202
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Lipid matters: nicotinic acetylcholine receptor-lipid interactions (Review)

Pages 277-284 | Published online: 09 Jul 2009

  • Andreasen, T.J. and McNamee, M.G., 1980, Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. Biochemistry. 19, 4719-4726.
  • Andreasen, T.J., Doerge, D.R. and McNamee, M.G., 1979, Effects of phospholipase A2 on the binding and ion permeability control properties of the acetylcholine receptor. Archives of Biochemistry and Biophysics, 194, 468-480
  • Antollini, S.S. and Barrantes, F J., 1998, Disclosure of discrete sites for different lipids at the protein-lipid interface in native acetylcholine receptor-rich membrane. Biochemistry. 37, 16653- 16662.
  • Antollini, S.S, Soto, MA, Bonini de Romanelli, I, Gutierrez-Merino, C., Sotomayor, P. and Barrantes, F.J., 1996, Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by Laurdan generalized polarization and fluorescence energy transfer. Biophysics Journal, 70, 1275-1284
  • Baenziger, J. E. and Méthot, N., 1996, Fourier transform infrared and hydrogen/deuterium exchange reveal an exchange-resistant core of a-helical peptide hydrogens in the nicotinic acetylcholine receptor. Journal of Biological Chemistry, 270, 29129-29137.
  • Barrantes, F.J., 1998, The Nicotinic Acetylcholine Receptor: Current Views and Future Trends, (Berlin/Heidelberg: Springer Verlag and Georgetown, TX: Landes Publishing Co.).
  • Barrantes, F J., 2001, Fluorescence studies of the acetylcholine receptor: Structure and dynamics in the membrane environment. Journal of Fluorescence. 11, 273-285.
  • Barrantes, F.J., Antollini, S.S., Blanton, M.P. and Prieto, M., 2000, Topography of nicotinic acetylcholine receptor membrane-embedded domains. Journal of Biological Chemistry, 275, 37333-37339.
  • Barrantes, F.J., Antollini, S.S., Bouzat, C.B., Garbus, I. and Massol, R., 2000, Nongenomic effects of steroids on the nicotinic acetylcholine receptor. Kidney International, 57, 1382-1389.
  • Blanton, M.P. and Cohen, J.B., 1992. Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry, 31, 3738-3750.
  • Blanton, M.P. and Cohen, J.B., 1994, Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry, 33, 2859-2872
  • Blanton, M.P. and Wang, H.H., 1991. Localization of regions of the Torpedo californica nicotinic acetylcholine receptor labeled with an aryl azide derivative of phosphatidylserine. Biochimica et Biophysica Acta, 1067, 1-8.
  • Blanton, M.P., McCardy, E.A. Muggins, A. and Parikh, D., 1998, Probing the structure of the nicotinic acetylcrtoline receptor with the hydrophobic photoreactive probes [126I]TID-BE and [125I]TIDPC/16. Biochemistry. 37, 14545-14555.
  • Blanton, M.P., Xie, Y., Dangott, L.J. and Cohen, J.B., 1999. The steroid promegeslone is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor that Interacts with the lipid-protein interface. Molecular Pharmacology, 55, 269-278.
  • Bloch, R.J. and Morrow, J.S., 1989. An unusual ß-spectrin associated with clustered acetylcholine receptors. Journal of Cell Biology. 108, 481-494.
  • Bouzat, C.B. and Barrantes, F.J., 1993a. Effects of long-chain fatty acids on the channel activity of the nicotinic acetylcholine receptor. Receptors and Channels, 1, 251-258.
  • Bouzat, C.B. and Barrantes, F.J., 1993b. Hydrocortisone and 11-desoxycortisone modify acetylcholine receptor channel gating. NeuroReport, 4, 143-146.
  • Bouzat, C.B. and Barrantes, F.J., 1993c, Acute exposure of nicotinic acetylcholine receptor to the synthetic glucocorticoid dexamethasone alters single-channel gating properties Molecular Neuropharmacy, 3, 109-116.
