349
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatio-temporal dynamics of methane concentration and its association to climatic and vegetation parameters: a case study of the Northern Cape Province, South Africa

, ORCID Icon &
Article: 2306266 | Received 19 Nov 2023, Accepted 11 Jan 2024, Published online: 23 Jan 2024

References

  • Adler RF, Sapiano MRP, Huffman GJ, Wang J-J, Gu G, Bolvin D, Chiu L, Schneider U, Becker A, Nelkin E, et al. 2018. The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere (Basel). 9(4):138. doi: 10.3390/atmos9040138.
  • Akimoto H, Kurokawa JI, Sudo K, Nagashima T, Takemura T, Klimont Z, Amann M, Suzuki K. 2015. SLCP co-control approach in East Asia: tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMVOC and methane. Atmos Environ. 122:588–595. doi: 10.1016/j.atmosenv.2015.10.003.
  • Alexandridis TK, Ovakoglou G, Cherif I, Gómez Giménez M, Laneve G, Kasampalis D, Moshou D, Kartsios S, Karypidou MC, Katragkou E, et al. 2021. Designing AfriCultuReS services to support food security in Africa. Trans GIS. 25(2):692–720. doi: 10.1111/tgis.12684.
  • Benesty J, Chen J, Huang Y, Cohen I. 2009. Pearson correlation coefficient. In: noise reduction in speech processing. Springer topics in signal processing, Vol 2. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-00296-0_5.
  • Boucher O, Friedlingstein P, Collins B, Shine KP. 2009. The indirect global warming potential and global temperature change potential due to methane oxidation. Environ Res Lett. 4(4):044007. doi: 10.1088/1748-9326/4/4/044007.
  • Carrol M, Castaldi S, Chandra N, Crevoisier C, Crill PM, Covey K, Curry CL, Etiope G, Frankenberg C, Gedney N, et al. 2020. The Global Methane Budget 2000–2017. Earth Syst Sci Data. 12(3):1561–1623. doi: 10.5194/essd-12-1561-2020.
  • Chahine MT, Pagano T, Aumann H, Atlas R, Barnet C, Blaisdell J, Chen L, Divakarla M, Fetzer E, Goldberg M, et al. 2006. AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull Amer Meteor Soc. 87(7):911–926. doi: 10.1175/BAMS-87-7-911.
  • Chandra N, Hayashida S, Saeki T, Patra PK. 2017. What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India? Atmos Chem Phys. 17(20):12633–12643. doi: 10.5194/acp-17-12633-2017.
  • Cloete S, Olivier JJ. 2010. South African sheep and wool industry. In: The International Sheep and Wool Handbook; p. 95–112. United Kingdom: Nottingham University Press.
  • Du Plessis JA, Schloms B. 2017. An investigation into the evidence of seasonal rainfall pattern shifts in the Western Cape, South Africa. J S Afr Inst Civ Eng. 59(4):47–55. doi: 10.17159/2309-8775/2017/v59n4a5.
  • Fant C, Schlosser CA, Strzepek K. 2016. The impact of climate change on wind and solar resources in southern Africa. Appl Energy. 161:556–564. doi: 10.1016/j.apenergy.2015.03.042.
  • Forster P, Storelvmo T, Armour K, Collins W, Dufresne J-L, Frame D, Lunt DJ, Mauritsen T, Palmer MD, Watanabe M, et al. 2021. The Earth’s energy budget, climate feedbacks, and climate sensitivity Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Gedney N, Cox PM, Huntingford C. 2004. Climate feedback from wetland methane emissions. Geophys Res Lett. 31(20):L20503. doi: 10.1029/2004GL020919.
  • Gerber PJ, Hristov AN, Henderson B, Makkar H, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, et al. 2013. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal. 7(Suppl.2):220–234. doi: 10.1017/S1751731113000876.
