2,727
Views
167
CrossRef citations to date
0
Altmetric
Review

Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review)

&
Pages 77-92 | Received 03 Dec 2003, Published online: 09 Jul 2009

References

  • Aman, A. T., Fraser, S., Merritt, E. A., Rodigherio, C., Kenny, M.,
  • Ahn, M., Hol, W. G. J., Williams, N. A., Lencer, W. I. and Hirst, T. R., 2001, A mutant cholera toxin B subunit that binds GM1- ganglioside but lacks immunomodulatory or toxic activity. Proc. Natl. Acad. Sci. USA, 98, 8536 -8541.
  • Anderson, R. G. W., 1998, The caveolae membrane system. Annu. Rev. Biochem., 67, 199 -225.
  • Angstrom, J., Teneberg, S. and Karlsson, K. A., 1994, Delineation and comparison of ganglioside-binding epitopes for the toxins of Vibrio cholerae, Escherichia coli, and Clostridium tetani: evi- dence for overlapping epitopes. Proc. Natl. Acad. Sci. USA, 91, 11859–11863.
  • Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J. and Hsu, V. W., 1997, The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBO J., 16, 7305 –7316.
  • Aoe, T., Lee, A. J., van Donselaar, E., Peters, P. J. and Hsu, V. W., 1998, Modulation of intracellular transport by transported proteins: insight from regulation of COPI-mediated transport. Proc. Natl. Acad. Sci. USA, 95, 1624–1629.
  • Aridor, M., Bannykh, S. I., Rowe, T. and Balch, W. E., 1995, Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol., 131, 875 – 893.
  • Badizadegan, K., Dickinson, B. L., Wheeler, H. E., Blumberg, R. S., Holmes, R. K. and Lencer, W. I., 2000, Heterogeneity of detergent-insoluble membranes from human intestine containing caveolin-1 and ganglioside GM1. Am. J. Physiol., 278, G895 - G904.
  • Barlowe, C., 2000, Traffic COPs of the early secretory pathway. Traffic, 1, 371 –377.
  • Bastiaens, P. I., Majoul, I. V., Verveer, P. J., Soling, H. D. and Jovin, T. M., 1996, Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J., 15, 4246- 4253.
  • Bennett, V. and Cuatrecasas, P., 1975, Mechanism of action of Vibrio cholerae enterotoxin. Effects on adenylate cyclase of toad and rat erythrocyte plasma membranes. J. Membr. Biol., 22, 1 – 28.
  • Black, R. E., 1994, Epidemiology of diarrhoeal disease: implications for control by vaccines. Vaccine, 11, 100 –106.
  • Black, R. E., Merson, M. H., Huq, I., Alim, A. R. and Yunus, M., 1981, Incidence and severity of rotavirus and Escherichia coli diarrhoea in rural Bangladesh. Implications for vaccine development. Lancet, 1, 141 –143.
  • Bone, H., Eckholdt, S. and Williams, N. A., 2002, Modulation of B lymphocyte signalling by the B subunit of Escherichia coli heat- labile enterotoxin. Int. Immunol., 14, 647 –658.
  • Booth, B. A., Boesman-Finkelstein, M. and Finkelstein, R. A., 1984, Vibrio cholerae hemagglutinin/protease nicks cholera enterotoxin. Infect. Immun., 45, 558 –560.
  • Bourne, H. R., Sanders, D. A. and McCormick, F., 1991, The GTPase superfamily: conserved structure and molecular me- chanism. Nature, 349, 117 –127.
  • Bromander, A. K., Kjerrulf, M., Holmgren, J. and Lycke, N., 1993, Cholera toxin enhances alloantigen presentation by cultured intestinal epithelial cells. Scand. J. Immunol., 37, 452 –458.
  • Brostrom, M. A., Prostko, C. R., Gmitter-Yellen, D., Grandison, L. J., Kuznetsov, G., Wong, W. L. and Brostrom, C. O., 1991, Inhibition of translational initiation by metalloendoprotease antagonists. Evidence for involvement of sequestered Ca2+ stores. J. Biol. Chem., 266, 7037–7043.
  • Brown, D. A. and London, E., 1998, Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol., 14, 111 –136. Burch, R. M., Jelsema, C. and Axelrod, J., 1988, Cholera toxin and pertussis toxin stimulate prostaglandin E2 synthesis in a murine macrophage cell line. J. Pharmacol. Exp. Ther., 244, 765 -773.
  • Cassel, D. and Selinger, Z., 1978, Mechanism of adenylate cyclase activation through the beta-adrenergic receptor: catecholamine- induced displacement of bound GDP by GTP. Proc. Natl. Acad. Sci. USA, 75, 4155–4159.
  • Chen, A., Hu, T., Mikoryak, C. and Draper, R. K., 2002a, Retrograde transport of protein toxins under conditions of COPI dysfunction. Biochim. Biophys. Acta, 1589, 124 –139.
  • Chen, P., Li, J., Barnes, J., Kokkonen, G. C., Lee, J. C. and Liu, Y., 2002b, Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysac- charide-stimulated macrophages. J. Immunol., 169, 6408 –6416. Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J. and Smith, A. E., 1991, Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell, 66, 1027 –1036.
  • Choudhury, A., Dominguez, M., Puri, V., Sharma, D. K., Narita, K., Wheatley, C. L., Marks, D. L. and Pagano, R. E., 2002, Rab proteins mediate Golgi transport of caveola-internalized glyco- sphingolipids and correct lipid trafficking in Niemann-Pick C cells. J. Clin. Invest., 109, 1541 -1550.
  • Cieplak, W., Messer, R. J., Konkel, M. E. and Grant, C. C. R., 1995, Role of a potential endoplasmic reticulum retention sequence (RDEL) and the Golgi complex in the cytotonic activity of Escherichia coli heat-labile enterotoxin. Mol. Microbiol., 16, 789 –800.
  • Cooper, M. A., Hansson, A., Lofas, S. and Williams, D. H., 2000, A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal. Biochem., 277, 196 –205.
  • Cosson, P. and Letourneur, F., 1997, Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting. Curr Opin. Cell Biol., 9, 484 –487.
  • Craig, S. W. and Cuatrecasas, P., 1975, Mobility of cholera toxin receptors on rat lymphocyte membranes. Proc. Natl. Acad. Sci. USA, 72, 3344 -3348.
  • Critchley, D. R., Magnani, J. L. and Fishman, P. H., 1981, Interaction of cholera toxin with rat intestinal brush border membranes. Relative roles of gangliosides and galactoproteins as toxin receptors. J. Biol. Chem., 256, 8724 -8731.
  • Cuatrecasas, P., 1973, Gangliosides and membrane receptors for cholera toxin. Biochemistry, 12, 3558 -3566.
  • Dallas, W. S. and Falkow, S., 1980, Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature, 288, 499 –501.
  • de Haan, L. and Hirst, T. R., 2002, Bacterial toxins as versatile delivery vehicles. Curr. Opin. Drug. Discov. Devel., 5, 269 –78.
  • Denning, G. M., Ostedgaard, L. S., Cheng, S. H., Smith, A. E. and Welsh, M. J., 1992, Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J. Clin. Invest., 89, 339 –349.
