822
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Urban land surface temperature forecasting: a data-driven approach using regression and neural network models

ORCID Icon & ORCID Icon
Article: 2299145 | Received 28 Aug 2023, Accepted 20 Dec 2023, Published online: 25 Jan 2024

References

  • Acharya TD, Subedi A, Lee DH. 2018. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors. 18(8):2580. doi:10.3390/s18082580.
  • Aggarwal SP, Garg V, Gupta PK, Nikam BR, Thakur PK. 2012. Climate and Lulc change scenarios to study its impact on hydrological regime. Int Arch Photogramm Remote Sens Spatial Inf Sci. XXXIX-B8:147–152. doi:10.5194/isprsarchives-XXXIX-B8-147-2012.
  • As-Syakur AR, Adnyana IWS, Arthana IW, Nuarsa IW. 2012. Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sens. 4(10):2957–2970. doi:10.3390/rs4102957.
  • Atkinson PM, Tatnall AR. 1997. Introduction neural networks in remote sensing. Int J Remote Sens. 18(4):699–709. doi:10.1080/014311697218700.
  • Bannari A, Morin D, Bonn F, Huete A. 1995. A review of vegetation indices. Remote Sens Rev. 13(1-2):95–120. doi:10.1080/02757259509532298.
  • Bharath HA, Chandan MC, Vinay S, Ramachandra TV. 2018. Modelling urban dynamics in rapidly urbanising Indian cities. Egypt J Remot Sens Space Sci. 21(3):201–210. doi:10.1016/j.ejrs.2017.08.002.
  • Bharath HA, Vinay S, Ramachandra TV. 2013. Prediction of land use dynamics in the rapidly urbanising landscape using land change modeler. Paper presented at International Conference on Advances in Computer Science; Dec; Delhi, India: Elsevier.
  • Bharath HA, Vinay S, Ramachandra TV. 2014. Prediction of spatial patterns of urban dynamics in Pune, India. Paper presented at India Conference (INDICON); Dec 11–13; Pune, India. https://ieeexplore.ieee.org/document/7030404/.
  • Bisht K, Dodamani SS. 2016. Estimation and modelling of land surface temperature using Landsat 7 ETM + images and fuzzy system techniques. Paper presented in AGU Fall Meeting Abstracts, San Francisco, California; Dec 12–16. http://adsabs.harvard.edu/abs/2016AGUFM.A23A0188B.
  • Bisht K, Dodamani SS. 2016. Estimation and modelling of land surface temperature using Landsat 7 ETM + images and fuzzy system techniques. Presented at AGU Fall Meeting Abstracts (Vol. 2016), San Francisco, California, USA; Dec. p. A23A-0188.
  • Chen M, Zhang H, Liu W, Zhang W. 2014. The global pattern of urbanization and economic growth: evidence from the last three decades. PLoS One. 9(8):e103799. doi:10.1371/journal.pone.0103799.
  • Cook J, Oreskes N, Doran PT, Anderegg WRL, Verheggen B, Maibach EW, Carlton JS, Lewandowsky S, Skuce AG, Green SA, et al. 2016. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ Res Lett. 11(4):048002. doi:10.1088/1748-9326/8/2/024024.
  • Cui C, Zhang W, Hong Z, Meng L. 2020. Forecasting NDVI in multiple complex areas using neural network techniques combined feature engineering. Int J Digital Earth. 13(12):1733–1749. doi:10.1080/17538947.2020.1808718.
  • Ettehadi OP, Kaya S, Sertel E, Alganci U. 2019. Separating built-up areas from bare land in mediterranean cities using Sentinel-2A imagery. Remote Sens. 11(3):345. doi:10.3390/rs11030345.
  • Fabijańczyk P, Zawadzki J. 2022. Spatial correlations of NDVI and MSAVI2 indices of green and forested areas of urban agglomeration, case study Warsaw, Poland. Remote Sens Appl Soc Environ. 26:100721. doi:10.1016/j.rsase.2022.100721.