  • Hartmut H, Aumann H, Miller CR. 1995. Atmospheric infrared sounder (AIRS) on the earth observing system. Proceedings of the SPIE 2583, Advanced and Next-Generation Satellites, Paris, France; p. 332–343.
  • He J, Naik V, Horowitz LW, Dlugokencky E, Thoning K. 2020. Investigation of The Global Methane Budget over 1980–2017 using GFDL-AM4.1. Atmos Chem Phys. 20(2):805–827. doi: 10.5194/acp-20-805-2020.
  • Heilig GK. 1994. The greenhouse gas methane (CH4) 1994. Sources and sinks, the impact of population growth, possible interventions. Popul Environ. 16(2):109–137. doi: 10.1007/BF02208779.
  • Herrero M, Havlík P, Valin H, Notenbaert A, Rufino MC, Thornton PK, Blümmel M, Weiss F, Grace D, Obersteiner M. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci USA. 110(52):20888–20893. doi: 10.1073/pnas.1308149110.
  • Höglund-Isaksson L, Gómez-Sanabria A, Klimont Z, Rafaj P, Schöpp W. 2020. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environ Res Commun. 2(2):025004. doi: 10.1088/2515-7620/ab7457.
  • Howarth RW. 2014. A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng. 2(2):47–60. doi: 10.1002/ese3.35.
  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U. 1997. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull Amer Meteor Soc. 78(1):5–20.
  • Huffman GJ, Adler RF, Behrangi A, Bolvin DT, Nelkin EJ, Gu G, Ehsani MR. 2023. The New Version 3.2 Global Precipitation Climatology Project (GPCP) Monthly and Daily Precipitation Products. J Climate. 36(21):7635–7655. doi: 10.1175/JCLI-D-23-0123.1.
  • IPCC, Stocker T, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: ZauelsXia A, Bex V, Midgley PM, editors. Chapter 6, Carbon and other biogeochemical cycles. Cambridge University Press; p. 466–570.
  • Jackson RB, Saunois M, Bousquet P, Canadell JG, Poulter B, Stavert AR, Bergamaschi P, Niwa Y, Segers A, Tsuruta A. 2020. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ Res Lett. 15(7):071002. doi: 10.1088/1748-9326/ab9ed2.
  • Jacob DJ, Varon DJ, Cusworth DH, Dennison PE, Frankenberg C, Gautam R, Guanter L, Kelley J, McKeever J, Ott LE, et al. 2022. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmos Chem Phys. 22(14):9617–9646. doi: 10.5194/acp-22-9617-2022.
  • Janssens-Maenhout G, Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, Bergamaschi P, Pagliari V, Olivier JGJ, Peters HW, et al. 2019. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst Sci Data. 11(3):959–1002. doi: 10.5194/essd-11-959-2019.
  • Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J Anim Sci. 73(8):2483–2492. doi: 10.2527/1995.7382483x.
  • Justice C, O; Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT. 2002. An overview of MODIS Land data processing and product status. Remote Sens Environ. 83(1–2):3–15. doi: 10.1016/S0034-4257(02)00084-6.
  • Karacan C, Ruiz FA, Cotè M, Phipps S. 2011. Coal mine methane 2011. A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int J Coal Geol. 86(2–3):121–156. doi: 10.1016/j.coal.2011.02.009.
  • Kganyago M, Ramoelo A, Zoungrana E, Mashiyi N, Garba I. 2022. Characterizing the Spatial Distribution of Grazing and Browsing Resources in Africa Using Random Forest Classifier and Multi-Sensor Data. In the Proceedings of IEEE International Geoscience and Remote Sensing Symposium Kuala Lumpur; July 17–22; Malaysia. doi: 10.1109/IGARSS46834.2022.9883536.
  • Khalil MAK, Shearer MJ. 1993. Sources of methane: an overview. In: Khalil MAK, editor. Atmospheric Methane: sources, Sinks, and Role in Global Change. Vol. 13. Berlin, Heidelberg: NATO ASI Series, Springer. doi: 10.1007/978-3-642-84605-2_10.
