4,367
Views
5
CrossRef citations to date
0
Altmetric
Papers

Biophysical aspects of handcycling performance in rehabilitation, daily life and recreational sports; a narrative review

ORCID Icon, ORCID Icon, , ORCID Icon, , , , ORCID Icon, , , & show all
Pages 3461-3475 | Received 07 Jan 2020, Accepted 22 Aug 2020, Published online: 09 Sep 2020

References

  • Vignier N, Ravaud J, Winance M, et al. Demographics of wheelchair users in France: results of national community-based handicaps-incapacités-dépendance surveys. J Rehabil Med. 2008;40:231–239.
  • Smith EM, Giesbrecht EM, Mortenson WB, et al. Prevalence of wheelchair and scooter use among community-dwelling Canadians. Phys Ther. 2016;96:1135–1142.
  • LaPlante MP, Kaye HS. Demographics and trends in wheeled mobility equipment use and accessibility in the community. Assist Technol. 2010;22:3–17.
  • van der Woude L, Dallmeijer AJ, Janssen TWJ, et al. Alternative modes of manual wheelchair ambulation: an Overview. Am J Phys Med Rehabil. 2001;80:765–777.
  • Hettinga FJ, Valent LJ, Groen W, et al. Hand-cycling: an active form of wheeled mobility, recreation, and sports. Phys Med Rehabil Clin N Am. 2010;21:127–140.
  • Hettinga FJ, de Groot S, van Dijk F, et al. Physical strain during handcycling under daily living conditions. Med Sci Sport Exerc. 2010;42:570–571. [Internet]. Available from: http://journals.lww.com/00005768-201005001-01685
  • van Breukelen K. Handbiken, ongekende mogelijkheden met betrekking tot vervoer, fitness, recreatie en sport. 1999.
  • van Breukelen K. Rolstoel performance: man-machine-match. Gouda (The Netherlands): Double performance; 2014.
  • van den Berg-Emons RJ, Bussmann JB, Haisma JA, Sluis TA, et al. prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge. Arch Phys Med Rehabil. 2008;89:2094–2101.
  • Ellenberg M, MacRitchie M, Franklin B, et al. Aerobic capacity in early paraplegia: implications for rehabilitation. Paraplegia. 1989;27:261–268.
  • Goswami A, Ghosh AK, Ganguli S, et al. Aerobic capacity of severely disabled Indians. Ergonomics. 1984;27:1267–1269.
  • de Groot S, Post MW, Hoekstra T, et al. Trajectories in the course of body mass index after spinal cord injury. Arch Phys Med Rehabil. 2014;95:1083–1092.
  • Haisma JA, Bussmann JB, Stam HJ, et al. Physical fitness in people with a spinal cord injury: the association with complications and duration of rehabilitation. Clin Rehabil. 2007;21:932–940.
  • Lagerström AC, Wahman K. Food and Weight. In: Lagerström AC, editor. The art of healthy living with physical impairments. Stockholm (Sweden): Spinalis, Instant Book; 2014.
  • ACSM. Guidelines for exercise testing and prescription. 1995.
  • Spurway N, MacLaren D, editors. Exercise Physiology in special populations. Edinburgh (UK): Churchill Livingstone Elsevier; 2008.
  • Durstine JL, Moore GE. ACSM’s Exercise management for persons with chronic diseases and disabilities. Chapaign (IL): Human Kintecs, ACSM; 2003.
  • Durstine JL, Painter P, Franklin BA, et al. Physical activity for the chronically ill and disabled. Sports Med. 2000;30:207–219.
  • Frontera WR, Slovnik DM, Dawson DM. Exercise in rehabilitation medicine. Champaign (IL): Human Kinetics Publishers; 2006.
  • Garber CE, Blissmer B, Deschenes MR, et al.; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–1359.
  • Rimmer JH. Health promotion for people with disabilities: the emerging paradigm shift from disability prevention to prevention of secondary conditions. Phys Ther. 1999;79:495–502.
  • Rimmer JH, Marques AC. Physical activity for people with disabilities. Lancet. 2012;380:193–195.
  • Rimmer JH, Braddock D. Health promotion for people with physical, cognitive and sensory disabilities: an emerging national priority. Am J Health Promot. 2002;16:220–224.
