Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 13, 2018 - Issue 2
207
Views
0
CrossRef citations to date
0
Altmetric
HIDA 7: Life/Defect Assessment and Failures in High Temperature Power Plant

A highly efficient numerical approach: extended cohesive damage model for predicting multicrack propagation

&
Pages 371-385 | Received 27 Jun 2017, Accepted 22 Aug 2017, Published online: 06 Sep 2017

References

  • Foulk JW, Allen DH, Helms KLE. Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Comput Methods Appl Mech Eng. 2000;183(1–2):51–66.10.1016/S0045-7825(99)00211-X
  • Nguyen VP, Nguyen CT, Bordas S, et al. Modelling interfacial cracking with non-matching cohesive interface elements. Comput Mech. 2016;58(5):731–746.10.1007/s00466-016-1314-y
  • Reinoso J, Paggi M. A consistent interface element formulation for geometrical and material nonlinearities. Comput Mech. 2014;54(6):1569–1581.10.1007/s00466-014-1077-2
  • Távara L, Mantič V, Salvadori A, et al. Cohesive-zone-model formulation and implementation using the symmetric Galerkin boundary element method for homogeneous solids. Comput Mech. 2013;51(4):535–551.10.1007/s00466-012-0808-5
  • Murthy KSRK, Mukhopadhyay M. Adaptive finite element analysis of mixed-mode crack problems with automatic mesh generator. Int J Numer Meth Eng. 2000;49(8):1087–1100.10.1002/(ISSN)1097-0207
  • Park K, Paulino GH, Celes W, et al. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Int J Numer Meth Eng. 2012;92(1):1–35.10.1002/nme.v92.1
  • Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Meth Eng. 1987;24(2):337–357.10.1002/(ISSN)1097-0207
  • Fang XJ, Yang QD, Cox BN, et al. An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int J Numer Methods Eng. 2011;88(9):841–861.10.1002/nme.v88.9
  • Babuška I, Melenk JM. The partition of unity method. Int J Numer Methods Eng. 1997;40(4):727–758.10.1002/(ISSN)1097-0207
  • Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999;45(5):601–620.10.1002/(ISSN)1097-0207
  • Duarte CA, Hamzeh ON, Liszka TJ, et al. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng. 2001;190(15–17):2227–2262.10.1016/S0045-7825(00)00233-4
  • Fries T, Baydoun M. Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description. Int J Numer Methods Eng. 2012;89(12):1527–1558.10.1002/nme.v89.12
  • Oden JT, Duarte CAM, Zienkiewicz OC. A new cloud-based hp finite element method. Comput Methods Appl Mech Eng. 1998;153(1–2):117–126.10.1016/S0045-7825(97)00039-X
  • Strouboulis T, Babuška I, Hidajat R. The generalized finite element method for Helmholtz equation: theory, computation, and open problems. Comput Methods Appl Mech Eng. 2006;195(37–40):4711–4731.10.1016/j.cma.2005.09.019
  • Mo SN, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131–150.
  • Wells GN, Sluys LJ. A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng. 2001;50(12):2667–2682.10.1002/(ISSN)1097-0207
  • Zhao J, Li Y, Liu WK. Predicting band structure of 3D mechanical metamaterials with complex geometry via XFEM. Comput Mech. 2015;55(4):659–672.10.1007/s00466-015-1129-2
  • Bhattacharya S, Singh IV, Mishra BK, et al. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM. Comput Mech. 2013;52(4):799–814.10.1007/s00466-013-0845-8
  • Giner E, Sukumar N, Denia FD, et al. Extended finite element method for fretting fatigue crack propagation. Int J Solids Struct. 2008;45(22–23):5675–5687.10.1016/j.ijsolstr.2008.06.009
  • Gerstenberger A, Wall WA. An eXtended finite element method/lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng. 2008;197(19–20):1699–1714.10.1016/j.cma.2007.07.002
  • Zilian A, Legay A. The enriched space–time finite element method (EST) for simultaneous solution of fluid–structure interaction. Int J Numer Methods Eng. 2008;75(3):305–334.10.1002/nme.v75:3