  • De Wolf, M. J. S., 2000, A dipeptide metalloendoprotease substrate completely blocks the response of cells in culture to cholera toxin. J. Biol. Chem., 275, 30240–30247.
  • De Wolf, M. J. S., Fridkin, M. and Kohn, L. D., 1981, Tryptophan residues of cholera toxin and its A and B protomers. Intrinsic fluorescence and solute quenching upon interacting with the ganglioside GM1, oligo-GM1, or dansylated oligo-GM1. J. Biol. Chem., 256, 5489 -5496.
  • De Wolf, M. J. S., Dams, E. and Dierick, W. S. H., 1994, Interaction of a cholera toxin derivative containing a reduced number of receptor binding sites with intact cells in culture. Biochim. Biophys. Acta, 1223, 296 –305.
  • Dickinson, B. L. and Clements, J. D., 1995, Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP- ribosyltransferase activity. Infect. Immun., 63, 1617 -1623.
  • Domenighini, M., Pizza, M., Jobling, M. G., Holmes, R. K. and Rappuoli, R., 1995, Identification of errors among database sequence entries and comparison of correct amino acid se- quences for the heat-labile enterotoxins of Escherichia coli and Vibrio cholerae. Mol. Microbiol., 15, 1165 -1167.
  • Donaldson, J. G., Finazzi, D. and Klausner, R. D., 1992, Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleo- tide onto ARF protein. Nature, 360, 350 –352.
  • Donta, S. T. and Viner, J. P., 1975, Inhibition of the steroidogenic effects of cholera and heat-labile Escherichia coli enterotoxins by GM1 ganglioside: evidence for a similar receptor site for the two toxins. Infect. Immun., 11, 982 –985.
  • Donta, S. T., Beristain, S. and Tomicic, T. K., 1993, Inhibition of heat- labile cholera and Escherichia coli enterotoxins by Brefeldin A. Infect. Immun., 61, 3282 -3286.
  • Dykes, C. W., Halliday, I. J., Hobden, A. N., Read, M. J. and Harford, S., 1985, A comparison of the nucleotide sequence of heat-labile enterotoxin and cholera toxin. FEMS Microbiol. Lett., 26, 171 – 174.
  • Eklund, S., Jodal, M. and Lundgren, O., 1986, The net fluid secretion caused by cyclic 3?5?-guanosine monophosphate in the rat jejunum in vivo is mediated by a local nervous reflex. Acta Physiol. Scand., 128, 57 –63.
  • Eklund, S., Brunsson, I., Jodal, M. and Lundgren, O., 1987, Changes in cyclic 3?5?-adenosine monophosphate tissue concentration and net fluid transport in the cat’s small intestine elicited by cholera toxin, arachidonic acid, vasoactive intestinal polypeptide, and 5- hydroxytryptamine. Acta Physiol. Scand., 129, 115 –125.
  • Fasano, A., Baudry, B., Pumplin, D. W., Wasserman, S. S., Tall, B. D., Ketley, J. M. and Kaper, J. B., 1991, Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA, 88, 5242 -5246.
  • Felder, C. C., Kanterman, R. Y., Ma, A. L. and Axelrod, J., 1990, Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc. Natl. Acad. Sci. USA, 87, 2187 -2191.
  • Field, M., Fromm, D., al-Awqati, Q. and Greenough, W. B., 1972, Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J. Clin. Invest., 51, 796 –804.
  • Field, M., Rao, M. C. and Chang, E. B., 1989a, Intestinal electrolyte transport and diarrheal disease (1). N. Engl. J. Med., 321, 879 – 883.
  • Field, M., Rao, M. C. and Chang, E. B., 1989b, Intestinal electrolyte transport and diarrheal disease (2). N. Engl. J. Med., 321, 879 – 883.
  • Fishman, P. H., 1980, Mechanism of action of cholera toxin: studies on the lag period. J. Membr. Biol., 54, 61 –72.
  • Fishman, P. H. and Atikkan, E. E., 1980, Mechanism of action of cholera toxin: effect of receptor density and multivalent binding on activation of adenylate cyclase. J. Membr. Biol., 54, 51 –60.
  • Fishman, P. H., Moss, J. and Vaughan, M., 1976, Uptake and metabolism of gangliosides in transformed mouse fibroblasts. Relationship of ganglioside structure to choleragen response. J. Biol. Chem., 251, 4490 -4494.
  • Fishman, P. H., Moss, J. and Osborne, J. C., 1978, Interaction of choleragen with the oligosaccharide of ganglioside GM1: evi- dence for multiple oligosaccharide binding sites. Biochemistry, 17, 711 –716.
  • Fishman, P. H., Bradley, R. M., Hom, B. E. and Moss, J., 1983, Uptake and metabolism of exogenous gangliosides by cultured cells: effect of choleragen on the turnover of GM1. J. Lipid Res., 24, 1002–1011.
  • Fraser, S. A., de Haan, L., Hearn, A. R., Bone, H. K., Salmond, R. J., Rivett, A. J., Williams, N. A. and Hirst, T. R., 2002, Mutant E. coli heat-labile toxin B subunit that separates toxoid-mediated signal- ling and immunomodulatory action from trafficking and delivery functions. Infect. Immun., 71, 1527 -1537.
  • Fukuta, S., Magnani, J. L., Twiddy, E. M., Holmes, R. K. and Ginsburg, V., 1988, Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect. Immun., 56, 1748 -1753.
  • Furuchi, T. and Anderson, R. G. W., 1998, Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J. Biol. Chem., 273, 21099–21104.
  • Ghosh, R. N., Mallet, W. G., Soe, T. T., McGraw, T. E. and Maxfield, F. R., 1998, An endocytosed TGN38 chimeric protein is delivered to the TGN after trafficking through the endocytic recycling compartment in CHO cells. J. Cell Biol., 142, 923 –936.
  • Giannelli, V., Fontana, M. R., Giuliani, M. M., Guangcai, D., Rappuoli, R. and Pizza, M., 1997, Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop. Infect. Immun., 65, 331 –334.
  • Gill, D. M., 1975, Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro. Proc. Natl. Acad. <i>Sci. USA, 72, 2064 -2068.
  • Gill, D. M., 1976, The arrangement of subunits in cholera toxin. Biochemistry, 15, 1242 –1248.
  • Gill, D. M. and Coburn, J., 1987, ADP-ribosylation by cholera toxin: functional analysis of a cellular system that stimulates the enzymatic activity of cholera toxin fragment A1. Biochemistry, 26, 6364–6371.
  • Gill, D. M. and King, C. A., 1975, The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J. Biol. Chem., 250, 6424- 6432.
  • Gill, D. M. and Meren, R., 1978, ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc. Natl. Acad. Sci. USA, 75, 3050–3054.
  • Girod, A., Storrie, B., Simpson, J. C., Johannes, L., Goud, B., Roberts, L. M., Lord, J. M., Nilsson, T. and Pepperkok, R., 1999, Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat. Cell Biol., 1, 423 – 430.
  • Grant, C. C. R., Messer, R. J. and Cieplak, W., 1994, Role of trypsin- like cleavage at arginine 192 in the enzymatic and cytotonic activities of Escherichia coli heat-labile enterotoxin. Infect. Immun., 62, 4270 -4278.