  • Anon. Official Website of the Paralympic Movement. Available from: http://www.paralympic.org/cycling
  • UCI. Union Cycliste Internationale (UCI). 2015.
  • Vanlandewijck YC, Thompson WR. The Paralympic Athlete. Chichester (UK): Wiley-Blackwell; 2011.
  • Anon. MoveForward. [cited 2018. April 4]. Available from: http://moveforward.nu/
  • Anon. Support for soldiers at the Battleback centre. RBL. [cited 2018 Apr 4]. Available from: https://www.britishlegion.org.uk/get-support/recovery/the-battle-back-centre/
  • WHO. International Classification of Funtioning, Disability and Health. Geneva (Switzerland): WHO; 2001.
  • van der Woude LHV, de Groot S, Janssen TWJ. Manual wheelchairs: research and innovation in rehabilitation, sports, daily life and health. Med Eng Phys. 2006;28:905–915.
  • Dijk F, Dormolen M, Kompier M, et al. Herwaardering model arbeidsbelastbaarheid. TSG. 1990;68:3–10.
  • Cook A, Polgar J, Encarnação P. Assistive technologies 5th edition: principles and practice. 5th ed. St. Louis (MO): Elsevier; 2020.
  • Arnet U. Handcycling: a biophysical analysis. Amsterdam (The Netherlands): Vrije Universiteit; 2012.
  • Groen WG, van der Woude LV, De Koning JJ. A power balance model for handcycling. Disabil Rehabil. 2010;32:2165–2171.
  • van Ingen Schenau G, Ingen Schenau G. v. Cycle power: a predictive model. Endeav New Ser. 1988;12:44–47.
  • van Ingen Schenau GJ. Power balance applied to speed skating. Vrije Universiteit te Amsterdam; 1981.
  • van der Woude L, Veeger HE, Dallmeijer AJ, et al. Biomechanics and physiology in active manual wheelchair propulsion. Med Eng Phys. 2001;23:713–733.
  • van der Woude L. Manual wheelchair propulsion: an ergonomic perspective. 1989.
  • van der Woude LHV, de Groot G, Hollander AP, et al. Wheelchair ergonomics and physiological testing of prototypes. Ergonomics. 1986;29:1561–1573.
  • Mason BS, van der Woude LV, Goosey-Tolfrey VL. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports. Sports Med. 2013;43:23–38.
  • Bafghi HA, de Haan A, Horstman A, et al. Biophysical aspects of submaximal hand cycling. Int J Sports Med. 2008;29:630–638.
  • Kraaijenbrink C, Vegter RJK, Hensen AHR, et al. Different cadences and resistances in submaximal synchronous handcycling in able-bodied men: effects on efficiency and force application. PLoS One. 2017;12:e0183502.
  • Verellen J, Meyer C, Janssens L, et al. Peak and submaximal steady-state metabolic and cardiorespiratory responses during arm-powered and arm-trunk-powered handbike ergometry in able-bodied participants. Eur J Appl Physiol. 2012;112:983–989.
  • Kloosterman MGM, Eising H, Schaake L, et al. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion. Clin Biomech (Bristol, Avon). 2012;27:428–435.
  • Pr GCE, Jr. Levy Dietrich FD, et al. Wheelchair users’ perceptions of and experiences with power assist wheels. Am J Phys Med Rehabil. 2010;89:225–234.
  • Nawoczenski DA, Clobes SM, Gore SL, et al. Three-dimensional shoulder kinematics during a pressure relief technique and wheelchair transfer. Arch Phys Med Rehabil. 2003;84:1293–1300.
  • Kraaijenbrink C, Vegter RJK, Hensen AHR, et al. Biomechanical and physiological differences between synchronous and asynchronous low intensity handcycling during practice-based learning in able-bodied men. J Neuroeng Rehabil. 2020;17:29.
  • Quittmann OJ, Abel T, Albracht K, et al. Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants. Sport Biomech. [Internet]. 2020 May 7 [cited 2020 May 8]:[1–24]. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/14763141.2020.1745266
  • Vegter RJK, Mason BS, Sporrel B, et al. Crank fore-aft position alters the distribution of work over the push and pull phase during synchronous recumbent handcycling of able-bodied participants. PLoS One. 2019;14:e0220943
  • Stone B, Mason BS, Warner MB, et al. Horizontal crank position affects economy and upper limb kinematics of recumbent handcyclists. Med Sci Sport Exerc. 2019;51:2265–2273.
