2,961
Views
94
CrossRef citations to date
0
Altmetric
Original

The atomic force microscope as a tool for studying phase separation in lipid membranes (Review)

&
Pages 17-28 | Received 28 Oct 2005, Published online: 09 Jul 2009

References

  • Schroeder F, Woodford JK, Kavecansky J, Wood WG, Joiner C. Cholesterol domains in biological membranes. Mol Membr Biol 1995; 12: 113–119
  • Ahmed SN, Brown DA, London E. On the origin of sphingolipid/cholesterol-rich detergent insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent insoluble, liquid ordered lipid phase in model membranes. Biochemistry 1997; 36: 10944–10953
  • Hooper NM, Turner AJ. Ectoenzymes of the kidney microvillar membrane. Differential solubilisation by detergents can predict a glycosyl-phosphatidylinisitol membrane anchor. Biochem J 1988; 250: 865–869
  • Ilangumaran S, Hoessli DC. Effect of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 1998; 335: 433–440
  • Brown DA, London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes?. Biochem Biophys Res Comm 1997; 240: 1–7
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572
  • Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys J 2002; 83: 2693–2701
  • Edidin M. The state of lipid rafts. Ann Rev Biophys Biomolec Struct 2003; 32: 257–283
  • Simons K, Vaz WLC. Model systems, lipid rafts and cell membranes. Annu Rev Biophys Biomol Struct 2004; 33: 269–295
  • Sankaram MB, Thompson TE. Cholesterol-induced fluid-phase immiscibility in membranes. Proc Natl Acad Sci USA 1991; 88: 8686–8690
  • McConnell HM, Radhakrishnan A. Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta 1993; 1610: 159–173
  • Feigenson GW, Buboltz JT. Ternary phase diagram of Dipalmitoyl-PC/Dilauroyl-PC/Cholesterol: nanoscopic domain formation driven by cholesterol. Biophys J 2001; 80: 2775–2788
  • Huang J, Feigenson GW. A microscopic interaction model of maximuum solubility of cholesterol in lipid bilayers. Biophys J 1999; 76: 2142–2157
  • Binnig G, Quate CF, Gerber C. Atomic force microscopy. Phys Rev Lett 1986; 56: 930–933
  • Hoh JH, Hansma PK. Atomic force microscopy for high resolution in cell biology. Trends Cell Biol 1992; 2: 208–213
  • Hoh JH, Lal R, John SA, Revel JP, Arnsdorf MF. Atomic force microscopy and dissection of gap junctions. Science 1991; 253: 1405–1408
  • Hansma HG, Vesenka J, Siegerist C, Kelderman G, Morrett H, Sinsheimer RL, Elings V, Bustamante C, Hansma PK. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 1992; 256: 1180–1184
  • Radmacher M, Tillman RW, Fritz M, Gaub HE. From molecules to cells: imaging soft samples with the atomic force microscope. Science 1992; 257: 1900–1905
  • Henderson E, Haydon PG, Sakaguchi DS. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 1992; 257: 1944–1946
  • Tamm LK, McConnell HM. Supported phospholipid bilayers. Biophys J 1985; 47: 105–113
  • Smith DPE, Bryant A, Quate CF, Rabe JP, Gerber C, Swallen JD. Images of a bilayer at molecular resolution by scanning tunnelling microscopy. Proc Natl Acad Sci USA 1987; 84: 969–972
  • Fuchs H, Schrepp W, Rohrer H. STM investigation of Langmuir-Blodgett films. Surf Sci 1987; 181: 391–393
  • Meyer E, Howald L, Overney RM, Heinzelmann H, Frommer J, Guntherodt HJ, Wagner T, Schier H, Roth S. Molecular-resolution images of Langmuir-Blodgett films using atomic force microscopy. Nature 1991; 349: 398–400
  • Garnaes J, Schwartz DK, Viswanathan R, Zasadzinski JAN. Domain boundaries and buckling superstructures in Langmuir-Blodgett films. Nature 1992; 357: 54–57
  • Zasadzinski JAN, Helm CA, Longo ML, Weisenhorn AL, Gould SAC, Hansma PK. Atomic force microscopy of hydrated phosphatidylethanolamine. Biophys J 1991; 59: 755–760
  • Overney RM, Meyer E, Frommer J, Brodbeck D, Luthi RR, Howald L, Guntherodt HJ, Fujihira M, Takano H, Gotoh Y. Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature 1992; 359: 133–135
  • Chi LF, Anders M, Fuchs H, Johnson RR, Rigdorf H. Domain structures in Langmuir Blodgett films investigated by atomic force micrsoscopy. Science 1993; 259: 213–216
