78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Physiological differences among cryptic species of the Mediterranean crustose coralline alga Lithophyllum stictiforme (Corallinales, Rhodophyta)

ORCID Icon, &
Pages 184-195 | Received 02 Mar 2023, Accepted 29 Oct 2023, Published online: 23 Dec 2023

References

  • Athanasiadis, A. (1999). The taxonomic status of Lithophyllum stictaeforme (Rhodophyta, Corallinales) and its generic position in light of phylogenetic considerations. Nordic Journal of Botany, 19: 735–745.
  • Ballesteros, E. (2006). Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and Marine Biology: An Annual Review, 44: 123–195.
  • Basso, D., Piazza, G. & Bracchi, V.A. (2022). Calcification traits for cryptic species identification: insights into coralline biomineralization. PLOS One, 17(10): e0273505.
  • Borowitzka, M.A. & Larkum, A.W.D. (1987). Calcification in algae: mechanisms and the role of metabolism. Critical Reviews In Plant Sciences, 6(1): 1–45.
  • Boudouresque, C.F. (2004). Marine biodiversity in the Mediterranean: status of species, populations and communities. Scientific Reports of Port-Cros National Park, 20: 97–146.
  • Chalker, B.E. (1981). Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Marine Biology, 63: 135–141.
  • Chenuil, A., Cahill, A.E., Délémontey, N., Du Salliant Du Luc, E. & Fanton, H. (2019). Problems and Questions Posed by Cryptic Species. A Framework to Guide Future Studies. In From Assessing to Conserving Biodiversity: Conceptual and Practical Challenges (Casetta, E., Marques da Silva J. & Vecchi, D., eds.), 77–106. Springer, Cham. doi: 10.1007/978-3-030-10991-2_4.
  • Chisholm, J.R.M. (2000). Calcification by crustose coralline algae on the northern Great Barrier. Limnology and Oceanography, 45(7): 1476–1484.
  • Chisholm, J.R.M. (2003). Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography, 48(4): 1376–1387.
  • Cornwall, C.E., Comeau, S. & McCulloch, M.T. (2017). Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biology, 23(10): 4245–4256.
  • De Jode, A. (2018). A study of coralligenous habitats biodiversity and of the influence of environmental factors using genetic tools: from engineer species populations to communities./Etude de la biodiversité des habitats coralligènes et de l’influence des facteurs environnementaux par des approches génétiques: des populations d’espèces ingénieures aux communautés. PhD thesis, Aix-Marseille Université, Marseille, 352.
  • De Jode, A., David, R., Haguenauer, A., Cahill, A.E., Erga, Z., Guillemain, D., Sartoretto, S., Rocher, C., Selva, M., Le Gall, L., Féral, J.-P. & Chenuil, A. (2019). From seascape ecology to population genomics and back. Spatial and ecological differentiation among cryptic species of the red algae Lithophyllum stictiforme/L. cabiochiae, main bioconstructors of coralligenous habitats. Molecular Phylogenetics and Evolution, 137: 104–113.
  • Gattuso, J.-P., Gentili, B., Duarte, C.M., Kleypas, J.A., Middelburg, J.J. & Antoine, D. (2006). Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences, 3: 489–513.
  • Gomez, I., Weykam, G., Kloser, H. & Wiencke, C. (1997). Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Marine Ecology Progress Series, 148: 281–293.
  • Haguenauer, A., Zuberer, F., Ledoux, J.B. & Aurelle, D. (2013). Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics. Journal of Experimental Marine Biology and Ecology, 449: 349–357.
  • Hanelt, D. & Figueroa, F.L. (2012). physiological and photomorphogenic effects of light on marine macrophytes. In Seaweed biology. novel insights into ecophysiology, ecology and utilization (Wiencke, B.K. & Berlin, C., eds.), 219. Springer, Heidelberg.
  • Harmelin, J.G. (2004). Environnement thermique du benthos côtier de l’île de Port-Cros (Parc national, France, Méditerranée nord-occidentale) et implications biogéographiques. Scientific Reports of Port-Cros National Park, 20: 173–194.
  • Hauck, F. (1877). Beiträge zur Kenntnis der adriatischen Algen. V. Österreichische Botanische Zeitschrift, 27: 292–293
  • Hofmann, L.C., Koch, M. & de Beer, D. (2016). Biotic control of surface pH and evidence of light-induced H+ pumping and Ca2+-H+ exchange in a tropical crustose coralline alga. PLOS One, 11(7): e0159057.
  • Johansen, H.W. (1981). Coralline algae, a first synthesis. CRC Press, Boca Raton, FL.
  • Kamiya, M. & West, J.A. (2014). Cryptic diversity in the euryhaline red alga Caloglossa ogasawaraensis (Delesseriaceae, Ceramiales). Phycologia, 53(4): 374–382.
  • Kato, A., Hikami, M., Kumagai, N.H., Suzuki, A., Nojiri, Y. & Sakai, K. (2014). Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples. Marine Environmental Research, 94: 1–6.
  • Kirk, J. (1994). Light and photosynthesis in aquatic ecosystems. 2nd ed. 400. Cambridge University Press, Cambridge.
  • Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology, 19(1): 103–132.
  • Littler, M.M., Littler, D.S., Blair, S.M. & Norris, J.N. (1985). Deepest known plant life discovered on an uncharted seamount. Science, 227: 57–59.