  • Ashari SE, Mohammadi S. Delamination analysis of composites by new orthotropic bimaterial extended finite element method. Int J Numer Methods Eng. 2011;86(13):1507–1543.10.1002/nme.v86.13
  • Grogan DM, Leen SB, Brádaigh CMÓ. An XFEM-based methodology for fatigue delamination and permeability of composites. Compos Struct. 2014;107:205–218.10.1016/j.compstruct.2013.07.050
  • Wang Z, Ma L, Wu L, et al. Numerical simulation of crack growth in brittle matrix of particle reinforced composites using the xfem technique. Acta Mech Solida Sin. 2012;25(1):9–21.10.1016/S0894-9166(12)60002-0
  • Grogan DM, Brádaigh CMÓ, Leen SB. A combined XFEM and cohesive zone model for composite laminate microcracking and permeability. Compos Struct. 2015;120:246–261.10.1016/j.compstruct.2014.09.068
  • Areias PMA, Belytschko T. A comment on the article “A finite element method for simulation of strong and weak discontinuities in solid mechanics” by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523–3540]. Comput Methods Appl Mech Eng. 2006;195(9–12):1275–1276.10.1016/j.cma.2005.03.006
  • Garikipati K, Hughes TJR. A variational multiscalar approach to strain localization–formulation for multidimensional problems. Comput Methods Appl Mech Eng. 2000;188(1–3):39–60.10.1016/S0045-7825(99)00156-5
  • Rudraraju S, Salvi A, Garikipati K, et al. Predictions of crack propagation using a variational multiscale approach and its application to fracture in laminated fiber reinforced composites. Compos Struct. 2012;94(11):3336.10.1016/j.compstruct.2012.03.035
  • Rudraraju SS, Salvi A, Garikipati K, et al. In-plane fracture of laminated fiber reinforced composites with varying fracture resistance: experimental observations and numerical crack propagation simulations. Int J Solids Struct. 2010;47(7–8):901–911.10.1016/j.ijsolstr.2009.12.006
  • Oliver J, Huespe AE, Samaniego E. A study on finite elements for capturing strong discontinuities. Int J Numer Methods Eng. 2003;56(14):2135–2161.10.1002/(ISSN)1097-0207
  • Oliver J, Huespe AE, Sánchez PJ. A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM. Comput Methods Appl Mech Eng. 2006;195(37–40):4732–4752.10.1016/j.cma.2005.09.020
  • Wu J, Li F, Xu S. Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids. Comput Methods Appl Mech Eng. 2015;285:346–378.10.1016/j.cma.2014.11.013
  • Gigliotti L. Assessment of the applicability of XFEM in Abaqus for modeling crack growth in rubber [ Master thesis]. Stockholm, Sweden: Applied Mechanics; 2012.
  • Li X, Chen J. An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials. Comput Methods Appl Mech Eng. 2017;315:744–759.10.1016/j.cma.2016.11.029
  • Chen J. An extended cohesive damage model with a length scalar in fracture analysis of adhesively bonded joints. Eng Fract Mech. 2014;119:202–213.10.1016/j.engfracmech.2014.02.024
  • Nooru-Mohamed MB. Mixed-mode fracture of concrete: an experimental approach. Delft: Delft University of Technology; 1992.
  • Dumstorff P, Meschke G. Crack propagation criteria in the framework of X-FEM-based structural analyses. Int J Numer Anal Methods Geomech. 2007;31(2):239–259.10.1002/(ISSN)1096-9853
  • Feist C, Hofstetter G. An embedded strong discontinuity model for cracking of plain concrete. Comput Methods Appl Mech Eng. 2006;195(52):7115–7138.10.1016/j.cma.2005.01.028
  • Gálvez JC, Cendón DA, Planas J, et al. Fracture of concrete under mixed loading-experimental results and numerical prediction. Proceedings of FRAMCOS. 1998;3(2):729–738.
  • Gürses E, Miehe C. A computational framework of three-dimensional configurational-force-driven brittle crack propagation. Comput Methods Appl Mech Eng. 2009;198(15):1413–1428.10.1016/j.cma.2008.12.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.