  • Mou J, Yang J, Shao Z. Tris(hydroxymethyl)amnomethane induced a ripple phase in supported unilamellar phospholipid bilayers. Biochemistry 1994; 33: 4439–4443
  • Mou J, Yang J, Huang C, Shao Z. Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry 1994; 33: 9981–9985
  • Brian AA, McConnell HM. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci USA 1984; 81: 6159–6163
  • Reviakine I, Brisson A. Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 2000; 16: 1806–1815
  • Richter RP, Brisson A. Characterisation of lipid bilayers and protein assemblies supported on rough surfaces by atomic force microcopy. Langmuir 2003; 19: 1632–1640
  • Richter R, Mukhopadhyay, Brisson A. Pathways of lipid vesicle deposition on solid surfaces: A combined QCM-D and AFM study. Biophys J 2003; 85: 3035–3047
  • Richter RP, Brisson AR. Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D and ellipsometry. Biophys J 2005; 88: 3422–3433
  • Feng S-S. Interpretation of mechanochemical properties of lipid bilayer vesicles from the equation of state or pressure-area measurement of the monolayer at the air-water interface or oil-water interface. Langmuir 1999; 15: 998–1010
  • Giocondi M-C, Vie V, Lesniewska E, Milhiet P-E, Zinke-Allmang M, Le Grimellec C. Phase topology and growth of single domains in lipid bilayers. Langmuir 2001; 17: 1653–1659
  • Nagle JF, Tristtram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta 2000; 1469: 159–195
  • Rinia HA, Demel RA, van der Eerden JPJM, de Kruijff B. Blistering of Langmuir-Blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy. Biophys J 1999; 77: 1683–1693
  • Dufrene YF, Barger WR, Green JBD, Lee GU. Nanometer scale surface properties of mixed phosholipid monolayers and bilayers. Langmuir 1997; 13: 4779–4784
  • Dufrene YF, Boland T, Schneider JW, Barger WR, Lee GU. Characterization of the physical properties of model biomembranes at the nanometer scale with the atomic force microscope. Faraday Discuss 1998; 111: 79–94
  • Schneider J, Dufrene YF, Barger WR, Lee GU. Atomic force microscope image contrast mechanisms on supported lipid bilayers. Biophys J 2000; 79: 1107–1118
  • Schneider J, Barger W, Lee GU. Nanometer scale surface properties of supported lipid bilayers measured with hydrophobic and hydrophillic atomic force microscope probes. Langmuir 2003; 19: 1899–1907
  • Marra J, Israelachvilli J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry 1985; 24: 4608–4618
  • Muller DJ, Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J 1997; 73: 1633–1644
  • Reviakine I, Simon A, Brisson A. Effect of Ca2 +  on the morphology of mixed DPPC-DOPCS supported phospholipid bilayers. Langmuir 2000; 16: 1473–1477
  • Casal HL, Martin A, Mantsch HH, Paltauf F, Hauser H. Infrared studies of fully hydrated unsaturated phophatidylserine bilayers – effect of Li+ and Ca2 + . Biochemistry 1987; 26: 7395–7401
  • Gregory D, Ginsberg L. Calcium association with phosphatidylserine – modification by cholesterol and phosphatidylcholine in monolayers and bilayers. Biochim Biophys Acta 1984; 769: 238–244
  • Milhiet PE, Domec C, Giocondo M-C, Van Mau N, Heitz F, Le Grimellec C. Domain formation in models of the renal brush border membrane outer leaflet. Biophys J 2001; 81: 547–555
  • Giocondi M-C, Boichot S, Plenat T, Le Grimellec C. Structural diversity of sphyngomyelin microdomains. Ultramicroscopy 2001; 100: 135–143
  • Rinia HA, Snel MME, van der Eerden JPJM, de Kruijff B. Visualising detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett 2001; 501: 92–96
  • Giocondi MC, Vie V, Lesniewska E, Goudonnet JP, Le Grimellec. In situ imaging of detergent resistant membranes by atomic force microscopy. J Struct Biol 2000; 131: 38–43
  • Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown AB. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphospatidylinositol-anchored poteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 1998; 273: 1150–1157
  • Wilson BS, Steinberg SL, Liderman K, Pfeiffer JR, Surviladze Z, Zhang J, Samelson LE, Yang L-H, Kotula PG, Oliver JM. Markers for detergent resistant lipid rafts occupy distinct and dynamic domains in native membranes. Molec Biol Cell 2004; 15: 2580–2592