  • Bouzat, CB and Barrantes, F.J., 1996, Modulation of muscle nicotinic acetylcholine receptors by the glucocorticoid hydrocortisone. Possible allosteric mechanism of channel blockade. Journal of Biological Chemistry. 271, 25835-25841.
  • Braun, M.S. and Haydon, D.A., 1991, The effects of short-chain phospholiplds on the acetylcholine-activated ion channel. Pflugers Archives, 418, 62-67.
  • Brejc, K., van Dijk, W.J., Klaassen, R.V., Schuurmans, M., van der Oost, J, Smit, A.B. and Sixma, T.K., 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 411, 269-276.
  • Changeux, J.-P. and Edelstein, S.J., 1998, Allosteric receptors after 30 years. Neuron, 21, 959-980.
  • Chattopadhyay, A. and London, E., 1987, Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled priospholipids. Biochemistry, 26, 39-45.
  • Chavez, R.A. and Hall, Z.W., 1992, Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the x and d subunits. Journal of Cell Biology. 116, 385-393.
  • Corbin, J., Mèthot, N., Wang, H.H., Baenziger, J.E. and Blanton, M.P., 1998a. Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and fourier transform infrared spectroscopy. Journal of Biological Chemistry, 273, 771-777.
  • Corbin, J., Wang, H.H., Blanton, M.P., 1998b, Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125l)azido-cholesterol. Biochimica et Biophysica Acta, 1414, 65-74.
  • Criado, M., Eibl, H. and Barrantes. F.J., 1982, Effects of lipids on acetylcholine receptor. Essential need of cholesterol for the maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry, 21, 3622-3629.
  • Criado, M., Eibl, H. and Barrantes, F.J., 1984, Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. Journal of Biological Chemistry. 259, 9188-9198.
  • del Camino, D., Holmgren, M., Liu, Y. and Yellen, G., 2000, Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature. 403, 321-325.
  • Ellena, J.F., Blazing, M.A. and McNamee, M.G., 1983. Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry, 22, 5523-5535.
  • Epstein, M. and Racker, E., 1978. Reconstitution of carbamylcholine-dependent sodium ion flux and desensltization of the acetylcholine receptor from Torpedo califomica. Journal of Biological Chemistry. 253, 6660-6662.
  • Fong, T.M. and McNamee, M.G., 1987, Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry, 26, 3871-3880.
  • Förster, Th., 1948, Intermodular energy migration and fluorescence. Annals of Physics (Leipzig). 2, 55-75.
  • Garbus, I., Bouzat, C. and Barrantes, F.J. 2001, Steroids differentially inhibit the nicotinic acetylcholine receptor. NeuroReport. 12, 227-231.
  • Garbus, I., Roccamo, A.M and Barrantes, F. J, 2002, Identification of threonine 422 in transmembrane domain xM4 of the nicotinic acetylcholine receptor as a possible site of interaction with hydrocortisone. Newopharmacotogy, 43, 65-73.
  • Giraudat, J., Montecucco, C., Brisson, R. and Changeux, J.-P., 1985, Transmembrane topology of acetylcholine receptor subunits probed with photoreaclive phospholipids. Biochemistry, 24, 3121-3127.
  • Jones, OT. and McNamee, M.G., 1988, Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry, 27, 2364-2374
  • Jones, O.T., Eubanks, J.H., Earnest, JP. and McNamee, MG., 1988, A minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor. Biochemistry. 27, 3733-3742
  • Karlin, A., 2002, Emerging structure of the nicotinic acetylcholine receptors Nature Reviews in Neuroscience. 3, 102-114.
  • Lindstrom, J., Merlie, J. P. and Yogeeswaram, G., 1979, Biochemical properties of acteylchollne receptor subunits from Torpedo califomica. Biochemistry. 18, 4465-4470
  • Lugovskoy, A.A., Maslennikov, I.V., Utkin, Y.N., Tsetlin, V.I., Cohen, J.B. and Arseniev, A.S., 1998, Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor a subunit European Journal of Biochemistry, 255, 455-461.