  • Verellen J, Meyer C, Reynders S, et al. Consistency of within-cycle torque distribution pattern in hand cycling. J Rehabil Res Dev. 2008;45:1295–1302.
  • Arnet U, van Drongelen S, van der Woude LH, et al. Shoulder load during handcycling at different incline and speed conditions. Clin Biomech (Bristol, Avon). 2012;27:1–6.
  • Krämer C, Schneider G, Böhm H, et al. Effect of different handgrip angles on work distribution during hand cycling at submaximal power levels. Ergonomics. 2009;52:1276–1286.
  • Quittmann OJ, Abel T, Albracht K, et al. Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants. Sport Biomech. 2019.
  • Arnet U, Drongelen S, Scheel-Sailer A, et al. Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia. J Rehabil Med. 2012;44:222–228.
  • Van Drongelen S, Schlüssel M, Arnet U, et al. The influence of simulated rotator cuff tears on the risk for impingement in handbike and handrim wheelchair propulsion. Clin Biomech (Bristol, Avon). 2013;28:495–501.
  • Praagman M, Stokdijk M, Veeger HEJ, et al. Predicting mechanical load of the glenohumeral joint, using net joint moments. Clin Biomech (Bristol, Avon). 2000;15:315–321.
  • Nikooyan AA, Veeger HE, Chadwick EK, et al. Development of a comprehensive musculoskeletal model of the shoulder and elbow. Med Biol Eng Comput. 2011;49:1425–1435.
  • Veeger HEJ, Rozendaal LA, Van der Helm FCT. Load on the shoulder in low intensity wheelchair propulsion. Clin Biomech (Bristol, Avon). 2002;17:211–218.
  • Dallmeijer AJ, Zentgraaff IDB, Zijp NI, et al. Submaximal physical strain and peak performance in handcycling versus handrim wheelchair propulsion. Spinal Cord. 2004;42:91–98.
  • Hettinga FJ, de Groot S, van Dijk F, et al. Physical strain of handcycling: an evaluation using training guidelines for a healthy lifestyle as defined by the American College of Sports Medicine. J Spinal Cord Med. 2013;36:376–382.
  • Nash MS. Exercise as a health-promoting activity following spinal cord injury. J Neurol Phys Ther. 2005;29:87–106.
  • Nooijen CF, Stam HJ, Bergen MP, et al.; Act-Active Research Group. A behavioural intervention increases physical activity in people with subacute spinal cord injury: a randomised trial. J Physiother. 2016;62:35–41.
  • de Groot S, Post MW, Snoek GJ, et al. Longitudinal association between lifestyle and coronary heart disease risk factors among individuals with spinal cord injury. Spinal Cord. 2013;51:314–318.
  • Hoekstra S, Valent L, Gobets D, et al. Effects of four-month handbike training under free-living conditions on physical fitness and health in wheelchair users. Disabil Rehabil. 2017;39:1581–1588.
  • Martin Ginis KA, Van Der Scheer JW, Latimer-Cheung AE, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018;56:308–321.
  • Valent LJ, Dallmeijer AJ, Houdijk H, et al. Influence of hand cycling on physical capacity in the rehabilitation of persons with a spinal cord injury: a longitudinal cohort study. Arch Phys Med Rehabil. 2008;89:1016–1022.
  • Knechtle B, Müller G, Knecht H. Optimal exercise intensities for fat metabolism in handbike cycling and cycling. Spinal Cord. 2004;42:564–572.
  • Short KR, Teague AM, Klein JC, et al. The effect of handcycle ergometer exercise on glucose tolerance in ambulatory and non-ambulatory adolescents. Pediatr Exerc Sci. 2017;29:63–72.
  • Nooijen CF, van den Brand IL, ter Horst P, et al. Feasibility of handcycle training during inpatient rehabilitation in persons with spinal cord injury. Arch Phys Med Rehabil. 2015;96:1654–1657.
  • Mukherjee G, Bhowmik P, Samanta A. Physical fitness training for wheelchair ambulation by the arm crank propulsion technique. Clin Rehabil. 2001;15:125–132.
