.
  • Smith D, Edelhauser E, Harrison RM. 1995. Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environ Technol. 16(1):45–53.
  • Sofowote UM, McCarry BE, Marvin CH. 2008. Source apportionment of PAH in Hamilton harbour suspended sediments: comparison of two factor analysis methods. Environ Sci Technol. 42(16):6007–6014.
  • Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M. 2015. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci Total Environ. 505:712–723.
  • Suman S, Sinha A, Tarafdar A. 2016. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci Total Environ. 545:353–360.
  • Takada H, Onda T, Ogura N. 1990. Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography. Environ Sci Technol. 24(8):1179–1186.
  • Tobiszewski M, Namieśnik J. 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. 162:110–119.
  • USEPA. 1984. Guidelines establishing test procedures for the analysis of pollutants under clean water act: method 610 – polynuclear aromatic hydrocarbons. Washington (DC): Environmental Protection Agency; p. 43344–43352.
  • USEPA. 1991. Risk assessment guidance for superfund. Vol. 1. Washington (DC): OSWER; 1991 Office of emergency and remedial response.
  • USEPA. 1994. Final report, determination of analytical methods for PAHs. Washington (DC): Environmental Protection Agency.
  • USEPA. 2007. Semivolatile organic compounds, method 8270D. Washington (DC): Environmental Protection Agency.
  • Vane CH, Kim AW, Beriro DJ, Cave MR, Knights K, Moss-Hayes V, Nathanail PC. 2014. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Appl Geochem. 51:303–314.
  • Viñas L, Franco MA, Soriano JA, González JJ, Pon J, Albaigés J. 2010. Sources and distribution of polycyclic aromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessment of spatial and temporal trends. Environ Pollut. 158(5):1551–1560.
  • Wang W, Huang M-J, Kang Y, Wang H-S, Leung AO, Cheung KC, Wong MH. 2011. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: status, sources and human health risk assessment. Sci Total Environ. 409(21):4519–4527.
  • Yang B, Zhou L, Xue N, Li F, Li Y, Vogt RD, Cong X, Yan Y, Liu B. 2013. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: comparison of three receptor models. Sci Total Environ. 443:31–39.
  • Yuan H, Li T, Ding X, Zhao G, Ye S. 2014. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in surface soils of the Yellow River Delta, China. Mar Pollut Bull. 83(1):258–264.
  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. 33(4):489–515.
  • Zhang W, Zhang S, Wan C, Yue D, Ye Y, Wang X. 2008. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ Pollut. 153(3):594–601.
  • Zhang Y, Guo C-S, Xu J, Tian Y-Z, Shi G-L, Feng Y-C. 2012. Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: comparison of three receptor models. Water Res. 46(9):3065–3073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.