730
Views
14
CrossRef citations to date
0
Altmetric
Original

Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles

, , , , &
Pages 549-559 | Received 14 Jul 2005, Published online: 09 Jul 2009

References

  • Anderson CMH, Grenade DS, Boll M, Foltz M, Wake KA, Kennedy DJ, Munck LK, Miyauchi S, Taylor PM, Campbell FC, Munck BG, Daniel H, Ganapathy V, Thwaites DT. H+/amino acid transporter 1 (PAT1) is the imino acid carrier: An intestinal nutrient/drug transporter in human and rat. Gastroenterology 2004; 127: 1410–1422
  • Anderson CMH, Thwaites DT. Indirect regulation of the intestinal H+-coupled amino acid transporter hPAT1 (SLC36A1). J Cell Physiol 2005; 204: 604–613
  • Blakely RD, Clark JA, Rudnick G, Amara SG. Vaccinia-T7 RNA polymerase expression system: Evaluation for the expression cloning of plasma membrane transporters. Anal Biochem 1991; 194: 302–308
  • Boll M, Daniel H, Gasnier B. The SLC36 family: proton-coupled transporters for absorption of selected amino acids from extracellular and intracellular proteolysis. Pflügers Arch 2003a; 447: 776–779
  • Boll M, Foltz M, Anderson CMH, Oechsler C, Kottra G, Thwaites DT, Daniel H. Substrate recognition by the mammalian proton-dependent amino acid transporter PAT1. Mol Membr Biol 2003b; 20: 261–269
  • Boll M, Foltz M, Rubio-Aliaga I, Kottra G, Daniel H. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters. J Biol Chem 2002; 277: 22966–22973
  • Bröer S, Cavanaugh JA, Rasko JEJ. Neutral amino acid transport in epithelial cells and its malfunction in Hartnup disorder. Biochem Soc Trans 2005; 33: 233–236
  • Bröer A, Klingel K, Kowalczuk S, Rasko JEJ, Cavanaugh J, Bröer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 2004; 279: 24467–24476
  • Chen Z, Fei YJ, Anderson CMH, Wake KA, Miyauchi S, Huang W, Thwaites DT, Ganapathy V. Structure, function and immunolocalization of a proton-coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco-2. J Physiol 2003; 546: 349–361
  • Foltz M, Boll M, Raschka L, Kottra G, Daniel H. A novel bifunctionality: PAT1 and PAT2 mediate electrogenic proton/amino acid and electroneutral proton/fatty acid symport. FASEB J 2004; 18: 1758–1760
  • Jessen H, Jorgensen KE, Røigaard-Petersen H, Sheikh MI. Demonstration of H+- and Na+-coupled cotransport of β-alanine by luminal membrane vesicles of rabbit proximal tubule. J Physiol 1989; 411: 517–528
  • Jessen H, Sheikh MI. Renal transport of taurine in luminal membrane vesicles from rabbit proximal tubule. Biochim Biophys Acta 1991; 1064: 189–198
  • Jessen H, Vorum H, Jorgensen KE, Sheikh MI. Characteristics of d-alanine transport by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule. Biochim Biophys Acta 1988a; 942: 262–270
  • Jessen H, Vorum H, Jorgensen KE, Sheikh MI. Energetics of renal Na+ and H+/l-alanine co-transport systems. Biochem J 1988b; 256: 299–302
  • Jessen H, Vorum H, Jorgensen KE, Sheikh MI. Na+- and H+-gradient-dependent transport of α-aminoisobutyrate by luminal membrane vesicles from rabbit proximal tubule. J Physiol 1991; 436: 149–167
  • Kekuda R, Torres-Zamorano V, Fei YJ, Prasad P, Li HW, Mader LD, Leibach FH, Ganapathy V. Molecular and functional characterization of intestinal Na+-dependent neutral amino acid transporter B0. Am J Physiol 1997; 272: G1463–G1472
  • Kowalczuk S, Bröer A, Munzinger M, Tietze N, Klingel K, Bröer S. Molecular cloning of the mouse IMINO system, a Na+ and Cl−-dependent proline transporter. Biochem J 2005; 386: 417–422
  • Lasley L, Scriver CR. Ontogeny of amino acid reabsorption in human kidney. Evidence from the homozygous infant with familial renal iminoglycinuria for multiple proline and glycine systems. Pediatr Res 1979; 13: 65–70
  • Metzner L, Kalbitz J, Brandsch M. Transport of pharmacologically active proline derivatives by the human proton-coupled amino acid transporter hPAT1. J Pharmacol Exp Ther 2004; 309: 28–35
  • Mircheff AK, Kippen I, Hirayama B, Wright EM. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles. J Membr Biol 1982; 64: 113–122
  • Mohyuddin F, Scriver CR. Amino acid transport in mammalian kidney: Multiple systems for imino acids and glycine in rat kidney. Am J Physiol 1970; 219: 1–8
  • Munck BG. Amino acid transport by the small intestine of the rat. Biochim Biophys Acta 1966; 120: 97–103
  • Munck BG. Transport of imino acids and non-α-amino acid across the brush-border membrane of the rabbit ileum. J Membr Biol 1985; 83: 15–24
  • Munck BG, Munck LK, Rasmussen SN, Polache A. Specificity of the imino acid carrier in rat small intestine. Am J Physiol 1994; 266: R1154–R1161
  • Munck LK, Munck BG. Distinction between chloride-dependent transport systems for taurine and β-alanine in rabbit ileum. Am J Physiol 1992a; 262: G609–G615
