377
Views
2
CrossRef citations to date
0
Altmetric
In vitro and animal models

Involvement of phase II enzymes and efflux transporters in the metabolism and absorption of naringin, hesperidin and their aglycones in rats

, , , & ORCID Icon
Pages 480-490 | Received 27 Sep 2021, Accepted 26 Nov 2021, Published online: 02 Jan 2022

References

  • Bai Y, Peng W, Yang C, Zou W, Liu M, Wu H, Fan L, Li P, Zeng X, Su W. 2020. Pharmacokinetics and metabolism of naringin and active metabolite naringenin in rats, dogs, humans, and the differences between species. Front Pharmacol. 11:364.
  • Böhmdorfer M, Szakmary A, Schiestl R, Vaquero J, Riha J, Brenner S, Thalhammer T, Szekeres T, Jäger W. 2017. Involvement of UDP-glucuronosyltransferases and sulfotransferases in the excretion and tissue distribution of resveratrol in mice. Nutrients. 9(12):1347.
  • Brand W, Boersma MG, Bik H, Hoek-van den Hil EF, Vervoort J, Barron D, Meinl W, Glatt H, Williamson G, van Bladeren PJ, et al. 2010. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab Dispos. 38(4):617–625.
  • Chadha K, Karan M, Bhalla Y, Chadha R, Khullar S, Mandal S, Vasisht K. 2017. Cocrystals of hesperetin: structural, pharmacokinetic, and pharmacodynamic evaluation. Crystal Growth & Design. 17(5):2386–2405.
  • Chambers CS, Viktorová J, Řehořová K, Biedermann D, Turková L, Macek T, Křen V, Valentová K. 2020. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J Agric Food Chem. 68(7):1763–1779.
  • Chen M, Li R, Gao Y, Zheng Y, Liao L, Cao Y, Li J, Zhou W. 2021. Encapsulation of hydrophobic and low-soluble polyphenols into nanoliposomes by pH-driven method: naringenin and naringin as model compounds. Foods. 10(5):963.
  • Chen Y, Xie S, Chen S, Zeng S. 2008. Glucuronidation of flavonoids by recombinant UGT1A3 and UGT1A9. Biochem Pharmacol. 76(3):416–425.
  • Choi E-H, Rha CS, Balusamy SR, Kim DO, Shim SM. 2019. Impact of bioconversion of gallated catechins and flavonol glycosides on bioaccessibility and intestinal cellular uptake of catechins. J Agric Food Chem. 67(8):2331–2339.
  • Cui W, He Z, Zhang Y, Fan Q, Feng N. 2019. Naringenin cocrystals prepared by solution crystallization method for improving bioavailability and anti-hyperlipidemia effects. AAPS PharmSciTech. 20(3):115.
  • Čvorović J, Ziberna L, Fornasaro S, Tramer F, Passamonti S. 2018. Bioavailability of flavonoids: the role of cell membrane transporters. In Watson RR, Preedy VR, Zibadi S, editors. Polyphenols: mechanisms of action in human health and disease. 2nd ed. Waltham (MA): Academic Press; p. 295–320.
  • Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. 2013. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 18(14):1818–1892.
  • Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. 2021. Polyphenols and human health: the role of bioavailability. Nutrients. 13(1):273.
  • Domínguez-Avila JA, Wall-Medrano A, Velderrain-Rodríguez GR, Chen CYO, Salazar-López NJ, Robles-Sánchez M, González-Aguilar GA. 2017. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 8(1):15–38.
  • Ernawita WRA, Hesse J, Hipler UC, Elsner P, Böhm V. 2017. In vitro lipophilic antioxidant capacity, antidiabetic and antibacterial activity of citrus fruits extracts from Aceh, Indonesia. Antioxidants. 6(1):11.
  • Estudante M, Morais JG, Soveral G, Benet LZ. 2013. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 65(10):1340–1356.
  • Gao Y, Shao J, Jiang Z, Chen J, Gu S, Yu S, Zheng K, Jia L. 2014. Drug enterohepatic circulation and disposition: constituents of systems pharmacokinetics. Drug Discov Today. 19(3):326–340.
  • Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. 2017. Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol. 67:220–235.
  • Guo X, Li K, Guo A, Li E. 2020. Intestinal absorption and distribution of naringin, hesperidin, and their metabolites in mice. J Funct Foods. 74(104158):104158.
  • Guo J, Lu S, Liu Z, Tang W, Tu K. 2019. Solubilization of hesperidin with octenyl succinic anhydride modified sweet potato starch. Food Chem. 285:180–185.
  • Jiang W, Hu M. 2013. ChemInform abstract: mutual interactions between flavonoids and enyzmatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC advances. 2(21): 7948–7963.
  • Kawabata K, Yoshioka Y, Terao J. 2019. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules. 24(2):370.