  • Abel T, Kröner M, Rojas VS, et al. Energy expenditure in wheelchair racing and handbiking - a basis for prevention of cardiovascular diseases in those with disabilities. Eur J Cardiovasc Prev Rehabil. 2003;10:371–376.
  • Babu Rajendra Kurup N, Puchinger M, Gföhler M. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: a simulation study. Comput Methods Biomech Biomed Engin. 2019;22:55–63.
  • Bresnahan JJ, Farkas GJ, Clasey JL, et al. Arm crank ergometry improves cardiovascular disease risk factors and community mobility independent of body composition in high motor complete spinal cord injury. J Spinal Cord Med. 2019;42:272–280.
  • Brizuela G, Sinz S, Aranda R, et al. The effect of arm-crank exercise training on power output, spirometric and cardiac function and level of autonomy in persons with tetraplegia. Eur J Sport Sci. 2019.
  • Valent LM, Dallmeijer AJ, Houdijk H, et al. Effects of hand cycle training on physical capacity in individuals with tetraplegia: a clinical trial. Phys Ther. 2009;89:1051–1060.
  • Valent LJM. The effects of hand cycling on physical capacity in persons with spinal cord injury [dissertation]. Vrije Universiteit Amsterdam; 2009.
  • Barton J, Pretty J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ Sci Technol. 2010;44:3947–3955.
  • Pretty J, Peacock J, Sellens M, et al. The mental and physical health outcomes of green exercise. Int J Environ Health Res. 2005;15:319–337.
  • Barton J, Griffin M, Pretty J. Exercise-, nature- and socially interactive-based initiatives improve mood and self-esteem in the clinical population. Perspect Public Health. 2012;132:89–96.
  • Valent L, Dallmeijer A, Houdijk H, et al. Effects of hand cycle training on wheelchair capacity during clinical rehabilitation in persons with a spinal cord injury. Disabil Rehabil. 2010;32:2191–2200.
  • Hettinga FJ, Hoogwerf M, van der Woude LV. Handcycling: training effects of a specific dose of upper body endurance training in females. Eur J Appl Physiol. 2016;116:1387–1394.
  • de Groot S, Kouwijzer I, Baauw M, HandbikeBattle, et al. Effect of self-guided training for the HandbikeBattle on body composition in people with spinal cord injury. Spinal Cord Ser Cases. 2018;4:79.
  • Abreu E. M d C, Alves R. d S, Borges ACL, et al. Autonomic cardiovascular control recovery in quadriplegics after handcycle training. J Phys Ther Sci. 2016;28:2063–2068.
  • Schoenmakers P, Reed K, Van Der Woude L, et al. High intensity interval training in handcycling: the effects of a 7 week training intervention in able-bodied men. Front Physiol. 2016;7:638.
  • Krops L, Albada T, Woude L, et al. Anaerobic exercise testing in rehabilitation: a systematic review of available tests and protocols. J Rehabil Med. 2017;49:289–303.
  • Zeller S, Abel T, Smith PM, et al. Influence of noncircular chainring on male physiological parameters in hand cycling. J Rehabil Res Dev. 2015;52:211–220.
  • Kouwijzer I, Nooijen C, Breukelen K, et al. Effects of push-off ability and handcycle type on handcycling performance in able-bodied participants. J Rehabil Med. 2018;50:563–568.
  • Hutzler Y. Anaerobic fitness testing of wheelchair users. Sports Med. 1998;25:101–113.
  • Balmer J, Davison RCR, Coleman DA, et al. The validity of power output recorded during exercise performance tests using a Kingcycle air-braked cycle ergometer when compared with an SRM powermeter. Int J Sport Med. 2000;21:195–199.
  • Vogt S, Heinrich L, Schumacher YO, et al. Power output during stage racing in professional road cycling. Med Sci Sports Exerc. 2006;38:147–151.
  • Sawka MN, Glaser RM, Laubach LL, et al. Wheelchair exercise performance of the young, middle-aged, and elderly . J Appl Physiol Respir Environ Exerc Physiol. 1981;50:824–828.
  • Smith PM, McCrindle E, Doherty M, et al. Influence of crank rate on the slow component of pulmonary O2 uptake during heavy arm-crank exercise. Appl Physiol Nutr Metab. 2006;31:292–301.
