921
Views
68
CrossRef citations to date
0
Altmetric
Original

Lipid rafts in lymphocyte activation and migration (Review)

&
Pages 59-69 | Received 25 Aug 2005, Published online: 09 Jul 2009

References

  • Arcaro A, Gregoire C, Bakker TR, Baldi L, Jordan M, Goffin L, Boucheron N, Wurm F, van der Merwe PA, Malissen B, Luescher IF. CD8beta endows CD8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56(lck) complexes. J Exp Med 2001; 194: 1485–1495
  • Bagnat M, Simons K. Cell surface polarization during yeast mating. Proc Natl Acad Sci USA 2002; 99: 14183–14188
  • Balamuth F, Leitenberg D, Unternaehrer J, Mellman I, Bottomly K. Distinct patterns of membrane microdomain partitioning in Th1 and th2 cells. Immunity 2001; 15: 729–738
  • Boss V, Talpade DJ, Murphy TJ. Induction of NFAT-mediated transcription by Gq-coupled receptors in lymphoid and non-lymphoid cells. J Biol Chem 1996; 271: 10429–10432
  • Brown M, Thurmond R, Dodd S, Otten D, Beyer K. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. J Am Chem Soc 2002; 124: 8471–8484
  • Bruckner K, Labrador J, Scheiffele P, Herb A, Seeburg P, Klein R. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 1999; 22: 511–524
  • Byfield F, Aranda-Espinoza H, Romanenko V, Rothblat G, Levitan I. Cholesterol depletion increases membrane stiffness of aortic endothelial cells. Biophys J 2004; 87: 3336–3343
  • Chini B, Parenti M. G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?. J Mol Endocrinol 2004; 32: 325–338
  • del Pozo M, Alderson N, Kiosses W, Chiang H, Anderson R, Schwartz M. Integrins regulate Rac targeting by internalization of membrane domains. Science 2004; 303: 839–842
  • Douglass AD, Vale RD. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 2005; 121: 937–950
  • Dupre LA, Aiuti A, Trifari S, Martino S, Saracco P, Bordignon C, Roncarolo MG. Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 2002; 17: 157–166
  • Dustin ML. Stop and go traffic to tune T cell responses. Immunity 2004; 21: 305–314
  • Dustin ML, Shaw AS. Costimulation: building an immunological synapse. Science 1999; 283: 649–650
  • Eaton S, Simons K. Apical, basal, and lateral cues for epithelial polarization. Cell 1995; 82: 5–8
  • Ebert PJ, Baker JF, Punt JA. Immature CD4 + CD8+ thymocytes do not polarize lipid rafts in response to TCR-mediated signals. J Immunol 2000; 165: 5435–5442
  • Edidin M. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol 2001; 11: 492–496
  • Edmonds SD, Ostergaard HL. Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. J Immunol 2002; 169: 5036–5042
  • Freiberg BA, Kupfer H, Maslanik W, Delli J, Kappler J, Zaller DM, Kupfer A. Staging and resetting T cell activation in SMACs. Nat Immunol 2002; 3: 911–917
  • Ge S, Pachter J. Caveolin-1 knockdown by small interfering RNA suppresses responses to the chemokine monocyte chemoattractant protein-1 by human astrocytes. J Biol Chem 2004; 279: 6688–6695
  • Glebov OO, Nichols BJ. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 2004; 6: 238–243
  • Golub T, Caroni P. PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J Cell Biol 2005; 169: 151–165
  • Gómez-Moutón C, Abad J, Mira E, Lacalle R, Gallardo E, Jiménez-Baranda S, Illa I, Bernad A, Mañes S, Martínez-A C. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci USA 2001; 98: 9642–9647
  • Gómez-Moutón C, Lacalle R, Mira E, Jiménez-Baranda S, Barber D, Carrera A, Martínez-A C, Mañes S. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 2004; 164: 759–768
  • Gri G, Molon B, Mañes S, Pozzan T, Viola A. The inner side of T cell lipid rafts. Immunol Lett 2004; 94: 247–252
  • Hill K, Krugmann S, Andrews S, Coadwell W, Finan P, Welch H, Hawkins P, Stephens L. Regulation of P-Rex1 by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. J Biol Chem 2005; 280: 4166–4173
  • Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM, Shaw AS. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 1999; 190: 375–384
  • Huntington ND, Tarlinton DM. CD45: direct and indirect government of immune regulation. Immunol Lett 2004; 94: 167–174
  • Ibañez C. Lipid rafts as organizing platforms for cell chemotaxis and axon guidance. Neuron 2004; 42: 3–5
  • Janes PW, Ley SC, Magee AI. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 1999; 147: 447–461
  • Jiao X, Zhang N, Xu X, Oppenheim J, Jin T. Ligand-induced partitioning of human CXCR1 chemokine receptors with lipid raft microenvironments facilitates G-protein-dependent signaling. Mol Cell Biol 2005; 25: 5752–5762
  • Kindzelskii A, Sitrin R, Petty H. Cutting edge: Optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: Apparent role calcium signaling. J Immunol 2004; 172: 4681–4685