  • Field KA, Holowka D, Baird B. Structural aspects of the association of FcεRI with detergent resistant membranes. J Biol Chem 1999; 274: 1753–1758
  • Lawrence JC, Saslowsky DE, Edwardson JM, Henderson RM. Real-time analysis of the effects of cholesterol on lipid raft behaviour using atomic force microscopy. Biophys J 2003; 84: 1827–1832
  • Giocondi M-C, Milhiet PE, Dosset P, Le Grimellec C. Use of cyclodextrin for AFM monitoring of model raft formation. Biophys J 2004; 86: 861–869
  • Fragneto G, Charitat T, Graner F, Mecke K, Perino-Gallice L, Bellet-Amalric. A fluid floating bilayer. Europhys Lett 2001; 53: 100–106
  • Yang J, Appleyard J. The main phase transition of mica supported phosphatidylcholine membranes. J Phys Chem B 2000; 104: 8097–8100
  • Charrier A, Thibaudau F. Main phase transitions in supported lipid single-bilayer. Biophys J 2005; 89: 1094–1101
  • Stottrup B, Veatch S, Keller S. Nonequilibrium behaviour in supported lipid membranes containing cholesterol. Biophys J 2004; 86: 2942–2950
  • Leonenko Z, Finot E, Ma H, Dahms T, Cramb D. Investigation of temperature induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature controlled scanning force microscopy. Biophys J 2004; 86: 3783–3793
  • Hetzer M, Heinz S, Grage S, Bayerl T. Asymmetric molecular friction in supported phospholipid bilayers revealed by NMR measurements of lipid diffusion. Langmuir 1998; 14: 982–984
  • Ratto T, Longo M. Anomalous subdiffusion in heterogeneous lipid bilayers. Langmuir 2003; 19: 1788–1793
  • Boxer SG. Molecular transport and organisation in supported lipid membranes. Curr Opin Chem Biol 2000; 4: 704–709
  • Heimburg T. A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophys J 2000; 78: 1164–1165
  • Leidy C, Kaasgaard T, Crowe JH, Mouritsen OG, Jorgenson K. Ripples and the formation of anisotropic lipid domains:Imaging two component supported double bilayers by atomic force microscopy. Biophys J 2002; 83: 2625–2633
  • Kaasgaard T, Leidy C, Crowe JH, Mouritsen OG, Jorgenson K. Temperature controlled structure and kinetics of ripple phases in one and two component supported lipid bilayers. Biophys J 2003; 85: 350–360
  • Leidy C, Mouritsen OG, Jorgenson K, Peters GH. Evolution of a rippled membrane during phospholipase A2 hydrolysis studied by time resolved AFM. Biophys J 2004; 87: 408–418
  • Yuan C, Johnston LJ. Distribution of ganglioside GM1 in L-α-dipalmitoylphospatidylcholine/cholesterol monolayers: A model for lipid rafts. Biophys J 2000; 79: 2768–2781
  • Yuan C, Johnston LJ. Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys J 2001; 81: 1059–1069
  • Menke M, Kunneke S, Janshoff A. Lateral organisation of GM1 in phase separated monolayers visualised by scanning force microscopy. Eur Biophys J 2002; 31: 317–322
  • Peters MW, Mehlhorn IE, Baber KR, Grant CWM. Evidence of a distribution difference between two gangliosides in bilayer membranes. Biochim Biophys Acta 1984; 775: 272–282
  • Delmelle M, Dufrane SP, Brasseur R, Ruysachaert JM. Clustering of gangliosides in phospholipid bilayers. FEBS Lett 1980; 121: 11–14
  • Thompson TE, Allieta M, Brown RE, Johnston ML, Tillack TW. Organisation of ganglioside GM1 in phospatidylcholine bilayers. Biochim Biophys Acta 1985; 817: 229–237
  • Yuan C, Furlong J, Burgos P, Johnston LJ. The size of lipid rafts: An atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J 2002; 82: 2526–2535
  • Burgos O, Yuan C, Viriot M-L, Johnston LJ. Two-color near-field fluorescence microscopy studies of microdomains (‘rafts’) in model membranes. Langmuir 2003; 19: 8002–8009
  • Milhiet P-E, Vie V, Giocondi M-C, Le Grimellac. AFM characterization of model rafts in supported bilayers. Single Mol 2001; 2: 109–112
  • Milhiet P-E, Giocondi M-C, Baghdadi O, Ronzon F, Le Grimellac, Roux B. AFM Detection of GPI protein insertion into DOPC.DPPC model membranes. Single Mol 2002; 3: 135–140
  • Milhiet P-E, Giocondi M-C, Baghdadi O, Ronzon F, Roux B, Le Grimellac C. Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts. EMBO rep 2002; 3: 485–490

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.