129
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Internal water molecules of archaeal rhodopsins (Review)

&
Pages 257-265 | Published online: 09 Jul 2009

  • Belrhali H., Nollert, P., Royant, A., Menzel, C., Rosenbusch, J. P., Landau, E. M. and Pebay-Peyroula, E., 1999, Protein, lipid and water organization in bactertomodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. Structure with Folding and Design. 7, 909-917
  • Beppu, Y., Kakitani, T. and Tokunaga, F., 1992. Energetics of protonation-deprotonation of the chromophore in retinal proteins. Photocternistry and Pholobiotogy, 56, 1113-1117.
  • Brown, L. S., Sasaki, J., Kandori, H, Maeda, A., Needleman, R. and Lanyi, J. K., 1995b, Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacterioitiodopsin. Journal of Biological Chemistry. 270, 27122-27126.
  • Brown, L. S., Váro, G., Hatanaka, M., Sasaki, J., Kandori, H., Maeda, A., Friedman, N., Sheves, M., Needleman, R. and Lanyi, J. K., 1995a, The complex extracellular domain regulates the deprotonation and reprotonation of the retinal Schiff base during the bacteriorhodopsin photocycle. Biochemistry, 34, 12903-12911.
  • Chon, Y.-S., Sasaki, J., Kandori, H., Brown, L. S., Lanyi, J. K., Needleman, R. and Maeda, A., 1996, Hydration of the counterion of the Schiff base in the chloride-transporting mutant of bacteriorhodopsin: FTIR and FT-Raman studies of the effects of anion binding when Asp85 is replaced with a neutral residue. Biochemistry. 35, 14244-14250.
  • De Groot, H. J. M., Harbison, G. S., Herzfeld, J. and Griffin, R. G., 1989. Nuclear magnetic resonance study of the Schiff base in bactertortiodopsin: counterion effects on the 15N shift anisotropy Biochemistry. 28, 3346-3353.
  • Eisenburg, D. and Kauzmann, W., 1969, The Structure and Properties of Water (London: Oxford Press).
  • Essen, L., Siegert, R., Lehmann, W. D. and Oesterhelt, D., 1998, Lipid patches in membrane protein otigomers: crystal structure of the bacteriorhodopsin-lipid complex. Proceedings of the National Academy of Sciences (USA), 95, 11673-11678.
  • Gat, Y. and Sheves, M., 1993, A mechanism for controlling the pKa of the retinal protonated Schiff base In retinal proteins A study with model compounds. Journal of the American Chemical Society. 115, 3772-3773.
  • Glew, D N. and Rath, N. S., 1971. H2O, HDO, and CH3OH infrared spectra and correlation with solvent basicity and hydrogen bonding. Canadian Journal of Chemistry, 49, 837-856.
  • Hatanaka, M., Kashima, R., Kandori, H., Friedman, N., Sheves, M., Needleman, R. Lanyi, J. K. and Maeda, A., 1997, Trp86 ? Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation. Biochemistry, 36, 5493-5498.
  • Hatanaka, M., Sasaki, J. Kandori, H., Ebrey, T. G., Needteman, R., Lanyi, J. K. and Maeda, A., 1996. Effects of arginine-82 on the interactions of internal water molecules in bacteriortiodopsin Biochemistry, 35, 6308-6312.
  • Haupts, U., Tittor, J. and Oesterhelt, D., 1999, Closing in on bacteriortiodopsin: progress in understanding the molecule. Annual Review in Biophysics and Biomolecular Structures, 28, 367-399.
  • Hildebrandt. P. and Stockburger, M., 1984, Role of water in bacteriorhodopsin's chromophore: resonance Raman study. Biochemistry, 23, 5539-5548
  • Hoff, W. D., Jung, K. H. and Spudlch, J. L., 1997, Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annual Review in Biophysics and Biomolecutar Structures. 26, 223-258.
  • Kamo, N., Shimono, K, Iwamoto, M. and Sudo, Y., 2001, Photochemistry and photoinduced proton-transfer by pharaonis phoborhodopsin. Biochemistry (Moscow), 66, 1277-1282
  • Kandori, H., 2000. Role of internal water molecules in bacteriorhodopsin. Biochimica et Biophysica Acta, 1460, 177-191.