  • Green, J. M., Zhelesnyak, A., Chung, J., Lindberg, F. P., Sarfati, M., Frazier, W. A. and Brown, E. J., 1999, Role of cholesterol in formation and function of a signaling complex involving (v(3, integrin-associated protein (CD47), and heterotrimeric G proteins. J. Cell Biol., 146, 673 –682.
  • Griffiths, G., Ericsson, M., Krijnse-Locker, J., Nilsson, T., Goud, B., Soling, H. D., Tang, B. L., Wong, S. H. and Hong, W., 1994, Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J. Cell Biol., 127, 1557 -1574.
  • Griffiths, S. L. and Critchley, D. R., 1991, Characterisation of the binding sites for Escherichia coli heat-labile toxin type I in intestinal brush borders. Biochim. Biophys. Acta, 1075, 154 –161. Griffiths, S. L., Finkelstein, R. A. and Critchley, D. R., 1986, Characterisation of the receptor for cholera toxin and Escherichia coli heat-labile toxin in rabbit intestinal brush borders. Biochem. J., 238, 313 –322.
  • Guerrant, R. L., Chen, L. C. and Sharp, G. W., 1972, Intestinal adenyl-cyclase activity in canine cholera: correlation with fluid accumulation. J. Infect. Dis., 125, 377 –381.
  • Guerrant, R. L., Fang, G. D., Thielman, N. M. and Fonteles, M. C., 1994, Role of platelet activating factor in the intestinal epithelial secretory and Chinese hamster ovary cell cytoskeletal responses to cholera toxin. Proc. Natl. Acad. Sci. USA, 91, 9655 -9658.
  • Guidry, J. J., Cardenas, L., Cheng, E. and Clements, J. D., 1997, Role of receptor binding in toxicity, immunogenicity, and adju- vanticity of Escherichia coli heat-labile enterotoxin. Infect. Im- mun., 65, 4943 -4950.
  • Halm, D. R., Rechkemmer, G. R., Schoumacher, R. A. and Frizzell, R. A., 1988, Apical membrane chloride channels in a colonic cell line activated by secretory agonists. Am. J. Physiol., 254, C505 - C511.
  • Harder, T. and Simons, K., 1999, Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol., 29, 556 –562.
  • Harder, T., Scheiffele, P., Verkade, P. and Simons, K., 1998, Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol., 141, 929 -942.
  • Hazes, B. and Read, R. J., 1997, Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-asso- ciated protein degradation pathway to enter target cells. Bio- chemistry, 36, 11051–11054.
  • Helms, J. B. and Rothman, J. E., 1992, Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature, 360, 352 –354.
  • Hinson, R. M., Williams, J. A. and Shacter, E., 1996, Elevated interleukin 6 is induced by prostaglandin E2 in a murine model of inflammation: possible role of cyclooxygenase-2. Proc. Natl. Acad. Sci. USA, 93, 4885–4890.
  • Hirst, T. R., Sanchez, J., Kaper, J. B., Hardy, S. J. S. and Holmgren, J., 1984, Mechanism of toxin secretion by Vibrio cholerae investigated in strains harboring plasmids that encode heat-labile enterotoxins of Escherichia coli. Proc. Natl. Acad. <i>Sci. USA, 81, 7752 -7756.
  • Holmgren, J., 1973, Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of ganglio- sides and natural cholera toxoid. Infect. Immun., 8, 851 –859.
  • Holmgren, J., Lonnroth, I. and Svennerholm, L., 1973, Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect. Immun., 8, 208 –214.
  • Holmgren, J., Lonnroth, I., Mansson, J. and Svennerholm, L., 1975, Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. USA, 72, 2520 -2524.
  • Holmgren, J., Fredman, P., Lindblad, M., Svennerholm, A. M. and Svennerholm, L., 1982, Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infect. Immun., 38, 424 –433.
  • Holmgren, J., Lindblad, M., Fredman, P., Svennerholm, L. and Myrvold, H., 1985, Comparison of receptors for cholera and Escherichia coli enterotoxins in human intestine. Gastroenterol- ogy, 89, 27 –35.
  • Ikonen, E., 2001, Roles of lipid rafts in membrane transport. Curr.Opin. Cell Biol., 13, 470 -477.
  • Iversen, T.-G., Skretting, G., Llorente, A., Nicoziani, P., van Deurs, B. and Sandvig, K., 2001, Endosome to Golgi transport of ricin is independent of clathrin and of the Rab9- and Rab11-GTPases. Mol. Biol. Cell, 12, 2099 -2107.
  • Jacob, C. O., Sela, M., Pines, M., Hurwitz, S. and Arnon, R., 1984, Both cholera toxin-induced adenylate cyclase activation and cholera toxin biological activity are inhibited by antibodies against related synthetic peptides. Proc. Natl. Acad. Sci. USA, 81, 7893- 7896.
  • Jobling, M. G. and Holmes, R. K., 1991, Analysis of structure and function of cholera toxin B subunit of cholera toxin by the use of site-directed mutagenesis. Mol. Microbiol., 5, 1755 -1767.
  • Jobling, M. G. and Holmes, R. K., 2000, Identification of motifs in cholera toxin A1 polypeptide that are required for its interaction with human ADP-ribosylation factor 6 in a bacterial two-hybrid system. Proc. Natl. Acad. Sci. USA, 97, 14662–14667.
  • Johnson, G. L., Kaslow, H. R. and Bourne, H. R., 1978, Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J. Biol. Chem., 253, 7120 -7123.
  • Joseph, K. C., Stieber, A. and Gonatas, N. K., 1979, Endocytosis of cholera toxin in GERL-like structures of murine neuroblastoma cells pretreated with GM1 ganglioside. Cholera toxin internaliza- tion into neuroblastoma GERL. J. Cell Biol., 81, 543 –554.
  • Kahn, R. A. and Gilman, A. G., 1984, Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regula- tory component of adenylate cyclase by cholera toxin. J. Biol. Chem., 259, 6228 -6234.
  • Kahn, R. A. and Gilman, A. G., 1986, The protein cofactor necessary for ADP-ribosylation of Gs(by cholera toxin is itself a GTP binding protein. J. Biol. Chem., 261, 7906–7911.
  • Karlsson, K. A., Teneberg, S., Angstrom, J., Kjellberg, A., Hirst, T. R., Berstrom, J. and Miller-Podraza, H., 1996, Unexpected carbohydrate cross-binding by Escherichia coli heat-labile enter- otoxin. Recognition of human and rabbit target cell glycoconju- gates in comparison with cholera toxin. Bioorg. Med. Chem., 4, 1919 –1928.
  • Kasahara, K. and Sanai, Y., 2000, Functional roles of glycosphingo- lipids in signal transduction via lipid rafts. Glycoconj. J., 17, 153 – 162.
  • Kassis, S., Hagmann, J., Fishman, P. H., Chang, P. P. and Moss, J., 1982, Mechanism of action of cholera toxin on intact cells. Generation of A1 peptide and activation of adenylate cyclase. J. Biol. Chem., 257, 12148–12152.
  • Kenworthy, A. K., Petranova, N. and Edidin, M., 2000, High- resolution FRETmicroscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell., 11, 1645 -1655.
  • Kimberg, D. V., Field, M., Johnson, J., Henderson, A. and Gershon, E., 1971, Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J. Clin. Invest., 50, 1218 -1230.