  • Munck LK, Munck BG. Variation in amino acid transport along the rabbit small intestine. Mutual jejunal carriers of leucine and lysine. Biochim Biophys Acta 1992b; 1116: 83–90
  • Newey H, Smyth DH. The transfer system for neutral amino acids in the rat small intestine. J Physiol 1964; 170: 328–343
  • Palacin M, Estevez R, Zorzano A. Cystinuria calls for heteromultimeric amino acid transporters. Curr Opin Cell Biol 1998; 10: 455–461
  • Rajendran VM, Barry JA, Kleinman JG, Ramaswamy K. Proton-gradient dependent transport of glycine in rabbit renal brush border membrane vesicles. J Biol Chem 1987; 262: 14974–14977
  • Røigaard-Petersen H, Jacobsen C, Jessen H, Mollerup S, Sheikh MI. Electrogenic uptake of d-imino acids by luminal membrane vesicles from rabbit kidney proximal tubule. Biochim Biophys Acta 1989; 984: 231–237
  • Røigaard-Petersen H, Jacobsen C, Sheikh MI. H+-l-proline cotransport by vesicles from pars convoluta of rabbit proximal tubule. Am J Physiol 1987; 253: F15–F20
  • Røigaard-Petersen H, Jessen H, Mollerup S, Jorgensen KE, Jacobsen C, Sheikh MI. Proton-gradient dependent renal transport of glycine: evidence from vesicle studies. Am J Physiol 1990; 258: F388–F396
  • Røigaard-Petersen H, Sheikh MI. Renal transport of neutral amino acids. Biochem J 1984; 220: 25–33
  • Sagné C, Agulhon C, Ravassard P, Darmon M, Hamon M, El Mestikawy S, Gasnier B, Giros B. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc Natl Acad Sci USA 2001; 98: 7206–7211
  • Scriver CR. Renal tubular transport of proline, hydroxyproline, and glycine. III. Genetic basis for more than one mode of transport in human kidney. J Clin Invest 1968; 47: 823–835
  • Scriver CR, Efron ML, Schafer IA. Renal tubular transport of proline, hydroxyproline, and glycine in health and in familial hyperprolinemia. J Clin Invest 1964; 43: 374–385
  • Scriver CR, Schafer IA, Efron ML. New renal tubular amino-acid transport system and a new hereditary disorder of amino-acid metabolism. Nature 1961; 192: 672–673
  • Stevens BR, Wright EM. Substrate specificity of the intestinal brush-border proline/sodium (IMINO) transporter. J Membr Biol 1985; 87: 27–34
  • Stevens BR, Wright EM. Kinetics of the intestinal brush border proline (Imino) carrier. J Biol Chem 1987; 262: 6546–6551
  • Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of a mammalian proline transporter (SIT1, SLC6A20) with characteristics of classical system IMINO. J Biol Chem 2005; 280: 8974–8984
  • Thompson E, Levin RJ, Jackson MJ. The stimulating effect of low pH on the amino acid transferring systems of the small intestine. Biochim Biophys Acta 1970; 196: 120–122
  • Thwaites DT, Armstrong G, Hirst BH, Simmons NL. d-Cycloserine transport in human intestinal epithelial (Caco-2) cells: mediation by a H+-coupled amino acid transporter. Br J Pharmacol 1995a; 115: 761–766
  • Thwaites DT, Basterfield L, McCleave PMJ, Carter SM, Simmons NL. Gamma-aminobutyric acid (GABA) transport across human intestinal epithelial (Caco-2) cell monolayers. Br J Pharmacol 2000; 129: 457–464
  • Thwaites DT, Ford D, Glanville M, Simmons NL. H+/solute-induced intracellular acidification leads to selective activation of apical Na+/H+ exchange in human intestinal epithelial cells. J Clin Invest 1999; 104: 629–635
  • Thwaites DT, McEwan GTA, Brown CDA, Hirst BH, Simmons NL. Na+-independent, H+-coupled transepithelial β-alanine absorption by human intestinal Caco-2 cell monolayers. J Biol Chem 1993a; 268: 18438–18441
  • Thwaites DT, McEwan GTA, Cook MJ, Hirst BH, Simmons NL. H+-coupled (Na+-independent) proline transport in human intestinal (Caco-2) epithelial cell monolayers. FEBS Lett 1993b; 333: 78–82
  • Thwaites DT, McEwan GTA, Simmons NL. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers. J Membr Biol 1995b; 145: 245–256
  • Thwaites DT, Stevens BC. H+/zwitterionic amino acid symport at the brush-border membrane of human intestinal epithelial (Caco-2) cells. Exp Physiol 1999; 84: 275–284
  • Tiruppathi C, Ganapathy V, Leibach FH. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylalanine in renal brush-border membrane vesicles. J Biol Chem 1990; 265: 14870–14874
  • Wreden CC, Johnson J, Tran C, Seal RP, Copenhagen DR, Reimer RJ, Edwards RH. The H+-coupled electrogenic lysosomal amino acid transporter LYAAT1 localizes to the axon and plasma membrane of hippocampal neurons. J Neurosci 2003; 23: 1265–1275
  • Wunz TM, Wright SH. Betaine transport in rabbit renal brush-border membrane vesicles. Am J Physiol 1993; 264: F948–F955

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.