  • Abel T, Burkett B, Thees B, et al. Effect of three different grip angles on physiological parameters during laboratory handcycling test in able-bodied participants. Front Physiol. 2015;6:331.
  • Sawka MN, Foley ME, Pimental NA, et al. Physiological factors affecting upper body aerobic exercise. Ergonomics. 1983;26:639–646.
  • Talbot C, Kay TD, Walker N, et al. A comparison of two anaerobic test measurement systems using an upper body Wingate test. Res Sport Med. 2014;22:265–275.
  • Wicks JR, Oldridge NB, Cameron BJ, et al. Arm cranking and wheelchair ergometry in elite spinal cord-injured athletes. Med Sci Sports Exerc. 1983;15:224–231.
  • Meyer C, Weissland T, Watelain E, et al. Physiological responses in handcycling. Preliminary study. Ann Phys Rehabil Med. 2009;52:311–318.
  • Jacobs PL, Mahoney ET, Johnson B. Reliability of arm Wingate anaerobic testing in persons with complete paraplegia. J Spinal Cord Med. 2003;26:141–144.
  • van der Woude L, Bosmans I, Bervoets B, et al. Handcycling: different modes and gear ratios. J Med Eng Technol. 2000;24:242–249.
  • VanSumeren A, Bye T, Kilgas M, et al. Influence of the lower body on seated arm cranking performance. Int J Sports Med. 2018;39:757–763.
  • Miles DS, Sawka MN, Glaser RM, et al. Plasma volume shifts during progressive arm and leg exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983;54:491–495.
  • Balmer J, Bird SR, Davison RR, et al. Mechanically braked Wingate powers: agreement between SRM, corrected and conventional methods of measurement. J Sports Sci. 2004;22:661–667.
  • de Groot S, Postma K, van Vliet L, et al. Mountain time trial in handcycling: exercise intensity and predictors of race time in people with spinal cord injury. Spinal Cord. 2014;52:455–461.
  • Pitetti KH, Snell PG, Stray-Gundersen J. Maximal response of wheelchair-confined subjects to four types of arm exercise. Arch Phys Med Rehabil. 1987;68:10–13.
  • Kouwijzer I, Valize M, Valent LJM, et al. The influence of protocol design on the identification of ventilatory thresholds and the attainment of peak physiological responses during synchronous arm crank ergometry in able-bodied participants. Eur J Appl Physiol. 2019;119:2275–2212.
  • Leicht AS, Spinks WL. Effect of shoulder angle on physiological responses during incremental peak arm crank ergometry. J Sports Sci. 2007;25:443–452.
  • Walker R, Powers S, Stuart MK. Peak oxygen uptake in arm ergometry: effects of testing protocol. Br J Sports Med. 1986;20:25–26.
  • van der Woude L, Horstman A, Faas P, et al. Power output and metabolic cost of synchronous and asynchronous submaximal and peak level hand cycling on a motor driven treadmill in able-bodied male subjects. Med Eng Phys. 2008;30:574–580.
  • Kouwijzer I, Valent L, Osterthun R, et al.; Group on behalf of the H. Peak power output in handcycling of individuals with a chronic spinal cord injury: predictive modeling, validation and reference values. Disabil Rehabil. 2020;42:400–409.
  • Verellen J, Theisen D, Vanlandewijck Y. Influence of crank rate in hand cycling. Med Sci Sports Exerc. 2004;36:1826–1831.
  • Anon. HandbikeBattle. Overwinnen! [cited 2018 Apr 4]. Available from: http://handbikebattle.nl/
  • Van Leeuwen CMC, Verwer J, Van Koppenhagen CF, et al. Trainen voor de HandbikeBattle: mentale effecten; De eerste resultaten van de HandbikeBattle. Ned Tijdschr Revalidatiegeneeskd. 2014;36:104–107.
  • Groot S, Hoekstra S, Comtesse P, et al. Relationships between internal and external handcycle training load in people with spinal cord injury training for the handbikebattle. J Rehabil Med. 2018;50:261–268.
  • Bertucci W, Duc S, Villerius V, et al. Validity and reliability of the PowerTap Mobile Cycling Powermeter when compared with the SRM device. Int J Sports Med. 2005;26:868–873.