  • Kandori, H. and Shichida, Y., 2000, Direct observation of the bridged water stretching vibrations inside a protein. Journal of the American Chemical Society, 122, 11745-11746.
  • Kandori. H., Belenky, M. and Herzfeld, J., 2002, Vibrational frequency and dipolar orientation of the protonated Schiff base in bacteriorhodopsin before and after photoisomerization. Biochemistry, 41, 6026-6031.
  • Kandori, H., Fumtani, Y., Shimono, K., Shichida, Y. and Kamo, N., 2001b. Internal water molecules of pharaonis phoborhodopsin studied by low-temperature infrared spectroscopy. Biochemistry. 40, 15693-15698.
  • Kandori, H., Kinoshita, N., Maeda, A. and Shichida, Y., 1998, Protein structural changes in bacteriorhodopsin upon photoisomerization as revealed by polarized FTIR spectroscopy. Journal of Physical Chemistry B, 102, 7899-7905.
  • Kandori, H., Kinoshita, N., Yamazaki, Y., Maeda, A., Shichida, Y., Needleman, R., Lanyi, J. K., Bizounok, M., Herzfeld, J., Raap, J. and Lugtenburg, J., 1999. Structural change of threonine 89 upon photoisomerization in bacteriorhodopsin as revealed by polarized FTIR spectroscopy. Biochemistry, 38, 9676-9683.
  • Kandori, H., Shrmono, K., Sudo, Y., Iwamoto, M., Shichida, Y., Kamo, N. and Kandori, H., 2001 a, Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin Biochemistry. 40, 9238-9246.
  • Kandori, H. Yamazaki, Y. Sasaki, J., Needlernan, R., Lanyi, J. K. and Maeda, A., 1995, Water-mediated proton transfer in proteins: an FT1R study of bacteriortiodopsin. Journal of the American Chemical Society, 117, 2118-2119.
  • Korenstein, R. and Hess, B., 1977. Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane. Nature. 270, 184-186.
  • Krebs, M. P. and Khorana, H. G., 1993, Mechanism of light-dependent proton translocation by bacteriortiodopsin. Journal of Bacteriology, 175, 1555-1560.
  • Lanyi, J K., 2000. Crystallographic studies of the conformational changes that drive directional transmembrane ion movement in bacteriorhodopsin. Biochimica et Btophysica Acta, 1459, 339-345.
  • Luecke, H., 2000, Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Biochimica et Biophysica Acta. 1460, 133-156.
  • Luecke, H., Richter, H.-T. and Lanyi, J K., 1998, Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science, 280, 1934-1937.
  • Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N. and Spudich, J. L., 2001. Crystal structure of sensory rhodopsin Il at 2.4 angstroms: insights into color tuning and transducer interaction. Science, 293, 499-503.
  • Luecke, H., Schobert, B., Richter, H.-T., Cartailler, J. P. and Lanyi, J. K., 1999, Structure of bacteriorhodopsin at 1.55 A resolution. Journal of Molecular Biology. 291, 899-911.
  • Maeda, A., Kandori, H., Yamazaki, Y, Nishimura, S., Hatanaka, M., Chon, Y.-S. Sasaki, J., Needleman, R. and Lanyi, J. K., 1997. Intramembrane signaling mediated by hydrogen-bonding of water and carboxyl groups in bacteriorhodopsin and rhodopsin. Journal of Biochemistry. 121, 399-406.
  • Maeda, A., Sasaki, J., Shichida, Y. and Yoshizawa, T., 1992, Water structural changes in the bacteriorhodopsin photocycte: analysis by Fourier transform infrared spectroscopy. Biochemistry. 31, 462-467
  • Maeda, A., Sasaki, J., Yamazaki, Y., Needleman, R and Lanyi, J. K., 1994, Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic Study. Biochemistry, 33, 1713-1717.
  • Mitsuoka, K., Hirai, T., Murata, K., Mlyazawa, A., Kidera, A., Kimura, Y. and Fujiyoshi, Y., 1999, The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. Journal of Molecular Biology, 286, 861-882.