  • Kholod N, Evans M, Pilcher RC, Roshchanka V, Ruiz F, Coté M, Collings R. 2020. Global methane emissions from coal mining to continue growing even with declining coal production. J Clean Prod. 256:120489. doi: 10.1016/j.jclepro.2020.120489.
  • Koffi EN, Bergamaschi P, Alkama R, Cescatti A. 2020. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci Adv. 6(15):eaay4444. doi: 10.1126/sciadv.aay444.
  • Kruger AC, Goliger AM, Retief JV, Sekele S. 2010. Strong wind climatic zones in South Africa. Wind Struct. 13(1):37–55. doi: 10.12989/was.2010.13.1.037.
  • Menzel WP, Schmit TJ, Zhang P, Li J. 2018. Satellite-based atmospheric infrared sounder development and applications. Bull Am Meteorol Soc. 99(3):583–603. doi: 10.1175/BAMS-D-16-0293.1.
  • Miller SM, Wofsy SC, Michalak AM, Kort EA, Andrews AE, Biraud SC, Dlugokencky EJ, Eluszkiewicz J, Fischer ML, Janssens-Maenhout G, et al. 2013. Anthropogenic emissions of methane in the United States. Proc Natl Acad Sci USA. 110(50):20018–20022. doi: 10.1073/pnas.1314392110.
  • Moss A, Jouany J-P, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann Zootech. 49(3):231–253. doi: 10.1051/animres:2000119.
  • NC. 2014. [accessed 2023 Sept. 9] https://www.namakwa-dm.gov.za/wp-content/uploads/2023/04/Northern-Cape-Climate-Change-Response-Plan-Namakwa-2023.pdf.
  • Pagano TS, Aumann HH, Gaiser SL, Gregorich DT. 2003. Early Calibration Results from the Atmospheric Infrared Sounder (AIRS) on Aqua. Proceedings of the SPIE 4891, Optical Remote Sensing of the Atmosphere and Clouds III, Hangzhou, China; p. 76–83. doi: 10.1117/12.465869.
  • Prather MJ, Holmes CD, Hsu J. 2012. Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys Res Lett. 39(9):L09803. doi: 10.1029/2012GL051440.
  • Scoones I. 2023. Livestock, methane, and climate change: the politics of global assessments. Wiley Interdiscip Rev Clim Change. 14(1):e790. doi: 10.1002/wcc.790.
  • Shibata M, Terada F. 2010. Factors affecting methane production and mitigation in ruminants. Anim Sci J. 81(1):2–10. doi: 10.1111/j.1740-0929.2009.00687.x.
  • Shikwambana L, Kganyago M, Xulu S. 2022a. Analysis of wildfires and associated emissions during the recent strong ENSO phases in Southern Africa using multi-source remotely-derived products. Geocarto Int. 37(27):16654–16670. doi: 10.1080/10106049.2022.2113449.
  • Shikwambana L, Mokgoja B, Mhangara P. 2022b. A Qualitative Assessment of the Trends, Distribution and Sources of Methane in South Africa. Sustainability. 14(6):3528. doi: 10.3390/su14063528.
  • Skeie RB, Hodnebrog Ø, Myhre G. 2023. Trends in atmospheric methane concentrations since 1990 were driven and modified by anthropogenic emissions. Commun Earth Environ. 4(1):317. doi: 10.1038/s43247-023-00969-1.
  • Solomon S, Plattner GK, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA. 106(6):1704–1709. doi: 10.1073/pnas.0812721106.
  • Subak S, Craighill A. 1999. The contribution of the paper cycle to global warming. Mitig Adapt Strateg Glob Change. 4(2):113–136. doi: 10.1023/A:1009683311366.