  • Marsh, D. and Barrantes, F.J., 1978, Immobilized lipid in acetylcholine receptor-rich membranes from T. marmorata. Proceedings of the National Academy of Sciences (USA). 75, 4329-4333.
  • Marsh, D., Watts, A. and Barrantes, F.J., 1981, Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochimica et Biophysics Acta. 645, 97-101.
  • Narayanaswami, V. and McNamee, M G, 1993, Protein-lipid interactions and Torpedo califomica nicotinic acetylcholine receptor function. 2 Membrane fluidity and ligand-mediated alteration in the accessibility of gamma subunit cysteine residues to cholesterol. Biochemistry, 32, 12420-12427
  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T and Numa, S., 1983, Primary structure of a-subunit precursor of Torpedo califomica acetylcholine receptor deduced from cDNA sequence. Nature, 299, 793-797
  • Ochoa, E.L. Dalziel, A.W. and McNamee, M.G., 1983. Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. Biochimica et Biophysica Acta. 727, 151-162
  • \Opella, S.J., Marassi, F.M., Gesell, J.J., Valente, A.P., Kim, Y., Oblatt-Montal, M. and Montai, M., 1999, Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR speciroscopy Nature Structural Biology. 6, 374-379.
  • Orteils, M.O. and Lunl, G.G., 1996, A mixed helix-a-sheet model for the transmembrane region of the nicotinic acatylcholine receptor. Protein Engineering., 9, 51-59.
  • Orteils, M.O., Barrantes, G.E. and Barrantes, F.J.,1998, Molecular modelling of the nicotinic acetytcholine receptor. In The nicotinic acetylchotine receptor Current views and Mure trends, F.J. Barrantes, ed. (Berlin/Heidelberg: Springer Verlag and Georgetown: Landes Publishing Co.). pp. 85-108.
  • Orteils, M.O., Barrantes, G.E., Wood, C., Lunt, G.G. and Barrantes, F.J., 1997, Molecular modelling of the nicotinic acetylcholine receptor transmembrane region in the open state. Protein Engineering. 10, 511-517
  • Parasassi, T., De Stasio, G., Ravagnan, G., Rusch, R.M. and Gratton, E., 1991. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence Biophysics Journal. 60, 179-189.
  • Pashkov, V.S. Maslenikov, I.V. Tchikin, LD. Efremov, R.G., Ivanov, V.T. and Arseniev, A.S., 1999, Spatial structure of the M2 transmembrane segment of the nicotinic acetylcholine receptor alpha-subunit. FEBS Letters. 457, 117-121.
  • Raftery, M. A., Hunkapiller, M. W., Strader, C. D. and Hood, L. E. 1980, Acetylcholine receptor complex of homologous subunits. Science. 208, 1454-1457
  • Rousselet, A., Devaux, P.P. and Wirtz, K.W., 1979, Free fatty acids and esters can be immobilized by receptor rich membranes from Torpedo marmorata but not phospholipid acyl chains, Biochemical and Biophysical Research Communications. 90, 871-877.
  • Sunshine. C. and McNamee, M.G., 1994. Lipid modulation of nicotinic acetylcholine receptor function; the role of membrane lipid composition and fluidity. Biochimica et Biophysica Acta. 1191, 59-64.
  • Tobimatsu, T., Fujita, Y., Fukuda, K., Tanaka, K., Mori, Y., Konno, T., Mishina, M. and Numa, S., 1987, Effects of substitution of putative transmembrane segments on nicotinic receptor function. FEBS letters. 222, 56-62.
  • Unwin, N., 1995, Acetylcholine receptor channel imaged in the open state. Nature, 373, 37-43.
  • Williamson, P.F., Bonev, B., Barrantes, F.J. and Watts, A., 2000, Structural characterization of the M4 transmembrane domain of the acetylcholine receptor: an NMR study. Biophysics Journal, 78, 147A.
  • Zanello, LP, Aztiria, E., Antollini, S.S. and Barrantes, F.J., 1996. Nicotinic acetylcholine receptor channels are Influenced by the physical state of their membrane environment. Biophysical Journal. 70, 2155-2164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.