  • Kopito, R. R., 1997, ER quality control: the cytoplasmic connection. Cell, 88, 427 -430.
  • Kurzchalia, T. V. and Parton, R. G., 1999, Membrane microdomains and caveolae. Curr. Opin. Cell. Biol., 11, 424 –431.
  • Kuziemko, G. M., Stroh, M. and Stevens, R. C., 1996, Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry, 35, 6375 -6384.
  • Lai, C. Y., 1977, Determination of the primary structure of cholera toxin B subunit. J. Biol. Chem., 252, 7249 -7256.
  • Lanne, B., Schierbeck, B. and Karlsson, K. A., 1994, On the role of the carboxyl group of sialic acid in binding of cholera toxin to the receptor glycosphingolipid, GM1. J. Biochem., 116, 1269 -1274.
  • Lauer, S., Goldstein, B., Nolan, R. L. and Nolan, J. P., 2002, Analysis of cholera toxin-ganglioside interactions by flow cytometry. Biochemistry, 41, 1742 -1751.
  • Lee, C. M., Chang, P. P., Tsai, S. C., Adamik, R., Price, S. R., Kunz,
  • B. C., Moss, J., Twiddy, E. M. and Holmes, R. K., 1991, Activation of Escherichia coli heat-labile enterotoxins by native and recom- binant adenosine diphosphate-ribosylation factors, 20-kD guanine nucleotide-binding proteins. J. Clin. Invest., 87, 1780 -1786.
  • Lencer, W. I., Delp, C., Neutra, M. R. and Madara, J. L., 1992, Mechanism of cholera toxin action on a polarized human intestinal epithelial cell line: role of vesicular traffic. J. Cell Biol., 117, 1197- 1209.
  • Lencer, W. I., de Almeida, J. B., Moe, S., Stow, J. L., Ausiello, D. A. and Madara, J. L., 1993, Entry of cholera toxin into polarized human intestinal epithelial cells: identification of an early brefeldin A sensitive event required for A1-peptide generation. J. Clin. Invest., 92, 2941–2951.
  • Lencer, W. I., Constable, C., Moe, S., Jobling, M. G., Webb, H. M., Ruston, S., Madara, J. L., Hirst, T. R. and Holmes, R. K., 1995a, Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell Biol., 131, 951 –962.
  • Lencer, W. I., Moe, S., Rufo, P. A. and Madara, J. L., 1995b, Transcytosis of cholera toxin subunits across model human intestinal epithelia. Proc. Natl. Acad. Sci. USA, 92, 10094 –10098. Lencer, W. I., Constable, C., Moe, S., Rufo, P. A., Wolf, A., Jobling,
  • M. G., Ruston, S. P., Madara, J. L., Holmes, R. K. and Hirst, T. R., 1997, Proteolytic activation of cholera toxin and Escherichia coli labile toxin by entry into host epithelial cells. Signal transduction by a protease-resistant toxin variant. J. Biol. Chem., 272, 15562 – 15568.
  • Lencer, W. I., Hirst, T. R. and Holmes, R. K., 1999, Membrane traffic and the cellular uptake of cholera toxin. Biochim. Biophys. Acta, 1450, 177 –190.
  • Lenhard, J. M., Kahn, R. A. and Stahl, P. D., 1992, Evidence for ADP-ribosylation factor (ARF) as a regulator of in vitro endo- some-endosome fusion. J. Biol. Chem., 267, 13047–13052.
  • Liang, Y. F., Peterson, J. W., Jackson, C. A. and Reitmeyer, J. C., 1990, Chloroquine inhibition of cholera toxin. FEBS Lett., 275, 143 –145.
  • Lockman, H. and Kaper, J. B., 1983, Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J. Biol. Chem., 258, 13722–13726.
  • Lockman, H. A., Galen, J. E. and Kaper, J. B., 1984, Vibrio cholerae enterotoxin genes: nucleotide sequence analysis of DNA encod- ing ADP-ribosyltransferase. J. Bacteriol., 159, 1086–1089.
  • Lombardi, D., Soldati, T., Riederer, M. A., Goda, Y., Zerial, M. and Pfeffer, S. R., 1993, Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J., 12, 677 –682. London, E. and Luongo, C. L., 1989, Domain-specific bias in arginine/lysine usage by protein toxins. Biochem. Biophys. Res. Commun., 160, 333 -339.
  • McGee, D. W., Beagley, K. W., Aicher, W. K. and McGhee, J. R., 1993a, Transforming growth factor-beta and IL-1 beta act in synergy to enhance IL-6 secretion by the intestinal epithelial cell line, IEC-6. J. Immunol., 151, 970 –978.
  • McGee, D. W., Elson, C. O. and McGhee, J. R., 1993b, Enhancing effect of cholera toxin on interleukin-6 secretion by IEC-6 intestinal epithelial cells: mode of action and augmenting effect of inflammatory cytokines. Infect. Immun., 61, 4637–4644.
  • MacKenzie, C. R., Hirama, T., Lee, K. K., Altman, E. and Young, N. M., 1997, Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem., 272, 5533 -5538.
  • McRoberts, J. A., Beuerlein, G. and Dharmsathaphorn, K., 1985, Cyclic AMP and Ca2+-activated K+ transport in a human colonic epithelial cell line. J. Biol. Chem., 260, 14163–14172.
  • Majoul, I., Sohn, K., Wieland, F. T., Pepperkok, R., Pizza, M., Hillemann, J. and Soling, H. D., 1998, KDEL receptor (Erd2p)- mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell Biol., 143, 601 –612.
  • Makler, V., Cukierman, E., Rotman, M., Admon, A. and Cassel, D., 1995, ADP-ribosylation factor-directed GTPase-activating protein. Purification and partial characterization. J. Biol. Chem., 270, 5232 -5237.
  • Mallard, F., Antony, C., Tenza, D., Salamero, J., Goud, B. and Johannes, L., 1998, Direct pathway from early/recycling endo- somes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol., 143, 973 –990.
  • Mallard, F., Tang, B. L., Galli, T., Tenza, D., Saint-Pol, A., Yue, X., Antony, C., Hong, W., Goud, B. and Johannes, L., 2002, Early/ recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol., 156, 653 –664.
  • Mallet, W. G. and Maxfield, F. R., 1999, Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans- Golgi network via distinct endosomal pathways. J. Cell Biol., 146, 345 –359.
  • Malsam, J., Gommel, D., Wieland, F. T. and Nickel, W., 1999, A role for ADP ribosylation factor in the control of cargo uptake during COPI-coated vesicle biogenesis. FEBS Lett., 462, 267 –272.
  • Masserini, M., Freire, E., Palestini, P., Calappi, E. and Tettamanti, G., 1992, Fuc-GM1 ganglioside mimics the receptor function of GM1 for cholera toxin. Biochemistry, 31, 2422 -2426.
  • Matlack, K. E. S., Mothes, W. and Rapoport, T. A., 1998, Protein translocation: tunnel vision. Cell, 92, 381 –390.
  • Matthews, J. B., Awtrey, C. S. and Madara, J. L., 1992, Microfila- ment-dependent activation of Na+/K+/2Cl - cotransport by cAMP in intestinal epithelial monolayers. J. Clin. Invest., 90, 1608–1613.