  • Sucevic N, Djurisic Z. 2012. Influence of Atmospheric Stability Variation on Uncertainties of Wind Farm Production Estimation. In Proceedings of European Wind Energy Conference & Exhibition; April 16–19; Copenhagen, Denmark,
  • Tedeschi LO, Abdalla AL, Álvarez C, Anuga SW, Arango J, Beauchemin KA, Becquet P, Berndt A, Burns R, De Camillis C, et al. 2022. Quantification of methane emitted by ruminants: a review of methods. J Anim Sci. 100(7):1–22. doi: 10.1093/jas/skac197.
  • Tilstra LG, de Graaf M, Wang P, Stammes P. 2020. In-orbit Earth reflectance validation of TROPOMI on board the Sentinel-5 Precursor satellite. Atmos Meas Tech. 13(8):4479–4497. doi: 10.5194/amt-13-4479-2020.
  • Theys N, De Smedt I, Yu H, Danckaert T, Van Gent J, Hörmann C, Wagner T, Hedelt P, Bauer H, Romahn F, et al. 2017. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: algorithm theoretical basis. Atmos Meas Tech. 10(1):119–153. doi: 10.5194/amt-10-119-2017.
  • Thompson LR, Rowntree JE. 2020. Invited Review: methane sources, quantification, and mitigation in grazing beef systems. Appl Anim Sci. 36(4):556–573. doi: 10.15232/aas.2019-01951.
  • Turner AJ, Frankenberg C, Kort EA. 2019. Interpreting contemporary trends in atmospheric methane. Proc Natl Acad Sci USA. 116(8):2805–2813. doi: 10.1073/pnas.1814297116.
  • UN Environmental Programme. 2021. [accessed 2023 Aug 25] https://www.unep.org/news-and-stories/story/methane-emissions-are-driving-climate-change-heres-how-reduce-them.
  • Van Amstel A. 2012. Methane. A review. J Integr Environ Sci. 9(Suppl. 1):5–30. doi: 10.1080/1943815X.2012.694892.
  • Van Dingenen R, Crippa M, Maenhout G, Guizzardi D, Dentener F. 2018. Global trends of methane emissions and their impacts on ozone concentrations. Luxembourg: Publications Office of the European Union. doi: 10.2760/820175.
  • Veefkind JP, Aben I, McMullan K, Förster H, de Vries J, Otter G, Claas J, Eskes HJ, de Haan JF, Kleipool Q, et al. 2012. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens Environ. 120:70–83. doi: 10.1016/j.rse.2011.09.027.
  • Wang Z, Zeng D, Patrick WH. 1996. Methane emissions from natural wetlands. Environ Monit Assess. 42(1–2):143–161. doi: 10.1007/BF00394047.
  • Wright MA, Grab SW. 2017. Wind speed characteristics and implications for wind power generation: cape regions, South Africa. S Afr J Sci. 113(7/8):8. doi: 10.17159/sajs.2017/20160270.
  • Xiong X, Butler JJ. 2020. MODIS and VIIRS calibration history and future outlook. Remote Sens. 12(16):2523. doi: 10.3390/rs12162523.
  • Xu G, Li Y, Wang S, Kong F, Yu Z. 2019. An overview of methane emissions in constructed wetlands: how do plants influence methane flux during the wastewater treatment? J Freshw Ecol. 34(1):333–350. doi: 10.1080/02705060.2019.1588176.
  • Yin X, Jiang C, Xu S, Yu X, Yin X, Wang J, Maihaiti M, Wang C, Zheng X, Zhuang X. 2023. Greenhouse gases emissions of constructed wetlands: mechanisms and affecting factors. Water. 15(16):2871. doi: 10.3390/w15162871.
  • Yu G, Wang G, Chi T, Du C, Wang J, Li P, Zhang Y, Wang S, Yang K, Long Y, et al. 2022. Enhanced removal of heavy metals and metalloids by constructed wetlands: a review of approaches and mechanisms. Sci Total Environ. 821:153516. doi: 10.1016/j.scitotenv.2022.153516.