  • Khosravi-Far R, Chrzanowska-Wodnicka M, Solski PA, Eva A, Burridge K, Der CJ. Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras. Mol Cell Biol 1994; 14: 6848–6857
  • Kovacs B, Maus MV, Riley JL, Derimanov GS, Koretzky GA, June CH, Finkel TH. Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation. Proc Natl Acad Sci USA 2002; 99: 15006–15011
  • Lacalle R, Gómez-Moutón C, Barber D, Jiménez-Baranda S, Mira E, Martínez-A C, Carrera A, Mañes S. PTEN regulates motility but not directionality during leukocyte chemotaxis. J Cell Sci 2004; 117: 6207–6215
  • Lacalle R, Mira E, Gómez-Moutón C, Jiménez-Baranda S, Martínez-A C, Mañes S. Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation. J Cell Biol 2002; 157: 277–289
  • Lauffenburger D, Horwitz A. Cell migration: a physically integrated molecular process. Cell 1996; 84: 359–369
  • Ledesma M, Simons K, Dotti C. Neuronal polarity: Essential role of protein-lipid complexes in axonal sorting. Proc Natl Acad Sci USA 1998; 95: 3966–3971
  • Lichtenberg D, Goni FM, Heerklotz H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 2005; 30: 430–436
  • Mañes S, del Real G, Lacalle R, Lucas P, Gómez-Moutón C, Sánchez-Palomino S, Delgado R, Alcamí J, Mira E, Martínez-A C. Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection. EMBO Reports 2000; 1: 190–196
  • Mañes S, Gómez-Moutón C, Lacalle R, Jiménez-Baranda S, Mira E, Martínez-A C. Mastering time and space: immune cell polarization and chemotaxis. Semin Immunol 2005; 17: 77–86
  • Mañes S, Lacalle R, Gómez-Moutón C, Martínez-A C. From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol 2003; 24: 320–326
  • Mañes S, Martínez-A C. Cholesterol domains regulate the actin cytoskeleton at the leading edge of moving cells. Trends Cell Biol 2004; 14: 275–278
  • Mañes S, Mira E, Gómez-Moutón C, Lacalle R, Keller P, Labrador J, Martinez-A C. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J 1999; 18: 6211–6220
  • Martin M, Schneider H, Azouz A, Rudd CE. Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J Exp Med 2001; 194: 1675–1681
  • Michaely P, Mineo C, Ying Y, Anderson R. Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J Biol Chem 1999; 274: 21430–21436
  • Mellado M, Rodriguez-Frade JM, Manes S, Martinez AC. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 2001; 19: 397–421
  • Michel F, Mangino G, Attal-Bonnefoy G, Tuosto L, Alcover A, Roumier A, Olive D, Acuto O. CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation. J Immunol 2000; 165: 3820–3829
  • Millan J, Montoya M, Sancho D, Sanchez-Madrid F, Alonso M. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 2002; 99: 978–984
  • Moffett S, Brown D, Linder M. Lipid-dependent targeting of G proteins into rafts. J Biol Chem 2000; 275: 2191–2198
  • Molon B, Gri G, Bettella M, Goumez-Mouton C, Lanzavechia A, Martinez-A C, Manes S, Viola A. T cell costimulation by chemokine receptors. Nature Immunol 2005; 6: 465–471
  • Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998; 395: 82–86
  • Montixi C, Langlet C, Bernar AM, Thimonier J, Dubois C, Wurbel MA, Chauvin JP, Pierres M, He HT. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 1998; 17: 5334–5348
  • Nguyen D, Taub D. CXCR4 Function requires membrane cholesterol: implications for HIV infection. J Immunol 2002; 168: 4121–4126
  • Nguyen D, Giri B, Collins G, Taub D. Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement. Exp Cell Res 2005; 304: 559–569
  • Nombela-Arrieta C, Lacalle R, Montoya M, Kunisaki K, Megías D, Marqués M, Carrera A, Mañes S, Fukui Y, Martínez-A C, Stein J. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 2004; 21: 429–441
  • Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 2001; 12: 685–698
  • Paccani SR, Boncristiano M, Patrussi L, Ulivieri C, Wack A, Valensin S, Hirst TR, Amedei A, Del Prete G, Telford JL, D'Elios MM, Baldari CT. Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood 2005; 106: 626–634
  • Parat M, Anand-Apte B, Fox P. Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell 2003; 14: 3156–3168
  • Parolini I, Sargiacomo M, Lisanti MP, Peschle C. Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localise in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 1996; 87: 3783–3794
  • Pierini L, Eddy R, Fuortes M, Seveau S, Casulo C, Maxfield F. Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 2003; 278: 10831–10841
  • Pizzo P, Giurisato E, Tassi M, Benedetti A, Pozzan T, Viola A. Lipid rafts and TCR signalling: a critical revaluation. Eur J Immunol 2002; 32: 3082–3091
  • Pizzo P, Viola A. Lymphocyte lipid rafts: structure and functions. Curr Opin Immunol 2003; 15: 255–260
  • Pizzo P, Giurisato E, Bigsten A, Tassi M, Tavano R, Shaw A, Viola A. Physiological T cell activation starts and propagates in lipid rafts. Immunol Lett 2004; 91: 3–9