  • Kawahara I, Nishikawa S, Yamamoto A, Kono Y, Fujita T. 2020. The impact of breast cancer resistance protein (BCRP/ABCG2) on drug transport across Caco-2 cell monolayers. Drug Metab Dispos. 48(6):491–498.
  • Li S, Li X, Shpigelman A, Lorenzo JM, Montesano D, Barba FJ. 2017. Direct and indirect measurements of enhanced phenolic bioavailability from litchi pericarp procyanidins by Lactobacillus casei-01. Food Funct. 8(8):2760–2770.
  • Liu H, Wu B, Pan G, He L, Li Z, Fan M, Jian L, Chen M, Wang K, Huang C. 2012. Metabolism and pharmacokinetics of mangiferin in conventional rats, pseudo-germ-free rats, and streptozotocin-induced diabetic rats. Drug Metab Dispos. 40(11):2109–2118.
  • Makino T, Shimizu R, Kanemaru M, Suzuki Y, Moriwaki M, Mizukami H. 2009. Enzymatically modified isoquercitrin, alpha-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol Pharm Bull. 32(12):2034–2040.
  • Meng S, Wu B, Singh R, Yin T, Morrow JK, Zhang S, Hu M. 2012. SULT1A3-mediated regiospecific 7-O-sulfation of flavonoids in Caco-2 cells can be explained by the relevant molecular docking studies. Mol Pharm. 9(4):862–873.
  • Nectoux AM, Abe C, Huang S-W, Ohno N, Tabata J, Miyata Y, Tanaka K, Tanaka T, Yamamura H, Matsui T. 2019. Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague-Dawley rats. J Agric Food Chem. 67(35):9812–9819.
  • Nobutani K, Miyoshi J, Musch MW, Nishiyama M, Watanabe J, Kaneko A, Yamamoto M, Yoshida M, Kono T, Jeong H. 2017. Daikenchuto (TU-100) alters murine hepatic and intestinal drug metabolizing enzymes in an in vivo dietary model: effects of gender and withdrawal. Pharmacol Res Perspect. 5(5):e00361.
  • Pinto MMM, Palmeira A, Fernandes C, Resende DISP, Sousa E, Cidade H, Tiritan ME, Correia-da-Silva M, Cravo S. 2021. From natural products to new synthetic small molecules: a journey through the world of xanthones. Molecules. 26(2):431.
  • Qosa H, Miller DS, Pasinelli P, Trotti D. 2015. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. 1628(B):298–316.
  • Steensma A, Faassen-Peters MAW, Noteborn HPJM, Rietjens IMCM. 2006. Bioavailability of genistein and its glycoside genistin as measured in the portal vein of freely moving unanesthetized rats. J Agric Food Chem. 54(21):8006–8012.
  • Takumi H, Nakamura H, Simizu T, Harada R, Kometani T, Nadamoto T, Mukai R, Murota K, Kawai Y, Terao J. 2012. Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Funct. 3(4):389–398.
  • Tang L, Singh R, Liu Z, Hu M. 2009. Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones. Mol Pharm. 6(5):1466–1482.
  • Tejada S, Pinya S, Martorell M, Capó X, Tur JA, Pons A, Sureda A. 2018. Potential anti-inflammatory effects of hesperidin from the genus Citrus. Curr Med Chem. 25(37):4929–4945.
  • van de Wetering K, Burkon A, Feddema W, Bot A, de Jonge H, Somoza V, Borst P. 2009. Intestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol. Mol Pharmacol. 75(4):876–885.
  • Groen BD, Krekels EHJ, Mooij MG, Duijn E, Vaes WHJ, Windhorst AD, Rosmalen J, Hartman SJF, Hendrikse NH, Koch BCP, et al. 2021. The oral bioavailability and metabolism of midazolam in stable critically ill children: a pharmacokinetic microtracing study. Clin Pharmacol Ther. 109(1):140–149.
  • Wang M, Zhao H, Wen X, Ho CT, Li S. 2021. Citrus flavonoids and the intestinal barrier: interactions and effects. Compr Rev Food Sci Food Saf. 20(1):225–251.
  • Yi L, Ma S, Ren D. 2017. Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem Rev. 16(3):479–511.
  • Zaidun NH, Thent ZC, Latiff AA. 2018. Combating oxidative stress disorders with citrus flavonoid: naringenin. Life Sci. 208:111–122.
  • Zhang Y, Huo M, Zhou J, Xie S. 2010. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 99(3):306–314.
  • Zhang L, Zuo Z, Lin G. 2007. Intestinal and hepatic glucuronidation of flavonoids. Mol Pharm. 4(6):833–845.
  • Zhen Y, Kaustubh K, Wei Z, Ming H. 2012. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti-Cancer Agents Med Chem. 12(10):1264–1280.
  • Zheng Y, Zhang R, Shi W, Li L, Liu H, Chen Z, Wu L. 2020. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin. Food Funct. 11(10):8472–8492.
  • Zhu W, Xu H, Wang SWJ, Hu M. 2010. Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. AAPS J. 12(4):525–536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.