  • Fern RR, Foxley EA, Bruno A, Morrison ML. 2018. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol Indic. 94:16–21. doi:10.1016/j.ecolind.2018.06.029.
  • Foody GM. 2006. Pattern recognition and classification of remotely sensed images by artificial neural networks. In Ecological informatics. Berlin, Heidelberg: Springer. p. 459–477.
  • Founda D, Santamouris M. 2017. Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci Rep. 7(1):10973. doi:10.1038/s41598-017-11407-6.
  • Gunathilaka MDKL. 2021. Modelling the behavior of DVI and IPVI vegetation indices using multi-temporal remotely sensed data. Int J Environ Eng Educ. 3(1):9–16. doi:10.55151/ijeedu.v3i1.42.
  • Hamad R, Balzter H, Kolo K. 2018. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability. 10(10):3421. doi:10.3390/su10103421.
  • Huang S, Chang J, Huang Q, Chen Y. 2014. Monthly streamflow prediction using modified EMD-based support vector machine. J Hydrol. 511:764–775. doi:10.1016/j.jhydrol.2014.01.062.
  • Imran HM, Hossain A, Islam AKM, Rahman A, Bhuiyan MAE, Paul S, Alam A. 2021. Impact of land cover changes on land surface temperature and human thermal comfort in Dhaka City of Bangladesh. Earth Syst Environ. 5(3):667–693. doi:10.1007/s41748-021-00243-4.
  • IPCC. 2021. Sixth assessment report. [accessed 2023 October 23]. https://www.ipcc.ch/report/sixth-assessment-report-cycle/.
  • Jia H, Yang D, Deng W, Wei Q, Jiang W. 2021. Predicting land surface temperature with geographically weighed regression and deep learning. Wiley Interdiscip Rev Data Min Knowl Discov. 11(1):e1396.
  • Jin M, Li J, Wang C, Shang R. 2015. A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China. Remote Sens. 7(4):4371–4390. doi:10.3390/rs70404371.
  • Kafy AA , Al Rakib A, Akter KS, Jahir DMA, Sikdar MS, Ashrafi TJ, Mallik S, Rahman MM. 2021. Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environ Challenges. 4:100192. doi:10.1016/j.envc.2021.100192.
  • Kebede TA, Hailu BT, Suryabhagavan KV. 2022. Evaluation of spectral built-up indices for impervious surface extraction using Sentinel-2A MSI imageries: a case of Addis Ababa city, Ethiopia. Environ Challenges. 8:100568. doi:10.1016/j.envc.2022.100568.
  • Khalid HW, Khalil RMZ, Qureshi MA. 2021. Evaluating spectral indices for water bodies extraction in western Tibetan Plateau. Egypt J Remote Sens Space Sci. 24(3):619–634. doi:10.1016/j.ejrs.2021.09.003.
  • Khalil U, Aslam B, Azam U, Khalid HMD. 2021. Time series analysis of land surface temperature and drivers of urban heat island effect based on remotely sensed data to develop a prediction model. Appl Artif Intel. 35(15):1803–1828. doi:10.1080/08839514.2021.1993633.
  • Li Z-L, Tang B-H, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA. 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ. 131:14–37. doi:10.1016/j.rse.2012.12.008.
  • Liu Y, Meng Q, Zhang L, Wu C. 2022. NDBSI: a normalized difference bare soil index for remote sensing to improve bare soil mapping accuracy in urban and rural areas. Catena. 214:106265. doi:10.1016/j.catena.2022.106265.
  • Lu Y, Yue W, Huang Y. 2021. Effects of land use on land surface temperature: a case study of Wuhan, China. Int J Environ Res Public Health. 18(19):9987. doi:10.3390/ijerph18199987.
  • Mahmood R, Pielke RA Sr, Hubbard KG, Niyogi D, Bonan G, Lawrence P, McNider R, McAlpine C, Etter A, Gameda S, et al. 2010. Impacts of land use/land cover change on climate and future research priorities. Bull Amer Meteor Soc. 91(1):37–46. doi:10.1175/2009BAMS2769.1.