  • Pizzo P, Viola A. Lipid-based membrane microdomains in T cell activation. Curr Immunol Reviews 2005; 1: 7–12
  • Raab M, Pfister S, Rudd CE. CD28 signaling via VAV/SLP-76 adaptors: regulation of cytokine transcription independent of TCR ligation. Immunity 2001; 15: 921–933
  • Rimoldi V, Reversi A, Taverna E, Rosa P, Francolini M, Cassoni P, Parenti M, Chini B. Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene 2003; 22: 6054–6060
  • Rodgers W, Rose JK. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J Cell Biol 1996; 135: 1515–1523
  • Rodgers W, Farris D, Mishra S. Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends Immunol 2005; 26: 97–103
  • Round JL, Tomassian T, Zhang M, Patel V, Schoenberger SP, Miceli MC. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells. J Exp Med 2005; 201: 419–430
  • Rouquette-Jazdanian, AK, Pelassy, C, Breittmayer, JP, Aussel, C. 2005. Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell Signal, 18: 105–122
  • Roux A, Cuvelier D, Nassoy P, Prost J, Bassereau P, Goud B. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J 2005; 24: 1537–1545
  • Sadra A, Cinek T, Imboden JB. Translocation of CD28 to lipid rafts and costimulation of IL-2. Proc Natl Acad Sci USA 2004; 101: 11422–11427
  • Saint-Ruf C, Panigada M, Azogui O, Debey P, von Boehmer H, Grassi F. Different initiation of pre-TCR and gdTCR signalling. Nature 2000; 406: 524–527
  • Salazar-Fontana LI, Barr V, Samelson LE, Bierer BE. CD28 engagement promotes actin polymerization through the activation of the small Rho GTPase Cdc42 in human T cells. J Immunol 2003; 171: 2225–2232
  • Sanchez-Madrid F, del Pozo M. Leukocyte polarization in cell migration and immune interactions. EMBO J 1999; 18: 501–511
  • Scheiffele P, Roth M, Simons K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 1997; 16: 5501–5508
  • Schuck S, Simons K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 2004; 117: 5955–5964
  • Seveau S, Eddy R, Maxfield F, Pierini L. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol Biol Cell 2001; 12: 3550–3562
  • Subczynski WK, Kusumi A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 2003; 1610: 231–243
  • Tavano R, Gri G, Molon B, Marinari B, Rudd CE, Tuosto L, Viola A. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol 2004; 173: 5392–5397
  • Tomas E, Chau T, Madrenas J. Clustering of a lipid-raft associated pool of ERM proteins at the immunological synapse upon T cell receptor or CD28 ligation. Immunol Lett 2002; 83: 143–147
  • Tuosto L, Acuto O. CD28 affects the earliest signaling events generated by TCR engagement. Eur J Immunol 1998; 28: 2131–2142
  • van Buul J, Voermans C, van Gelderen J, Anthony E, van der Schoot C, Hordijk P. Leukocyte-endothelium interaction promotes SDF-1-dependent polarization of CXCR4. J Biol Chem 2003; 278: 30302–30310
  • Vasanji A, Ghosh P, Graham L, Eppell S, Fox P. Polarization of plasma membrane microviscosity during endothelial cell migration. Dev Cell 2004; 6: 29–41
  • Villalba M, Bi K, Rodriguez F, Tanaka Y, Schoenberger S, Altman A. Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J Cell Biol 2001; 155: 331–338
  • Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science 1996; 273: 104–106
  • Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999; 283: 680–682
  • Viola A. Amplification of TCR signaling by membrane dynamic microdomains. Trends Immunol 2001; 22: 322–327
  • Wulfing C, Bauch A, Crabtree GR, Davis MM. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc Natl Acad Sci USA 2000; 97: 10150–10155
  • Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, Mills M, Wanzeck J, Janowska-Wieczorek A, Ratajczak M. Incorporation of CXCR4 into membrane hpid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 2005; 105: 40–48
  • Xavier R, Brennan T, Li Q, McCormack C, Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity 1998; 8: 723–732
  • Xue M, Vines C, Buranda T, Cimino D, Bennett T, Prossnitz E. N-formyl peptide receptors cluster in an active raft-associated state prior to phosphorylation. J Biol Chem 2004; 279: 45175–45184
  • Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 2002; 296: 913–916
  • Zhang W, Trible RP, Samelson LE. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 1998; 9: 239–246
  • Zhang M, Moran M, Round J, Low TA, Patel VP, Tomassian T, Hernandez JD, Miceli MC. CD45 signals outside of lipid rafts to promote ERK activation, synaptic raft clustering, and IL-2 production. J Immunol 2005; 174: 1479–1490
  • Zhu M, Shen S, Liu Y, Granillo O, Zhang W. LAT localization to lipid rafts is not essential in T cell activation and development. J Immunol 2005; 174: 31–35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.