  • Gardner AS, Stephens S, Martin DT, et al. Accuracy of SRM and power tap power monitoring systems for bicycling. Med Sci Sports Exerc. 2004;36:1252–1258.
  • Bertucci W, Grappe F, Girard A, et al. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J Biomech. 2005;38:1003–1010.
  • Abel T, Burkett B, Schneider S, et al. The exercise profile of an ultra-long handcycling race: the Styrkeprøven experience. Spinal Cord. 2010;48:894–898.
  • Nimmerichter A, Eston RG, Bachl N, et al. Longitudinal monitoring of power output and heart rate profiles in elite cyclists. J Sports Sci. 2011;29:831–840.
  • Rice I, Hettinga FJ, Laterrier J, et al. Biomechanics. In: Vanlandewijck Y, Thompson W, editors. The Paralympic athlete. Chichester (UK): Wiley-Blackwell; 2011. p. 33–50.
  • Kauzlarich J. Wheelchair rolling resistance and tire design. In: van der Woude L, Hopman M, van Kemenda C, editors. Biomedical aspects of manual wheelchair propulsion: the state of the art III. Assistive technology research series. Amsterdam (The Netherlands): IOS press; 1999. p. 158–172.
  • van der Woude L, Geurts C, Winkelman H, et al. Measurement of wheelchair rolling resistance with a handle bar push technique. J Med Eng Technol. 2003;27:249–258.
  • Frank T, Abel E. Drag forces in wheelchairs. In: van der Woude L, Meijs P, Van der Grinten B, De Boer Y, editors. Ergonomics of manual wheelchair propulsion; state of the art. Concerned action “mobility restoration for paralyzed persons”. Amsterdam (The Netherlands): IOS press; 1993. pp 255–267.
  • Wilson DG, Papadopoulos J, Whitt FR. Bicycling science. 3rd ed. Cambridge (MA): MIT Press; 2004.
  • de Groot S, Zuidgeest M, van der Woude LV. Standardization of measuring power output during wheelchair propulsion on a treadmill Pitfalls in a multi-center study. Med Eng Phys. 2006;28:604–612.
  • de Groot G, Sargeant A, Geysel J. Air friction and rolling resistance during cycling. Med Sci Sports Exerc. 1995;27:1090–1095.
  • Mannion P, Toparlar Y, Hajdukiewicz M, et al. Aerodynamics analysis of wheel configurations in Paralympic hand-cycling: a computational study. Eur J Mech - B/Fluids. 2019;76:50–65.
  • Mannion P, Toparlar Y, Blocken B, et al. Analysis of crosswind aerodynamics for competitive hand-cycling. J Wind Eng Ind Aerodyn. 2018;180:182–190.
  • Mannion P, Toparlar Y, Clifford E, et al. The impact of arm-crank position on the drag of a paralympic hand-cyclist. Comput Methods Biomech Biomed Engin. 2019;22:386–395.
  • Belloli M, Cheli F, Bayati I, et al. Handbike aerodynamics: wind tunnel versus track tests. Proc Eng. 2014;72:750–755.
  • Gaesser G, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol. 1975;38:1132–1139.
  • Powers SK, Beadle RE, Mangum M. Exercise efficiency during arm ergometry: effects of speed and work rate. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:495–499.
  • van Drongelen S, Maas JC, Scheel-Sailer A, et al. Submaximal arm crank ergometry: effects of crank axis positioning on mechanical efficiency, physiological strain and perceived discomfort. J Med Eng Technol. 2009;33:151–157.
  • Romkes J, Groen BE, Koning JJ. Mechanical efficiency in arm cranking exercise. In: Van der Woude L, Hopman M, Kemenade C, editors. Biomedical aspects of manual wheelchair propulsion: the state of the art II. Vol. 5. Amsterdam (The Netherlands): IOS press; 1999. p 172–175.
  • Lovell D, Shields D, Beck B, et al. The aerobic performance of trained and untrained handcyclists with spinal cord injury. Eur J Appl Physiol. 2012;112:3431–3437.
  • Goosey-Tolfrey VL, Alfano H, Fowler N. The influence of crank length and cadence on mechanical efficiency in hand cycling. Eur J Appl Physiol. 2007;102:189–194.