  • Littler, M.M., Littler, D.S., Blair, S.M. & Norris, J.N. (1986). Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep Sea Research, 33: 881–889.
  • Littler, M.M., Littler, D.S. & Dennis Hanisak, M. (1991). Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology, 150(2): 163–182.
  • Marquardt, R., Schubert, H., Varela, D.A., Huovinen, P., Henríquez, L. & Buschmann, A.H. (2010). Light acclimation strategies of three commercially important red algal species. Aquaculture, 299(1): 140–148.
  • Martin, S., Castets, M.D. & Clavier, J. (2006). Primary production, respiration and calcification of the temperate free-living coralline alga. Lithothamnion Corallioides. Aquatic Botany, 85: 121–128.
  • Martin, S., Charnoz, A. & Gattuso, J.-P. (2013a). Photosynthesis, respiration and calcification in the Mediterranean crustose coralline alga Lithophyllum cabiochae (Corallinales, Rhodophyta). European Journal of Phycology, 48(2): 163–172.
  • Martin, S., Clavier, J., Chauvaud, L. & Thouzeau, G. (2007). Community metabolism in temperate maerl beds. I. Carbon and carbonate fluxes. Marine Ecology Progress Series, 335: 19–29.
  • Martin, S., Cohu, S., Vignot, C., Zimmerman, G. & Gattuso, J.-P. (2013b). One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecology and Evolution, 3(3): 676–693.
  • Martin, S. & Gattuso, J.-P. (2009). Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology, 15(8): 2089–2100.
  • McCoy, S.J. & Kamenos, N.A. (2015). Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology, 51(1): 6–24.
  • Muangmai, N., Preuss, M. & Zuccarello, G.C. (2015). Comparative physiological studies on the growth of cryptic species of Bostrychia intricata (Rhodomelaceae, Rhodophyta) in various salinity and temperature conditions. Phycological Research, 63(4): 300–306.
  • Nelson, W.A. (2009). Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research, 60: 787–801.
  • Payri, C.E., Maritorena, S., Bizeau, M. & Rodière, M. (2001). Photoacclimation in the tropical coralline alga Hydrolithon onkodes (Rhodophyta, Corallinacea) from a French Polynesian reef. Journal of Phycology, 37: 223–234.
  • Pentecost, A. (1978). Calcification and photosynthesis in Corallina officinalis L. using 14CO2 method. British Physiological Journal, 13: 383–390.
  • Pezzolesi, L., Peña, V., Le Gall, L., Gabrielson, P.W., Kaleb, S., Hughey, J.R., Rodondi, G., Hernandez-Kantun, J.J., Falace, A., Basso, D., Cerrano, C. & Rindi, F. (2019). Mediterranean Lithophyllum stictiforme (Corallinales, Rhodophyta) is a genetically diverse species complex: implications for species circumscription, biogeography and conservation of coralligenous habitats. Journal of Phycology, 55(2): 473–492.
  • Piazzi, L., Pinna, F. & Ceccherelli, G. (2022). Crustose coralline algae and biodiversity enhancement: the role of Lithophyllum stictiforme in structuring Mediterranean coralligenous reefs. Estuarine, Coastal and Shelf Science, 278: 108121.
  • Qui Minet, Z.N., Davoult, D., Grall, J., Delaunay, C., Six, C., Cariou, T. & Martin, S. (2021). Physiology of maerl algae: comparison of inter‐ and intraspecies variations. Journal of Phycology, 57(3): 831–848.
  • Rodrı́guez-Prieto, C. (2016). Light and temperature requirements for survival, growth and reproduction of the crustose coralline Lithophyllum stictaeforme from the Mediterranean Sea. Botanica Marina, 59(2–3): 95–104. doi: 10.1515/bot-2015-0070.
  • Sartoretto, S., Verlaque, M. & Laborel, J. (1996). Age of settlement and accumulation rate of submarine ‘coralligene’ (−10 to −60 m) of the northwestern Mediterranean Sea; Relation to holocene rise in sea level. Marine Geology, 130(3–4): 317–331.
  • Smith, S. & Key, G. (1975). Carbon dioxide and metabolism in marine environments. Limnology & Oceanography, 20: 493–495.
  • Steneck, R.S. (1986). The ecology of coralline algal crusts: convergent patterns and adaptative strategies. Annual Review of Ecology, Evolution, and Systematics, 17: 273–303.
  • Thierry de Ville D’avray, L., Ami, D., Chenuil, A., David, R. & Féral, J.P. (2019). Application of the ecosystem service concept at a small-scale: the cases of coralligenous habitats in the North-western Mediterranean Sea. Marine Pollution Bulletin, 138: 160–170.
  • Williamson, C.J., Perkins, R., Voller, M., Yallop, M.L. & Brodie, J. (2017). The regulation of coralline algal physiology, an in situ study of Corallina officinalis (Corallinales, Rhodophyta). Biogeosciences, 14(19): 4485–4498.
  • Wimart-Rousseau, C., Lajaunie-Salla, K., Marrec, P., Wagener, T., Raimbault, P., Lagadec, V., Lafont, M., Garcia, N., Diaz, F., Pinazo, C., Yohia, C., Garcia, F., Xueref-Remy, I., Blanc, P.-E., Armengaud, A. & Lefèvre, D. (2020). Temporal variability of the carbonate system and air-sea CO2 exchanges in a Mediterranean human-impacted coastal site. Estuarine, Coastal and Shelf Science, 236: 106641.
  • Wolf-Gladrow, D.A., Zeebe, R.E., Klaas, C., Körtzinger, A. & Dickson, A.G. (2007). Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Marine Chemistry, 106(1): 287–300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.