113
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore

&
Pages 45-52 | Published online: 09 Jul 2009

References

  • Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T. and MacKinnon, R., 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 280, 69 –77.
  • Zhou, Y., Morais-Cabral, J. H., Kaufman, A. and MacKinnon, R., 2001a, Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A° resolution. Nature, 414, 43 –48.
  • Ellinor, P. T., Yang, J., Sather, W. A., Zhang, J.-F. and Tsien, R. W., 1995, Ca2+ channel selectivity at a single locus for high- affinity Ca2+ interactions. Neuron, 15, 1121–1132.
  • McCleskey, E. W., 1999, Calcium channel permeation: a field in flux. Journal ofGeneral Physiology, 113, 765 –772.
  • Miller, C., 2000, Ion channels: doing hard chemistry with hard ions. Current Opinion in Chemical Biology, 4, 148 –151.
  • Tsien, R. W., Hess, P., McCleskey, E. W. and Rosenberg, R. L., 1987, Calcium channels: mechanisms of selectivity, permea- tion, and block. Annual Review ofBiophysics and Biophysical Chemistry, 16, 265 –290.
  • Morais-Cabral, J. H., Zhou, Y. and MacKinnon, R., 2001, Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature, 414, 37 –42.
  • Berne`che, S. and Roux, B., 2001, Energetics of ion conduction through the K+ channel. Nature, 414, 73 –77.
  • Dawson, D. C., Smith, S. S. and Mansoura, M. K., 1999, CFTR: mechanism of anion conduction. Physiological Reviews, 79, S47 -S75.
  • Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. and MacKinnon, R., 2002, X-ray structure of a ClC chloride channel at 3.0 A° reveals the molecular basis of anion selectivity. Nature, 415, 287 –294.
  • Smith, S. S., Steinle, E. D., Meyerhoff, M. E. and Dawson, D. C., 1999, Cystic fibrosis transmembrane conductance regulator. Physical basis for lyotropic anion selectivity patterns. Journal of General Physiology, 114, 799 –818.
  • Linsdell, P., Evagelidis, A. and Hanrahan, J. W., 2000, Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophysical Journal, 78, 2973 -2982.
  • Fahlke, C., 2001, Ion permeation and selectivity in ClC-type chloride channels. American Journal ofPhysiology, 280, F748 - F757.
  • Jentsch, T. J., Stein, V., Weinreich, F. and Zdebik, A. A., 2002, Molecular structure and physiological function of chloride channels. Physiological Reviews, 82, 503 –568.
  • Gong, X., Burbridge, S. M., Cowley, E. A. and Linsdell, P., 2002,
  • Linsdell, P., 2001a, Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. Journal ofPhysiology, 531, 51 –66.
  • McCarty, N. A., 2000, Permeation through the CFTR chloride channel. Journal ofExperimental Zoology, 203, 1947 –1962.
  • Gupta, J., Evagelidis, A., Hanrahan, J. W. and Linsdell, P., 2001, Asymmetric structure of the cystic fibrosis transmem- brane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region. Biochem- istry, 40, 6620 -6627.
  • Anderson, M. P., Gregory, R. J., Thompson, S., Souza, D. W., Paul, S., Mulligan, R. C., Smith, A. E. and Welsh, M. J., 1991, Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science, 253, 202 –205.
  • McCarty, N. A. and Zhang, Z.-R., 2001, Identification of a region of strong discrimination in the pore of CFTR. American Journal ofPhysiology, 281, L852–L867.
  • Mansoura, M. K., Smith, S. S., Choi, A. D., Richards, N. W., Strong, T. V., Drumm, M. L., Collins, F. S. and Dawson, D. C., 1998, Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore. Biophysical Journal, 74, 1320–1332.
  • Linsdell, P., Zheng, S.-X. and Hanrahan, J. W., 1998, Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines. Journal ofPhysiology, 512, 1 –16.
  • Sheppard, D. N., Rich, D. P., Ostedgaard, L. S., Gregory, R. J., Smith, A. E. and Welsh, M. J., 1993, Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties. Nature, 362, 160 –164.
  • Tabcharani, J. A., Rommens, J. M., Hou, Y.-X., Chang, X.-B., Tsui, L.-C., Riordan, J. R. and Hanrahan, J. W., 1993, Multi-ion pore behaviour in the CFTR chloride channel. Nature, 366, 79 - 82.
  • McDonough, S., Davidson, N., Lester, H. A. and McCarty, N. A., 1994, Novel pore-lining residues in CFTR that govern permea- tion and open-channel block. Neuron, 13, 623 –634.
  • Smith, S. S., Liu, X., Zhang, Z.-R., Sun, F., Kriewall, T. E., McCarty, N. A. and Dawson, D. C., 2001, CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. Journal ofGeneral Physiology, 118, 407 - 431.
  • Walsh, K. B., Long, K. J. and Shen, X., 1999, Structural and ionic determinants of 5-nitro-2-(3-phenylpropyl-amino)-benzoic acid block of the CFTR chloride channel. British Journal of Pharmacology, 127, 369 –376.
  • Zhang, Z.-R., Zeltwanger, S. and McCarty, N. A., 2000, Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. Journal ofMembrane Biology, 175, 35 –52.
  • Gupta, J. and Linsdell, P., 2002, Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Pflu¨ gers Archiv, 443, 739 –747.
  • Linsdell, P. and Hanrahan, J. W., 1998, Adenosine tripho- sphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride chan- nel. Journal ofGeneral Physiology, 111, 601 –614.
  • Wright, E. M. and Diamond, J. M., 1977, Anion selectivity in biological systems. Physiological Reviews, 57, 109 –156.
  • Cheung, M. and Akabas, M. H., 1996, Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment. Biophysical Journal, 70, 2688 -2695.
  • Liu, X., Zhang, Z. R., Billingsley, J. T., McCarty, N. A. and Dawson, D. C., 2001, CFTR: pH titration and chemical modification indicate that T338 (TM6) lies on the outward- facing, water-accessible surface of the protein. Pediatric Pul- monology, Suppl. 22, 176 (abstract).
  • Linsdell, P. and Hanrahan, J. W., 1996a, Flickery block of single CFTR chloride channels by intracellular anions and osmolytes. Molecular determinants of Au(CN)2binding and permeability American Journal ofPhysiology, 271, C628 -C634. within the cystic fibrosis transmembrane conductance regulator Cl- channel pore. Journal ofPhysiology, 540, 39 –47.
  • Linsdell, P., 2001b, Thiocyanate as a probe of the cystic fibrosis transmembrane conductance regulator chloride channel pore. anadian Journal ofPhysiology and Pharmacology, 79, 573 –579.
  • Linsdell, P., Tabcharani, J. A. and Hanrahan, J. W., 1997, Multi- ion mechanism for ion permeation and block in the cystic fibrosis transmembrane conductance regulator chloride chan- nel. Journal ofGeneral Physiology, 110, 365 –377.
  • Zhou, Z., Hu, S. and Hwang, T.-C., 2001b, Voltage-dependent flickery block of an open cystic fibrosis transmembrane con- ductance regulator (CFTR) channel pore. Journal ofPhysiol- ogy, 532, 435 –448.
  • Linsdell, P. and Gong, X., 2002, Multiple inhibitory effects of regulator Cl- channel currents. Journal ofPhysiology, 540, 29 –38.
  • Linsdell, P. and Hanrahan, J. W., 1996b, Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a mammalian cell line and its regulation by a critical pore residue. Journal ofPhysiology, 496, 687 –693.Au(CN)2ions on cystic fibrosis transmembrane conductance

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.