  • Mekalanos, J. J., Collier, R. J. and Romig, W. R., 1979, Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J. Biol. Chem., 254, 5855 -5861.
  • Mekalanos, J. J., Swartz, D. J., Pearson, G. D. N., Harford, N., Groyne, F. and De Wilde, M., 1983, Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature, 306, 551 –557.
  • Merritt, E. A., Sarfaty, S., VandenAkker, F., L’Hoir, C., Martial, J. A. and Hol, W. G. J., 1994a, Crystal structure of cholera toxin B- pentamer bound to receptor GM1 pentasaccharide. Protein Sci., 3, 166 –175.
  • Merritt, E. A., Sixma, T. K., Kalk, K. H., Van Zanten, B. A. M. and Hol, W. G. J., 1994b, Galactose-binding site in Escherichia coli heat- labile enterotoxin (LT) and cholera toxin (CT). Mol. Microbiol., 13, 745 –753.
  • Montesano, R., Roth, J., Robert, A. and Orci, L., 1982, Non-coated membrane invaginations are involved in binding and internaliza- tion of cholera and tetanus toxins. Nature, 296, 651 –653.
  • Morinaga, N., Tsai, S. C., Moss, J. and Vaughan, M., 1996, Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7- like domain. Proc. Natl. Acad. Sci. USA, 93, 12856–12860.
  • Morita, A., Tsao, D. and Kim, Y. S., 1980, Identification of cholera toxin binding glycoproteins in rat intestinal microvillus mem- branes. J. Biol. Chem., 255, 2549 -2953.
  • Moss, J. and Vaughan, M., 1998, Molecules in the ARF orbit. J. Biol.Chem., 273, 21431 –31434.
  • Moss, J., Fishman, P. H., Manganiello, V. C., Vaughan, M. and Brady, R. O., 1976a, Functional incorporation of ganglioside into intact cells: induction of choleragen responsiveness. Proc. Natl. Acad. Sci. USA, 73, 1034–1037.
  • Moss, J. and Richardson, S. H., 1978, Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity. J. Clin. Invest., 62, 281 –285.
  • Moss, J. and Vaughan, M., 1977, Mechanism of action of cholera- gen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J. Biol. Chem., 252, 2455 -2457.
  • Moss, J., Manganiello, V. C. and Vaughan, M., 1976b, Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase. Proc. Natl. Acad. Sci. USA, 73, 4424–4427.
  • Moss, J., Osborne, J. C., Fishman, P. H., Brewer, H. B., Vaughan, M. and Brady, R. O., 1977, Effect of gangliosides and substrate analogues on the hydrolysis of nicotinamide adenine dinucleotide by choleragen. Proc. Natl. Acad. Sci. USA, 74, 74 –78.
  • Moss, J., Garrison, S., Fishman, P. H. and Richardson, S. H., 1979, Gangliosides sensitize unresponsive fibroblasts to Escherichia coli heat-labile enterotoxin. J. Clin. Invest., 64, 381 –384.
  • Moss, J., Stanley, S. J., Morin, J. E. and Dixon, J. E., 1980, Activation of choleragen by thiol: proteindisulfide oxidoreductase. J. Biol. Chem., 255, 11085–11087.
  • Moss, J., Osborne, J. C., Fishman, P. H., Nakaya, S. and Robertson, D. C., 1981, Escherichia coli heat-labile enterotoxin. Ganglioside specificity and ADP-ribosyltransferase activity. J. Biol. Chem., 256, 12861–12865.
  • Moss, J., Stanley, S. J., Vaughan, M. and Tsuji, T., 1993, Interaction of ADP-ribosylation factor with Escherichia coli enterotoxin that contains an inactivating lysine 112 substitution. J. Biol. Chem., 268, 6383 -6387.
  • Mullin, B. R., Aloj, S. M., Fishman, P. H., Lee, G., Kohn, L. D. and Brady, R. O., 1976, Cholera toxin interactions with thyrotropin receptors on thyroid plasma membranes. Proc. Natl. Acad. Sci. USA, 73, 1679 -1683.
  • Munro, S. and Pelham, H. R., 1987, A C-terminal signal prevents secretion of luminal ER proteins. Cell, 48, 899 –907.
  • Naka, A., Iida, T., Ohara, T., Yamamoto, K., Miwatani, T. and Honda, T., 1998, Nicking sites in a subunit of cholera toxin and Escherichia coli heat-labile enterotoxin for Vibrio cholerae hemagglutinin/protease. Toxicon, 36, 1001 -1005.
  • Nambiar, M. P., Oda, T., Chen, C., Kuwazuru, Y. and Wu, H. C., 1993, Involvement of the Golgi region in the intracellular traffick- ing of cholera toxin. J. Cell. Physiol., 154, 222 –228.
  • Nashar, T. O., Williams, N. A. and Hirst, T. R., 1998, Importance of receptor binding in the immunogenicity, adjuvanticity and ther- apeutic properties of cholera toxin and Escherichia coli heat-labile enterotoxin. Med. Microbiol. Immunol., 187, 3 –10.
  • Nichols, B. J., 2002, A distinct class of endosome mediates clathrin- independent endocytosis to the Golgi complex. Nat. Cell Biol., 4, 374 –378.
  • Nichols, B. J., Kenworthy, A. K., Polishchuk, R. S., Lodge, R., Roberts, T. H., Hirschberg, K., Phair, R. D. and Lippincott- Schwartz, J., 2001, Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol., 153, 529 –542. Nilsson, O., Cassuto, J., Larsson, P. A., Jodal, M., Lidberg, P., Ahlman, H., Dahlstrom, A. and Lundgren, O., 1983, 5-Hydroxy- tryptamine and cholera secretion: a histochemical and physiological study in cats. Gut, 24, 542 -548.
  • Oh, P., McIntosh, D. P. and Schnitzer, J. E., 1998, Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol., 141, 101 –114.
  • Orci, L., Stamnes, M., Ravazzola, M., Amherdt, M., Perrelet, A., Sollner, T. H. and Rothman, J. E., 1997, Bidirectional transport by distinct populations of COPI-coated vesicles. Cell, 90, 335 –349. Orlandi, P. A., 1997, Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J. Biol. Chem., 272, 4591 –4599.
  • Orlandi, P. A. and Fishman, P. H., 1993, Orientation of cholera toxin bound to target cells. J. Biol. Chem., 268, 17038–17044.
  • Orlandi, P. A. and Fishman, P. H., 1998, Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell Biol., 141, 905 –915.
  • Orlandi, P. A., Curran, P. K. and Fishman, P. H., 1993, Brefeldin A blocks the response of cultured cells to cholera toxin. Implications for intracellular trafficking in toxin action. J. Biol. Chem., 268, 12010–12016.
  • Orlandi, P. A., Critchley, D. R. and Fishman, P. H., 1994, The heat- labile enterotoxin of Escherichia coli binds to polylactosaminogly- can-containing receptors in CaCo-2 human intestinal epithelial cells. Biochemistry, 33, 12886–12895.
  • Pacuszka, T. and Fishman, P. H., 1992, Intoxication of cultured cells by cholera toxin: evidence for different pathways when bound to ganglioside GM1 or neoganglioproteins. Biochemistry, 31, 4773- 4778.