  • Goosey-Tolfrey VL, Sindall P. The effects of arm crank strategy on physiological responses and mechanical efficiency during submaximal exercise. J Sports Sci. 2007;25:453–460.
  • Arnet U, Marchetto P, van der Woude LV, et al. Propulsion style and mechanical efficiency during handcycling at different power outputs. In: Arnet U, editor. Handcycling: a biophysical analysis. Wageningen (The Netherlands): Ponsen & Looijen B. V.; 2012. p. 88–99.
  • Arnet U, van Drongelen S, Schlussel M, et al. The effect of crank position and backrest inclination on shoulder load and mechanical efficiency during handcycling. Scand J Med Sci Sports. 2014;24:386–394.
  • Glaser RM, Sawka MN, Brune MF, et al. Physiological responses to maximal effort wheelchair and arm crank ergometry. J Appl Physiol Respir Environ Exerc Physiol. 1980;48:1060–1064.
  • Glaser RM, Sawka MN, Durbin RJ, et al. Exercise program for wheelchair activity. Am J Phys Med. 1981;60:67–75.
  • Smith PA, Glaser RM, Petrofsky JS, et al. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses. Arch Phys Med Rehabil. 1983;64:249–254.
  • Sawka MN, Gonzalez RR, Drolet LL, et al. Heat exchange during upper- and lower-body exercise. J Appl Physiol Respir Environ Exerc Physiol. 1984;57:1050–1054.
  • Sawka MN, Pimental NA, Pandolf KB. Thermoregulatory responses to upper body exercise. Eur J Appl Physiol Occup Physiol. 1984;52:230–234.
  • Sawka MN, Miles DS, Petrofsky JS, Wilde SW, et al. Ventilation and acid-base equilibrium for upper-body and lower-body exercise. Aviat Sp Environ Med. 1982;53:354–359.
  • Sawka MN, Glaser RM, Wilde SW, et al. Metabolic and circulatory responses to wheelchair and arm crank exercise. J Appl Physiol Respir Environ Exerc Physiol. 1980;49:784–788.
  • Sawka MN, Foley ME, Pimental NA, et al. Determination of maximal aerobic power during upper-body exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983;54:113–117.
  • Sawka MN. Physiology of upper body exercise. Exerc Sport Sci Rev. 1986;14:175–211.
  • Franklin BA. Exercise testing, training and arm ergometry. Sports Med. 1985;2:100–119.
  • Franklin BA, Scherf J, Pamatmat A, et al. Arm exercise testing and training. Pract Cardiol. 1982;8:43–70.
  • Pandolf KB. Local and central factor contribution in the perception of effort during physical exercise. In: Borg G, Ottoson D, editors. The perception of exertion in physical work. London (UK): Palgrave Macmillan; 1986.
  • Pandolf KB, Billings DS, Drolet LL, et al. Differential ratings of perceived exertion and various physiological responses during prolonged upper and lower body exercise. Eur J Appl Physiol Occup Physiol. 1984;53:5–11.
  • Hjeltnes N, Stanghelle JK, Skyberg D. Pulmonary function and oxygen uptake during exercise in 16 year old boys with cystic fibrosis. Acta Paediatr Scand. 1984;73:548–553.
  • Hjeltnes N. Cardiorespiratory capacity in tetra- and paraplegia shortly after injury. Scand J Rehabil Med. 1986;18:65–70.
  • Hjeltnes N. Capacity for physical work and training after spinal injuries and strokes. Scand J Soc Med Suppl. 1982;29:245–251.
  • Hjeltnes N, Vokac Z. Circulatory strain in everyday life of paraplegics. Scand J Rehabil Med. 1979;11:67–73.
  • Hjeltnes N. [Physical work capacity and training after spinal cord injuries and cerebrovascular accidents]. Tidsskr. Nor. Laegeforen. 1980;100:862–866.
  • Hjeltnes N. Oxygen uptake and cardiac output in graded arm exercise in paraplegics with low level spinal lesions. Scand J Rehabil Med. 1977;9:107–113.
  • Frauendorf H, Kobryn U, Gelbrich W, et al. Changes of the EMG and its relationship to the cardiopulmonary parameters during two-arm cranking of disabled men. Biomed Biochim Acta. 1989;48:S521–S524.