  • Mansourmoghaddam M, Rousta I, Zamani M, Olafsson H. 2023. Investigating and predicting Land Surface Temperature (LST) based on remotely sensed data during 1987–2030 (A case study of Reykjavik city, Iceland). Urban Ecosyst. 26(2):337–359. doi:10.1007/s11252-023-01337-9.
  • Mas JF, Flores JJ. 2008. The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens. 29(3):617–663. doi:10.1080/01431160701352154.
  • Mathew A, Sreekumar S, Khandelwal S, Kaul N, Kumar R. 2016. Prediction of land-surface temperatures of Jaipur City using linear time series model. IEEE J Sel Top Appl Earth Observations Remote Sensing. 9(8):3546–3552. doi:10.1109/JSTARS.2016.2523552.
  • Mustafa EK, Co Y, Liu G, Kaloop MR, Beshr AA, Zarzoura F, Sadek M. 2020. Study for predicting land surface temperature (LST) using landsat data: a comparison of four algorithms. Adv Civ Eng. 2020:1–16. doi:10.1155/2020/7363546.
  • Mutiibwa D, Kilic A, Irmak S. 2014. The effect of land cover/land use changes on the regional climate of the USA high plains. Climate. 2(3):153–167. doi:10.3390/cli2030153.
  • Naji TA. 2018. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. J Phys Conf Ser. 1003:012083. doi:10.1088/1742-6596/1003/1/012083.
  • Nandi S, Swain S. 2022. Analysis of heatwave characteristics under climate change over three highly populated cities of South India: a CMIP6-based assessment. Environ Sci Pollut Res. 30(44):99013–99025. doi:10.1007/s11356-022-22398-x.
  • NASA. 2023. Global climate change: vital signs of the planet. [accessed 2023 Mar 12]. https://climate.nasa.gov/.
  • Needle F. 2020. How to use regression analysis to forecast sales: a step-by-step guide. [accessed 2021 Jul 15]. https://blog.hubspot.com/sales/regression-analysis-to-forecast-sales?toc-variant-a=.
  • Nimish G, Bharath HA, Lalitha A. 2020. Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sens Appl Soc Environ. 18:100299. doi:10.1016/j.rsase.2020.100299.
  • Nimish G, Chandan MC, Bharath HA. 2018. Understanding current and future landuse dynamics with land surface temperature alterations: A case study of Chandigarh. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. IV-5:79–86. doi:10.5194/isprs-annals-IV-5-79-2018.
  • Pinty B, Verstraete MM. 1992. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio. 101(1):15–20. doi:10.1007/BF00031911.
  • Ramachandra TV, Bharath HA, Sanna DD. 2012. Insights to urban dynamics through landscape spatial pattern analysis. Int J Appl Earth Obs Geoinf. 18:329–343. doi:10.1016/j.jag.2012.03.005.
  • Ranjan AK, Anand A, Kumar PBS, Verma SK, Murmu L. 2018. Prediction of land surface temperature within Sun City Jodhpur (Rajasthan) in India Using integration of artificial neural network and geoinformatics technology. Asian J Geoinform. 17(3):14–23.
  • Rehman A, Qin J, Pervez A, Khan MS, Ullah S, Ahmad K, Rehman NU. 2022. Land-use/land cover changes contribute to land surface temperature: a case study of the Upper Indus Basin of Pakistan. Sustainability. 14(2):934. doi:10.3390/su14020934.
  • Sang L, Zhang C, Yang J, Zhu D, Yun W. 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math Comput Modell. 54(3-4):938–943. doi:10.1016/j.mcm.2010.11.019.
  • Shabri A, Samsudin R. 2014. Daily crude oil price forecasting using hybridizing wavelet and artificial neural network model. Math Prob Eng. 2014:1–10. doi:10.1155/2014/201402.
  • Singh P, Kikon N, Verma P. 2017. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain Cities Soc. 32:100–114. doi:10.1016/j.scs.2017.02.018.