  • Pacuszka, T., Bradley, R. M. and Fishman, P. H., 1991, Neoglyco- lipid analogues of ganglioside GM1 as functional receptors of cholera toxin. Biochemistry, 30, 2563 -2570.
  • Parton, R. G., 1994, Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem., 42, 155 – 166.
  • Pelham, H. R. B., 1988, Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J., 7, 913 –918.
  • Pelham, H. R. and Rothman, J. E., 2000, The debate about transport in the Golgi: two sides of the same coin? Cell, 102, 713 –719.
  • Pepperkok, R., Lowe, M., Burke, B. and Kreis, T. E., 1998, Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTP gamma S. J. Cell Sci., 111, 1877 –1888.
  • Peters, P. J., Hsu, V. W., Ooi, C. E., Finazzi, D., Teal, S. B., Oorschot, V., Donaldson, J. G. and Klausner, R. D., 1995, Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol., 128, 1003–1017.
  • Peterson, J. W. and Ochoa, L. G., 1989, Role of prostaglandins and cAMP in the secretory effects of cholera toxin. Science, 245, 857 –859.
  • Peterson, J. W., Saini, S. S., Dickey, W. D., Klimpel, G. R.,
  • Bomalaski, J. S., Clark, M. A., Xu, X. J. and Chopra, A. K., 1996, Cholera toxin induces synthesis of phospholipase A2- activating protein. Infect. Immun., 64, 2137 -2143.
  • Peterson, J. W., Finkelstein, R. A., Cantu, J., Gessell, D. L. and Chopra, A. K., 1999, Cholera toxin B subunit activates arachi- donic acid metabolism. Infect. Immun., 67, 794 –799.
  • Picciotto, M. R., Cohn, J. A., Bertuzzi, G., Greengard, P. and Nairn, A. C., 1992, Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem., 267, 12742–12752.
  • Portanova, J. P., Zhang, Y., Anderson, G. D., Hauser, S. D., Masferrer, J. L., Seibert, K., Gregory, S. A. and Isakson, P. C., 1996, Selective neutralization of prostaglandin E2 blocks inflam- mation, hyperalgesia, and interleukin 6 production in vivo. Med.J. <i>Exp., 184, 883 –891.
  • Powell, D. W., 1974, Intestinal conductance and permselectivity changes with theophylline and choleragen. Am. J. Physiol., 227, 1436 -1443.
  • Puri, V., Watanabe, R., Singh, R. D., Dominguez, M., Brown, J. C., Wheatley, C. L., Marks, D. L. and Pagano, R. E., 2001, Clathrin- dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol., 154, 535 –547.
  • Rampersaud, A. A., Oblinger, J. L., Ponnappan, R. K., Burry, R. W. and Yates, A. J., 1999, Gangliosides and growth factor receptor regulation. Biochem. Soc. Trans., 27, 415 –422.
  • Randazzo, P. A., Terui, T., Sturch, S. and Kahn, R. A., 1994, The amino terminus of ADP-ribosylation factor (ARF) 1 is essential for interaction with Gs and ARF GTPase-activating protein. J. Biol. Chem., 269, 29490–29494.
  • Revesz, T. and Greaves, M., 1975, Ligand-induced redistribution of lymphocyte membrane ganglioside GM1. Nature, 257, 103 –106. Richards, A. A., Stang, E., Pepperkok, R. and Parton, R. G., 2002, Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol. Biol. Cell, 13, 1750 -1764.
  • Rodighiero, C., Aman, A. T., Kenny, M. J., Moss, J., Lencer, W. I. and Hirst, T. R., 1999, Structural basis for the differential toxicity of cholera toxin and Escherichia coli heat-labile enterotoxin. Construction of hybrid toxins identifies the A2-domain as the determinant of differential toxicity. J. Biol. Chem., 274, 3962- 3969.
  • Rodighiero, C., Fujinaga, Y., Hirst, T. R. and Lencer, W. I., 2001, A cholera toxin B-subunit variant that binds ganglioside GM1 but fails to induce toxicity. J. Biol. Chem., 276, 36939–36945.
  • Rowe, B., Taylor, J. and Bettelheim, K. A., 1970, An investigation of traveller’s diarrhoea. Lancet, 1, 1 -5.
  • Rowe, T., Aridor, M., McCaffery, J. M., Plutner, H., Nuoffer, C. and Balch, W. E., 1996, COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI. J. Cell Biol., 135, 895 –911.
  • Salmond, R. J., Pitman, R. S., Jimi, E., Soriani, M., Hirst, T. R., Ghosh, S., Rincon, M. and Williams, N. A., 2002, CD8+ Tcell apoptosis induced by Escherichia coli heat-labile enterotoxin B subunit occurs via a novel pathway involving NF-(B-dependent caspase activation. Eur. J. Immunol., 32, 1737–1747.
  • Sandvig, K., Ryd, M., Garred, O., Schweda, E., Holm, P. K. and van Deurs, B., 1994, Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J. Cell Biol., 126, 53 –64.
  • Sandvig, K., Garred, O. and van Deurs, B., 1996, Thapsigargin- induced transport of cholera toxin to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA, 93, 12339–12343.
  • Sandvig, K., Grimmer, S., Lauvrak, S. U., Torgersen, M. L., Skretting, G., van Deurs, B. and Iversen, T. G., 2002, Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol., 117, 131 –141.
  • Sattler, J., Schwarzmann, G., Staerk, J., Ziegler, W. and Wiegandt, H., 1977, Studies of the ligand binding to cholera toxin II. The hydrophilic moiety of sialoglycolipids. Hoppe Seylers Z. Physiol. Chem., 358, 159 –163.
  • Sattler, J., Schwarzmann, G., Knack, I., Rohm, K. H. and Wiegandt, H., 1978, Studies of ligand binding to cholera toxin III. Coopera- tivity of oligosaccharide binding. Hoppe Seylers Z. Physiol. Chem., 359, 719 –723.
  • Schafer, D. E., Lust, W. D., Sircar, B. and Goldberg, N. D., 1970, Elevated concentration of adenosine 3?:5?-cyclic monophosphate in intestinal mucosa after treatment with cholera toxin. Proc. Natl. Acad. Sci. USA, 67, 851 –856.
  • Schmitz, A., Herrgen, H., Winkeler, A. and Herzog, V., 2000, Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell Biol., 148, 1203 -1212.
  • Schnitzer, J. E., Oh, P. and McIntosh, D. P., 1996, Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science, 274, 239 –242.
  • Sears, C. L. and Kaper, J. B., 1996, Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Micro- biol. Rev., 60, 167 –215.
  • Sedlacek, H. H., Stark, J., Seiler, F. R., Ziegler, W. and Wiegandt, H., 1976, Cholera toxin induced redistribution of sialoglycolipid receptor at the lymphocyte membrane. FEBS Lett., 61, 272 –276. Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A. and Rothman, J. E., 1991, ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell, 67, 239 -253.
  • Shapiro, M., Matthews, J., Hecht, G., Delp, C. and Madara, J. L., 1991, Stabilization of F-actin prevents cAMP-elicited Cl- secre- tion in T84 cells. J. Clin. Invest., 87, 1903 –1909.
  • Sharp, G. W. and Hynie, S., 1971, Stimulation of intestinal adenyl cyclase by cholera toxin. Nature, 229, 266 –269.