  • Frauendorf H, Kobryn U, Hoffmann B, et al. Sex- and age-related behaviour of the integrated EMG during one-arm cranking. Biomed Biochim Acta. 1986;45:85–87.
  • Frauendorf H, Gelbrich W, Kobryn U. [Reactions of the cardiopulmonary and the motor system in work with medium-sized muscles]. Z Gesamte Hyg. 1990;36:357–360.
  • Goosey-Tolfrey V. Wheelchair sport: a complete guide for athletes, coaches, and teachers. Chaimpaign (IL): Human Kinetics; 2010.
  • Abel T, Vanlandewijck Y, Verellen J. Handcyling. In: Goosey-Tolfrey VL, editor. Wheelchair sport, a complete guide for athletes, coaches, and teachers. Chaimpaign (IL): Human Kinetics; 2010. pp 187–197.
  • Abel T, Vega SR, Bleicher I, et al. Handbiking: physiological responses to synchronous and asynchronous crank montage. Eur J Sport Sci. 2003;3:1–9.
  • Dallmeijer AJ, Ottjes L, de Waardt E, et al. A physiological comparison of synchronous and asynchronous hand cycling. Int J Sports Med. 2004;25:622–626.
  • Faupin A, Gorce P, Campillo P, et al. Kinematic analysis of handbike propulsion in various gear ratios: implications for joint pain. Clin Biomech (Bristol, Avon). 2006;21:560–566.
  • Faupin A, Gorce P, Meyer C, et al. Effects of backrest positioning and gear ratio on nondisabled subjects’ handcycling sprinting performance and kinematics. JRRD. 2008;45:109–116.
  • Faupin A, Gorce P, Meyer C. Effects of type and mode of propulsion on hand-cycling biomechanics in nondisabled subjects. JRRD. 2011;48:1049–1060.
  • Krämer C, Hilker L, Böhm H. Influence of crank length and crank width on maximal hand cycling power and cadence. Eur J Appl Physiol. 2009;106:749–757.
  • Litzenberger S, Mally F, Sabo A. Biomechanics of elite recumbent handcycling: a case study. Sports Eng. 2016;19:201–211.
  • Weissland T, Pelayo P, Vanvelcenaher J, et al. Physiological effects of variations in spontaneously chosen crank rate during incremental upper-body exercise. Eur J Appl Physiol Occup Physiol. 1997;76:428–433.
  • Hopman MTE, van Teeffelen WM, Brouwer J, et al. Physiological responses to asynchronous and synchronous arm-cranking exercise. Eur J Appl Physiol Occup Physiol. 1995;72:111–114.
  • Mossberg K, Willman C, Topor M, et al. Comparison of asynchronous versus synchronous arm crank ergometry. Spinal Cord. 1999;37:569–574.
  • Smith PM, Chapman ML, Hazlehurst KE, et al. The influence of crank configuration on muscle activity and torque production during arm crank ergometry. J Electromyogr Kinesiol. 2008;18:598–605.
  • Foss Ø, Hallén J. The most economical cadence increases with increasing workload. Eur J Appl Physiol. 2004;92:443–451.
  • Litzenberger S, Mally F, Sabo A. Influence of different seating and crank positions on muscular activity in elite handcycling – a case study. Procedia Eng. 2015;112:355–360.
  • Faupin A, Gorce P. The effects of crank adjustments on handbike propulsion: a kinematic model approach. Int J Ind Ergon. 2008;38:577–583.
  • Union Cycliste Internationale. UCI Cycling Regulations. 2016. p. 1–81.
  • Zipfel E, Olson J, Puhlman J, et al. Design of a custom racing hand-cycle: review and analysis. Disabil Rehabil Assist Technol. 2009;4:119–128.
  • Krämer DC. Ergonomische Optimierung des Handbike-Antriebes [dissertation]. 2012.
  • Smith P, Doherty M, Price M. The effect of crank rate on physiological responses and exercise efficiency using a range of submaximal workloads during arm crank ergometry. Int J Sports Med. 2005;27:199–204.
  • Chaikhot D, Taylor MJD, Hettinga FJ. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults. Eur J Sport Sci. 2018;18:650–658.