  • Somvanshi SS, Kumari M. 2020. Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Appl Comput Geosci. 7:100032. doi:10.1016/j.acags.2020.100032.
  • Sreehari E, Ghantasala PG. 2019. Climate changes prediction using simple linear regression. J Comput Theor Nanosci. 16(2):655–658. doi:10.1166/jctn.2019.7785.
  • Sreehari E, Srivastava S. 2018. Prediction of climate variable using multiple linear regression. In: 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India. IEEE. pp. 1–4. doi:10.1109/CCAA.2018.8777452.
  • Stepchenko A. 2016. NDVI index forecasting using a layer recurrent neural network coupled with stepwise regression and the PCA. Paper presented at the 5th Virtual International Conference of Informatics and Management Sciences. Zilina, Slovakia. p. 130–135 doi:10.18638/ictic.2016.5.1.281.
  • Sun Z, Wang C, Guo H, Shang R. 2017. A modified normalized difference impervious surface index (MNDISI) for automatic urban mapping from Landsat imagery. Remote Sensing. 9(9):942. doi:10.3390/rs9090942.
  • Tadese S, Soromessa T, Bekele T. 2021. Analysis of the current and future prediction of land use/land cover change using remote sensing and the CA-markov model in Majang forest biosphere reserves of Gambella, southwestern Ethiopia. Sci World J. 2021:1–18. doi:10.1155/2021/6685045.
  • Taloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051. doi:10.1016/j.acags.2020.100051.
  • Tan J, Yu D, Li Q, Tan X, Zhou W. 2020. Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China. Sci Rep. 10(1):9245. doi:10.1038/s41598-020-66168-6.
  • Tariq A, Shu H. 2020. CA-Markov Chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sensing. 12(20):3402. doi:10.3390/rs12203402.
  • Tian L, Tao Y, Li M, Qian C, Li T, Wu Y, Ren F. 2023. Prediction of land surface temperature considering future land use change effects under climate change scenarios in Nanjing City, China. Remote Sensing. 15(11):2914. doi:10.3390/rs15112914.
  • Tin SN, Muttitanon W. 2021. Analysis of Enhanced Built-up and Bare Land Index (EBBI) in the urban area of Yangon, Myanmar. IJG. 17(4):83–94. doi:10.52939/ijg.v17i4.1957.
  • Tran DX, Pla F, Latorre-Carmona P, Myint SW, Caetano M, Kieu HV. 2017. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J Photogramm Remote Sens. 124:119–132. doi:10.1016/j.isprsjprs.2017.01.001.
  • UN DESA. 2018. 2018 Revision of world urbanization prospects. [accessed 2018 Sept 27]. https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html.
  • UN DESA. 2019. 2018 Revision of world urbanization prospects. [accessed 2021 Dec 5]. https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf.
  • Vandansambuu B, Davaa T, Gantumur B, Purevtseren M, Lkhagva O, Wu F. 2020. Spatiotemporal monitoring and prediction of land use/land cover changes using CA-Markov chain model: a case study in Orkhon Province, Mongolia. Remote Sens Technol Appl Urban Environ. 11535:115350E. doi:10.1117/12.2574032.
  • Yang L, Qian F, Song D, Zheng K. 2016. Research on urban heat-island effect. Paper presented at 4th International Conference on Countermeasures to Urban Heat Island, Singapore. doi:10.11648/j.ijema.20150302.15.
  • Yang X, Zheng XQ, Chen R. 2014. A land use change model: integrating landscape pattern indexes and Markov-CA. Ecol Modell. 283:1–7. doi:10.1016/j.ecolmodel.2014.03.011.
  • Yirsaw E, Wu W, Shi X, Temesgen H, Bekele B. 2017. Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability. 9(7):1204. doi:10.3390/su9071204.
  • Zhang G, Patuwo BE, Hu MY. 1998. Forecasting with artificial neural networks: the state of the art. Int J Forecast. 14(1):35–62. doi:10.1016/S0169-2070(97)00044-7.