  • Shida, K., Takamizawa, K., Nagaoka, M., Kushiro, A., Osawa, T. and Tsuji, T., 1994a, Enterotoxin-binding glycoproteins in a proteose- peptone fraction of heated bovine milk. J. Dairy Sci., 77, 930 – 939.
  • Shida, K., Takamizawa, K., Nagaoka, M., Tsuji, T. and Osawa, T., 1994b, Escherichia coli heat-labile enterotoxin binds to glycosy- lated proteins with lactose by amino carbonyl reaction. Microbiol. Immunol., 38, 273 –279.
  • Shida, K., Takamizawa, K. and Osawa, T., 1996a, Inhibition of Escherichia coli heat-labile enterotoxin by an amino carbonyl product, lactose-alpha-lactalbumin. Biosci. Biotechnol. Biochem., 60, 1492 -1494.
  • Shida, K., Takamizawa, K., Takeda, T. and Osawa, T., 1996b, Characterization by Western blotting of mouse intestinal glyco- proteins bound by Escherichia coli heat-labile enterotoxin type I. Microbiol. Immunol., 40, 71 –75.
  • Shogomori, H. and Futerman, A. H., 2001a, Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocam- pal neurons but is internalized via a raft-independent mechanism. J. Biol. Chem., 276, 9182 -9188.
  • Shogomori, H. and Futerman, A. H., 2001b, Cholesterol depletion by methyl-(-cyclodextrin blocks cholera toxin transport from endo- somes to the Golgi apparatus in hippocampal neurons. J. Neurochem., 78, 991 –999.
  • Sixma, T. K., Pronk, S. E., Kalk, K. H., Wartna, E. S., Van Zanten, B. A. M. and Hol, W. G. J., 1991, Crystal structure of a cholera toxin- related heat-labile enterotoxin from E. coli. Nature, 351, 371 – 377.
  • Sixma, T. K., Kalk, K. H., Van Zanten, B. A. M., Dauter, Z., Kingma, J., Witholt, B. and Hol, W. G. J., 1993, Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol., 230, 890 –918.
  • Sofer, A. and Futerman, A. H., 1995, Cationic amphiphilic drugs inhibit the internalization of cholera toxin to the Golgi apparatus and the subsequent elevation of cyclic AMP. J. Biol. Chem., 270, 12117–12122.
  • Sonnichsen, B., Watson, R., Clausen, H., Misteli, T. and Warren, G., 1996, Sorting by COP I-coated vesicles under interphase and mitotic conditions. J. Cell Biol., 134, 1411 -1425.
  • Sooksawate, T. and Simmonds, M. A., 2001, Effects of membrane cholesterol on the sensitivity of the GABA(A) receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacol- ogy, 40, 178 –184.
  • Soriani, M., Williams, N. A. and Hirst, T. R., 2001, Escherichia coli enterotoxin B subunit triggers apoptosis of CD8+ Tcells by activating transcription factor c-Myc. Infect. Immun., 69, 4923- 4930.
  • Soriani, M., Bailey, L. and Hirst, T. R., 2002, Contribution of the ADP- ribosylating and receptor-binding properties of cholera-like enter- otoxins in modulating cytokine secretion by human intestinal epithelial cells. Microbiology, 148, 667 –676.
  • Spangler, B. D., 1992, Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev., 56, 622 –647.
  • Speelman, P., Rabbani, G. H., Bukhave, K. and Rask-Madsen, J., 1985, Increased jejunal prostaglandin E2 concentrations in patients with acute cholera. Gut, 26, 188 –193.
  • Spicer, E. K. and Noble, J. A., 1981, Escherichia coli heat-labile enterotoxin. Nucleotide sequence of the A subunit gene. J. Biol. Chem., 257, 5716 -5721.
  • Spicer, E. K., Kavanaugh, W. M., Dallas, W. S., Falkow, S., Konigsberg, W. H. and Schafer, D. E., 1981, Sequence homo- logies between A subunits of Escherichia coli and Vibrio cholerae enterotoxins. Proc. Natl. Acad. Sci. USA, 78, 50 –54.
  • Staerk, J., Ronneberger, J., Wiegandt, H. and Ziegler, W., 1974, Interaction of ganglioside G Gtet1 and its derivatives with choleragen. Eur. J. Biochem., 48, 103 –110.
  • Sugimoto, Y., Ninomiya, H., Ohsaki, Y., Higaki, K., Davies, J. P., Ioannou, Y. A. and Ohno, K., 2001, Accumulation of cholera toxin and GM1 ganglioside in the early endosome of Niemann-Pick C1- deficient cells. Proc. Natl. Acad. Sci. USA, 98, 12391–12396.
  • Sun, J. B., Xiao, B. G., Lindblad, M., Li, B. L., Link, H., Czerkinsky, C. and Holmgren, J., 2000, Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing trans- forming growth factor-beta-secreting cells and suppressing che- mokine expression. Int. Immunol., 12, 1449 -1457.
  • Takeda, T., Peina, Y., Ogawa, A., Dohi, S., Abe, H., Nair, G. B. and Pal, S. C., 1991, Detection of heat-stable enterotoxin in a cholera toxin gene-positive strain of Vibrio cholerae O1. FEMS Microbiol. Lett., 64, 23 –27.
  • Tang, B. L., Wong, S. H., Qi, X. L., Low, S. H. and Hong, W., 1993, Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol., 120, 325 -328.
  • Teneberg, S., Hirst, T. R., Angstrom, J. and Karlsson, K. A., 1994, Comparison of the glycolipid-binding specificities of cholera toxin and porcine Escherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine. Glycocon. J., 11, 533 –540.
  • Teter, K., Allyn, R. L., Jobling, M. G. and Holmes, R. K., 2002, Transfer of the cholera toxin A1 polypeptide from the endoplasmic reticulum to the cytosol is a rapid process facilitated by the endoplasmic reticulum-associated degradation pathway. Infect. Immun., 70, 6166 -6171.
  • Thielman, N. M., Marcinkiewicz, M., Sarosiek, J., Fang, G. D. and Guerrant, R. L., 1997, Role of platelet-activating factor in Chinese hamster ovary cell responses to cholera toxin. J. Clin. Invest., 99, 1999 -2004.
  • Thomsen, P., Roepstorff, K., Stahlhut, M. and van Deurs, B., 2002, Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell, 13, 238 –250.
  • Torgersen, M. L., Skretting, G., van Deurs, B. and Sandvig, K., 2001, Internalization of cholera toxin by different endocytic mechan- isms. J. Cell Sci., 114, 3737 -3747.
  • Tousson, A., Fuller, C. M. and Benos, D. J., 1996, Apical recruitment of CFTR in T-84 cells is dependent on cAMP and microtubules but not Ca2+ or microfilaments. J. Cell Sci., 109, 1325–1334.
  • Tran, D., Carpentier, J. L., Sawano, F., Gorden, P. and Orci, L., 1987, Ligands internalized through coated or noncoated invagina- tions follow a common intracellular pathway. Proc. Natl. Acad. Sci. USA, 84, 7957 -7961.
  • Trucksis, M., Galen, J. E., Michalski, J., Fasano, A. and Kaper, J. B., 1993, Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc. Natl. Acad. Sci. USA, 90, 5267–5271.