  • Monosmith, W. B. and Walrafen, G. E. 1984. Temperature dependence of the Raman OH-stretching overtone from liquid water. Journal of Chemical Physics. 15, 669-674.
  • Papadopoulos, G., Dencher, N. A., Zaccai, G. and Büldt, G., 1990, Water molecules and exchangeable hydrogen ions at the active centre of bacteriorhodopsin localized by neutron diffraction. Elements of the proton pathway? Journal of Molecular Biology. 214, 15-19
  • Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. and Landau, E. M., 1997. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, 277, 1676-1681.
  • Royanl, A., Nollert, P., Edman, K., Neutze, R., Landau, E. M., Pebay-Peyroula, E. and Navarro, J, 2001. X-ray structure of sensory rhodopsin Il at 2.1-A resolution. Proceedings of the National Academy of Sciences (USA), 98, 10131-10136.
  • Sasaki, J and Spudich, J. L., 2000. Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochimica et Biophysica Acta, 1460, 230-239.
  • Sato, H, Takeda, K, Tani, K., Hino, T., Okada, T., Nakasako, M., Kamiya, N. and Kouyama, T., 1999, Specific lipid-protein interactions in a novel honeycomb lattice structure of bacteriorhodopsin. Acta Crystallographica D. Biological Crystallography, 55, 1251-1256
  • Scheiner, S. and Duan, X., 1991, Effect of intermolecular orientation upon proton transfer within a polarizable medium. Biophysics Journal, 60, 874-883.
  • Schmies, G., Luttenberg, B., Chizhov, I., Engelhard, M, Becker, A and Bamberg, E., 2000. Sensory rhodopsin Il from the haloalkalipnilic natronobacterium pharaonis light-activated proton transfer reactions. Biophysics Journal, 78, 967-976.
  • Sudo, Y., Iwamoto, M., Shimono, K., Sumi, M. and Kamo, N., 2001, Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Biophysics Journal, 80, 916-922,
  • Váró, G., 2000, Analogies between hatorhodopsin and bacteriorhodopsin. Biochimica et Biophysica Acta. 1460, 220-229.
  • Váró, G. and Keszlhelyi, L., 1983, Photoelectric signals from dried oriented purple membranes of Hatobacterium halobium Biophysics Journal, 43, 47-51.
  • Váró, G. and Lanyi, J. K., 1991, Distortions in the photocycle of bacteriorhodopsin at moderate dehydration. Biophysics Journal, 59, 313-322.
  • Walrafen, G. E., 1967, Raman spectral studies of the effects of temperature on water structure. Journal of Chemical Physics, 47, 114-126.
  • Yamazaki, Y., Hatanaka, M., Kandori, H., Sasaki, J., Jan Karstens, W. F., Raap, J., Lugtenburg, J., Bizounok, M., Herzfeld, J., Needleman, R., Lanyi, J. K. and Maeda, A, 1995a, Water structural changes at the proton uptake site (the Thr46-Asp96 domain) in the L intermediate of bacteriortiodopsin. Biochemistry, 34, 7088-7093.
  • Yamazaki, Y., Kandori, H. Needleman, R., Lanyl, J. K. and Maeda, A., 1998, Interaction of the protonated Schiff base with the peptide backbone of valine 49 and the intervening water molecule in the N photointermediate of bacteriorhodopsin Biochemistry, 37, 1559-1564.
  • Yamazaki, Y., Sasaki, J., Hatanaka, M., Kandon, H., Maeda, A., Needleman, R., Shinada, T., Yoshihara, K., Brown. L. S. and Lanyi, J. K., 1995b, Interaction of tryptophan-182 with the retinal 9-methyl group In the L intermediate of bacteriorhodopsin. Biochemistry. 34, 577-582.
  • Yamazaki, Y., Tuzi, S., Saitö. H., Kandon, H., Needleman, R., Lanyi, J. K. and Maeda, A., 1996, Hydrogen bonds of water and C=O groups coordinate long-range structural changes in the L photointermediate of bacteriorhodopsin. Biochemistry, 35, 4063-4068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.