1,423
Views
47
CrossRef citations to date
0
Altmetric
Original

Lipid rafts and malaria parasite infection of erythrocytes (Review)

, , , , &
Pages 81-88 | Received 21 Oct 2005, Published online: 09 Jul 2009

References

  • Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature 2002; 415: 673–679
  • Weatherall, DJ, Miller, LH, Baruch, DI, Marsh, K, Doumbo, OK, Casals-Pascual, C, Roberts, DJ. Malaria and the red cell, Hematology, (Am Soc Hematol Educ Program). 2002;35–57.
  • Dvorak JA, Miller LH, Whitehouse WC, Shiroshi T. Invasion of erythrocytes by malaria merozoites. Science 1975; 187: 748–750
  • Bannister LH, Hopkins JM, Fowler RE, Krishna S, Mitchell GH. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol Today 2000; 16: 427–433
  • Holder AA, Blackman MJ, Borre M, Burghaus PA, Chappel JA, Keen JK, Ling IT, Ogun SA, Owen CA, Sinha KA. Malaria parasites and erythrocyte invasion. Biochem Soc Trans 1994; 22: 291–295
  • Cowman AF, Crabb B. The Plasmodium falciparum genome: a blueprint for erythrocyte adhesion. Science 2002; 298: 126–128
  • Chitnis CE. Molecular insights into receptors used by malaria parasites for erythrocyte invasion. Curr Opin Hematol 2001; 8: 85–91
  • Sim BK, Chitnis CE, Wasniowska K, Hadley TJ, Miller LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 1994; 264: 1941–1944
  • Lauer SA, Chatterjee S, Haldar K. Uptake and hydrolysis of sphingomyelin analogues in Plasmodium falciparum-infected red cells. Mol Biochem Parasitol 2001; 115: 275–281
  • Samuel BU, Mohandas N, Harrison T, McManus H, Rosse W, Reid M, Haldar K. The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J Biol Chem 2001; 276: 29319–29329
  • Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, Prohaska R, Low PS, Tanner MJ, Mohandas N, Haldar K. Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 2004; 103: 1920–1928
  • Harrison T, Samuel BU, Akompong T, Hamm H, Narla M, Lomasney JW, Haldar K. Erythrocyte G protein coupled receptor signaling in malaria infection. Science 2003; 301: 1734–1736
  • Chasis JA, Prenant M, Leung A, Mohandas N. Membrane assembly and remodelling during reticulocyte maturation. Blood 1989; 74: 1112–1120
  • Schrier SL. Red cell membrane biology – introduction. Clin Haematol 1985; 14: 1–12
  • Brown D, London E. Functions of lipid rafts in biological membranes. Ann Rev Cell Dev Biol 1998; 14: 111–136
  • Friedrichson T, Kurzchalia TV. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 1998; 394: 802–804
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572
  • Varma R, Mayor S. GPI-anchored proteins are organized in sub micron domains at the cell surface. Nature 1998; 394: 798–801
  • Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 1998; 164: 103–114
  • Ahmed SN, Brown DA, London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 1997; 36: 10944–10953
  • Salzer U, Hinterdorfer P, Hunger U, Borken C, Prohaska R. Ca(+ + )-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood 2002; 99: 2569–2577
  • Salzer U, Prohaska R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 2001; 97: 1141–1143
  • Lauer S, VanWye J, Harrison T, McManus H, Samuel BU, Hiller NL, Mohandas N, Haldar K. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. Embo J 2000; 19: 3556–3564
  • Civenni G, Test ST, Brodbeck U, Butikofer P. In vitro incorporation of GPI-anchored proteins into human erythrocytes and their fate in the membrane. Blood 1998; 91: 1784–1792
  • Minetti, G, Ciana, A. New and old integral proteins of the human erythrocyte membrane. Blood 2003;101: 3751; author reply, 3751–3753.
  • Ciana A, Balduini C, Minetti G. Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton. J Biosci 2005; 30: 317–328
  • Rivas MG, Gennaro AM. Detergent resistant domains in erythrocyte membranes survive after cell cholesterol depletion: an EPR spin label study. Chem Phys Lipids 2003; 122: 165–169
  • Rosse WF. Paroxysmal nocturnal hemoglobinuria as a molecular disease. Medicine 1997; 76: 63–93
  • Rungruang T, Kaneko O, Murakami Y, Tsuboi T, Hamamoto H, Akimitsu N, Sekimizu K, Kinoshita T, Torii M. Erythrocyte surface glycosylphosphatidyl inositol anchored receptor for the malaria parasite. Mol Biochem Parasitol 2005; 140: 13–21
  • Nagao E, Seydel KB, Dvorak JA. Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection. Exp Parasitol 2002; 102: 57–59
  • Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J Biol Chem 2000; 275: 2191–2198