  • Tsai, B. and Rapoport, T. A., 2002, Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J. Cell Biol., 159, 207 –216.
  • Tsai, B., Rodighiero, C., Lencer, W. I. and Rapoport, T. A., 2001, Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell, 104, 937 –948.
  • Tsai, S.-C., Noda, M., Adamik, R., Moss, J. and Vaughan, M., 1987, Enhancement of choleragen ADP-ribosyltransferase activities by guanyl nucleotides and a 19-kDa membrane protein. Proc. Natl. Acad. Sci. USA, 84, 5139 -5142.
  • Tsai, S.-C., Noda, M., Adamik, R., Chang, P. P., Chen, H. C., Moss, J. and Vaughan, M., 1988, Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain. J. Biol. Chem., 263, 1768 -1772.
  • Tsuji, T., Honda, T., Miwatani, T., Wakabayashi, S. and Matsubara, H., 1985, Analysis of receptor-binding site in Escherichia coli enterotoxin. J. Biol. Chem., 260, 8552 -8558.
  • Tsuji, T., Watanabe, K. and Miyama, A., 1995, Monomer of the B subunit of heat-labile enterotoxin from enterotoxigenic Escher- ichia coli has little ability to bind to GM(1) ganglioside compared to its coligenoid. Microbiol. Immunol., 39, 817 –819.
  • Turcanu, V., Hirst, T. R. and Williams, N. A., 2002, Modulation of human monocytes by Escherichia coli heat-labile enterotoxin B- subunit; altered cytokine production and its functional conse- quences. Immunology, 106, 316 –325.
  • Turvill, J. L., Mourad, F. H. and Farthing, M. J. G., 1998, Crucial role for 5-HTin cholera toxin but not Escherichia coli heat-labile enterotoxin-intestinal secretion in rats. Gastroenterology, 115, 883 –890.
  • Vainio, S., Heino, S., Mansson, J. E., Fredman, P., Kuismanen, E., Vaarala, O. and Ikonen, E., 2002, Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep., 3, 95 –100.
  • Van Dop, C., Tsubokawa, M., Bourne, H. R. and Ramachandran, J., 1984, Amino acid sequence of retinal transducin at the site ADP- ribosylated by cholera toxin. J. Biol. Chem., 259, 696 –698.
  • Van Heyningen, W. E., Carpenter, C. C., Pierce, N. F. and Green- ough, W. B., 1971, Deactivation of cholera toxin by ganglioside. J. Infect. Dis., 124, 415 –418.
  • Van Loon, F. P. L., Rabbani, G. H., Bukhave, K. and Rask-Madsen, J., 1992, Indomethacin decreases jejunal fluid secretion in addition to luminal release of prostaglandin E2 in patients with acute cholera. Gut, 33, 643 –645.
  • Viola, A., Schroeder, S., Sakakibara, Y. and Lanzavecchia, A., 1999, Tlymphocyte costimulation mediated by reorganization of mem- brane microdomains. Science, 283, 680 –682.
  • Walia, K., Ghosh, S., Singh, H., Nair, G. B., Ghosh, A., Sahni, G., Vohra, H. and Ganguly, N. K., 1999, Purification and characterization of novel toxin produced by Vibrio cholerae O1. Infect. Immun., 67, 5215 –5222.
  • Werner, E. D., Brodsky, J. L. and McCracken, A. A., 1996, Proteasome-dependent endoplasmic reticulum-associated pro- tein degradation: an unconventional route to a familiar fate. Proc. Natl. Acad. Sci. USA, 93, 13797–13801.
  • White, J., Johannes, L., Mallard, F., Girod, A., Grill, S., Reinsch, S., Keller, P., Tzschaschel, B., Echard, A., Goud, B. and Stelzer, E. H., 1999, Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol., 147, 743 –760.
  • Wiegandt, H., Ziegler, W., Staerk, J., Kranz, T., Ronneberger, H. J., Zilg, H., Karlsson, K. A. and Samuelsson, B. E., 1976, Studies of the ligand binding to cholera toxin I. The lipophilic moiety of sialoglycolipids. Hoppe Seylers Z. Physiol. Chem., 357, 1637- 1646.
  • Williams, N. A., Hirst, T. R. and Nashar, T. O., 1999, Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol. Today, 20, 95 –101.
  • Wolf, A. A., Jobling, M. G., Wimer Mackin, S., Ferguson Maltzman, M., Madara, J. L., Holmes, R. K. and Lencer, W. I., 1998, Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polar- ized epithelia. J. Cell Biol., 141, 917 –927.
  • Wolf, A. A., Fujinaga, Y. and Lencer, W. I., 2002, Uncoupling of the cholera toxin GM1 ganglioside-receptor complex from endocyto- sis, retrograde Golgi trafficking, and downstream signal transduc- tion by depletion of membrane cholesterol. J. Biol. Chem., 277, 16249–16256.
  • Yamamoto, T., Nakazawa, T., Miyata, T., Kaji, A. and Yokota, T., 1984, Evolution and structure of two ADP-ribosylation enterotox- ins, Escherichia coli heat-labile enterotoxin and cholera toxin. FEBS Lett., 169, 241 –246.
  • Yamamoto, T., Gojobori, T. and Yokota, T., 1987, Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae O1. J. Bacteriol., 169, 1352 -1357.
  • Zemelman, B. V., Chu, S. H. and Walker, W. A., 1989, Host response to Escherichia coli heat-labile enterotoxin via two microvillus membrane receptors in the rat intestine. Infect. Immun., 57, 2947 -2952.
  • Zhang, R. G., Scott, D. L., Westbrook, M. L., Nance, S., Spangler, B. D., Shipley, G. G. and Westbrook, E. M., 1995a, The three- dimensional crystal structure of cholera toxin. J. Mol. Biol., 251, 563 –573.
  • Zhang, R. G., Westbrook, M. L., Westbrook, E. M., Scott, D. L., Otwinowski, Z., Maulik, P. R., Reed, R. A. and Shipley, G. G., 1995b, The 2.4 Angstrom crystal structure of cholera toxin B subunit pentamer: choleragenoid. J. Mol. Biol., 251, 550 –562.
  • Zhao, L., Helms, J. B., Brugger, B., Harter, C., Martoglio, B., Graf, R., Brunner, J. and Wieland, F. T., 1997, Direct and GTP- dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc. Natl. Acad. Sci. USA, 94, 4418 -4423.
  • Zhu, X. and Kahn, R. A., 2001, The E. coli heat-labile toxin (LTA1) binds to Golgi membranes and alters Golgi and cell morphologies using ARF-dependent processes. J. Biol. Chem., 276, 25014- 25021.
  • Zhu, X., Boman, A. L., Kuai, J., Cieplak, W. and Kahn, R. A., 2000, Effectors increase the affinity of ADP-ribosylation factor for GTP to increase binding. J. Biol. Chem., 275, 13465–13475.
  • Zhu, X., Kim, E., Boman, A. L., Hodel, A., Cieplak, W. and Kahn, R. A., 2001, ARF binds the C-terminal region of the Escherichia coli heat-labile toxin (LTA(1)) and competes for the binding of LTA(2). Biochemistry, 40, 4560–4568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.