  • Sargiacomo M, Sudol M, Tang Z, Lisanti MP. Signal transducing molecules and glycosyl-phosphatidylinositol-linded proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 1993; 122: 789–807
  • Minetti G, Low PS. Erythrocyte signal transduction pathways and their possible functions. Curr Opin Hematol 1997; 4: 116–121
  • De Flora A, Damonte G, Sdraffa A, Franco L, Benatti U. Heterogeneity of guanine nucleotide binding proteins in human red blood cell membranes. Adv Exp Med Biol 1991; 307: 161–171
  • Johnson GJ, Leis LA, Dunlop PC. Specificity of G alpha q and G alpha 11 gene expression in platelets and erythrocytes. Expressions of cellular differentiation and species differences. Biochem J 1996; 318 (Pt 3): 1023–1031
  • Premont RT, Buku A, Iyengar R. The G alpha z gene product in human erythrocytes. Identification as a 41-kilodalton protein. J Biol Chem 1989; 264: 14960–14964
  • Maurice DH, Waldo GL, Morris AJ, Nicholas RA, Harden TK. Identification of G alpha 11 as the phospholipase C-activating G-protein of turkey erythrocytes. Biochem J 1993; 290 (Pt 3): 765–770
  • James SR, Vaziri C, Walker TR, Milligan G, Downes CP. The turkey erythrocyte beta-adrenergic receptor couples to both adenylate cyclase and phospholipase C via distinct G-protein alpha subunits. Biochem J 1994; 304 (Pt 2): 359–364
  • Small KM, McGraw DW, Liggett SB. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 2003; 43: 381–411
  • Tuvia S, Moses A, Gulayev N, Levin S, Korenstein R. Beta-adrenergic agonists regulate cell membrane fluctuations of human erythrocytes. J Physiol 1999; 516: 781–792
  • Oonishi T, Sakashita K, Uyesaka N. Regulation of red blood cell filterability by Ca2 +  influx and cAMP-mediated signaling pathways. Am J Physiol 1997; 273: C1828–1834
  • Rasmussen H, Lake W, Allen JE. The effect of catecholamines and prostaglandins upon human and rat erythrocytes. Biochim Biophys Acta 1975; 411: 63–73
  • Allen JE, Rasmussen H. Human red blood cells: prostaglandin E2, epinephrine, and isoproterenol alter deformability. Science 1971; 174: 512–514
  • Valensi P, Gaudey F, Parries J, Attali JR. Glucagon and noradrenaline reduce erythrocyte deformability. Metabolism 1993; 42: 1169–1172
  • Bogin E, Earon Y, Blum M. Effect of parathyroid hormone and uremia on erythrocyte deformability. Clin Chim Acta 1986; 161: 293–299
  • Huestis WH, McConnell HM. A functional acetylcholine receptor in the human erythrocyte. Biochem Biophys Res Commun 1974; 57: 726–732
  • Hines PC, Zen Q, Burney SN, Shea DA, Ataga KI, Orringer EP, Telen MJ, Parise LV. Novel epinephrine and cAMP- mediated activation of BCAM/Lu-dependent sickle (SS) RBC adhesion. Blood 2003; 101: 3281–3287
  • Zennadi R, Hines PC, De Castro LM, Cartron JP, Parise LV, Telen MJ. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood 2004; 104: 3774–3781
  • Murphy MM, Zayed MA, Evans A, Parker CE, Ataga KI, Telen MJ, Parise LV. Role of Rap1 in promoting sickle red blood cell adhesion to laminin via BCAM/LU. Blood 2005; 105: 3322–3329
  • Miceli MC, Moran M, Chung CD, Patel VP, Low T, Zinnanti W. Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes. Semin Immunol 2001; 13: 115–128
  • Taner SB, Onfelt B, Pirinen NJ, McCann FE, Magee AI, Davis DM. Control of immune responses by trafficking cell surface proteins, vesicles and lipid rafts to and from the immunological synapse. Traffic 2004; 5: 651–661
  • Hiller NL, Akompong T, Morrow JS, Holder AA, Haldar K. Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites, A role for microbial raft proteins in apicomplexan vacuole biogenesis. J Biol Chem 2003; 278: 48413–48421
  • Volonte D, Galbiati F, Li S, Nishiyama K, Okamoto T, Lisanti MP. Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem 1999; 274: 12702–12709
  • Morrow IC, Parton RG. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 2005; 6: 725–740
  • Anderson RG, Jacobson K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 2002; 296: 1821–1825
  • Tuvia S, Levin S, Bitler A, Korenstein R. Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes. J Cell Biol 1998; 141: 1551–1561
  • Etienne-Manneville S, Hall A. Rho GTPAses in cell biology. Nature 2002; 240: 629–635
  • Vanhauwe JF, Thomas TO, Minshall RD, Tiruppathi C, Li A, Gilchrist A, Yoon EJ, Malik AB, Hamm HE. Thrombin receptors activate G(o) proteins in endothelial cells to regulate intracellular calcium and cell shape changes. J Biol Chem 2002; 277: 34143–34149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.