210
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pine wood nematode disease area identification based on multi-temporal multi-source remote sensing images and BIT model

, , , , , & show all
Article: 2310117 | Received 17 Oct 2023, Accepted 18 Jan 2024, Published online: 14 Feb 2024

References

  • Brockhaus J, Khorram S, Bruck R, Campbell M, Stallings C. 1992. A comparison of Landsat TM and SPOT HRV data for use in the development of forest defoliation models. Int J Remote Sens. 13(16):3235–3240. doi: 10.1080/01431169208904114.
  • Dai Z, Yang Z, Yang Y, Carbonell J, Le QV, Salakhutdinov R. 2019. Transformer-xl: attentive language models beyond a fixed-length context. In: 57th Annual Meeting of the Association-for-Computational-Linguistics (ACL); Florence, Italy.
  • Devlin J, Chang M-W, Lee K, Toutanova K. 2018. Bert: pre-training of deep bidirectional transformers for language understanding. In: Conference of the North-American-Chapter of the Association-for-Computational-Linguistics - Human Language Technologies (NAACL-HLT); Minneapolis, MN.
  • Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Houlsby N. 2020. An Image is Worth 16 × 16 Words: transformers for Image Recognition at Scale.
  • Du H-Q, Ge H-L, Fan W-Y, Jin W, Zhou Y-F, Li JJS, Analysis S. 2009. Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus massoniana forest. Spectrosc Spect Anal. 29(11):3033–3037.
  • He J, Zhao L, Yang H, Zhang M, Li W, Sensing R. 2020. HSI-BERT: hyperspectral image classification using the bidirectional encoder representation from transformers. IEEE Trans Geosci Remote Sens. 58(1):165–178. doi: 10.1109/TGRS.2019.2934760.
  • Hellesen T, Matikainen L. 2013. An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages. Remote Sens. 5(2):558–583. doi: 10.3390/rs5020558.
  • Hu G, Yin C, Wan M, Zhang Y, Fang YJBE. 2020. Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier. Biosyst Eng. 194:138–151. doi: 10.1016/j.biosystemseng.2020.03.021.
  • Huang L, Wang Y, Xu Q, Liu Q. 2021. Recognition of abnormally discolored trees caused by pine wilt disease using YOLO algorithm and UAV images. Trans Chin Soc Agric Eng. 37:197–203.
  • Kim J-B, Jo M-H, Oh J-S, Lee K-J, Park S-J. 2001. Extraction method of damaged area by pine tree pest (Bursaphelenchus xylophilus) using remotely sensed data and GIS. In: Asian Conference on Remote Sensing 2001.
  • Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks.
  • Li Z, Chen G, Zhang T. 2020. A CNN-transformer hybrid approach for crop classification using multitemporal multisensor images. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:847–858. doi: 10.1109/JSTARS.2020.2971763.
  • Liu S, Wang Q, Tang Q, Liu L, He H, Lu J, Dai X. 2022. High-resolution image identification of trees with pinewood nematode disease based on multi-feature extraction and deep learning of attention mechanism. J Eng. 7:177–184.
  • Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
  • Luo Q, Xin W, Qiming X. 2017. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree. In: IOP Conference Series: Earth and Environmental Science; IOP Publishing.
  • Nakane K, Kimura YJER. 1992. Assessment of pine forest damage by blight based on Landsat TM data and correlation with environmental factors. Ecol Res. 7(1):9–18. doi: 10.1007/BF02348592.
  • Proença DN, Grass G, Morais PV. 2017. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen. 6(2):e415. doi: 10.1002/mbo3.415.
  • Qin J, Wang B, Wu Y, Lu Q, Zhu H. 2021. Identifying pine wood nematode disease using UAV images and deep learning algorithms. Remote Sens. 13(2):162. doi: 10.3390/rs13020162.
  • Rançon F, Bombrun L, Keresztes B, Germain C. 2018. Comparison of SIFT encoded and deep learning features for the classification and detection of Esca disease in Bordeaux vineyards. Remote Sens. 11(1):1. doi: 10.3390/rs11010001.
  • Ren D, Peng Y, Sun H, Yu M, Yu J, Liu Z. 2022. A global multi-scale channel adaptation network for pine wilt disease tree detection on UAV imagery by circle sampling. Drones. 6(11):353. doi: 10.3390/drones6110353.
  • Shi Y, Skidmore AK, Wang T, Holzwarth S, Heiden U, Pinnel N, Zhu X, Heurich M. 2018. Tree species classification using plant functional traits from LiDAR and hyperspectral data. Int J Appl Earth Observ Geoinform. 73:207–219. doi: 10.1016/j.jag.2018.06.018.
  • Shuqing F, Wenmao C. 2003. Application of aerial video technique on the monitoring of pine disease from Bursapheleachus xylophilus. Chin Forest Sci Technol. 17(5):42–43.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. Attention is all you need. In Advances in Neural Information Processing Systems 30.
  • Wu H. 2016. A study of the potential of using worldview-2 of images for the detection of red attack pine tree. In: Eighth International Conference on Digital Image Processing (ICDIP 2016); SPIE.
  • Wu B, Xu C, Dai X, Wan A, Zhang P, Yan Z, Tomizuka M, Gonzalez J, Keutzer K, Vajda P. 2020. Visual transformers: token-based image representation and processing for computer vision.
  • Wu P, Yin Z, Yang H, Wu Y, Ma X. 2019. Reconstructing geostationary satellite land surface temperature imagery based on a multiscale feature connected convolutional neural network. Remote Sens. 11(3):300. doi: 10.3390/rs11030300.
  • Xu D, Ren Y, Yan Z, Ye Q, DJJoFE Z. 2018. The CNN driven quality evaluation for UAV remote sensing images. J Forest Eng. 3(5):121–127.
  • Yao X, Yang H, Wu Y, Wu P, Wang B, Zhou X, Wang S. 2019. Land use classification of the deep convolutional neural network method reducing the loss of spatial features. Sensors. 19(12):2792. doi: 10.3390/s19122792.
  • Yong-Xia LI, Xing-Yao Z. 2018. High risk of invasion and expansion of pine wood nematode in middle temperate zone of China. J Temp Forest Res. 1:3–6.
  • Zhang Z, Wang B, Chen W, Wu Y, Qin J, Chen P, Sun H, He A. 2023. Recognition of abnormal individuals based on lightweight deep learning using aerial images in complex forest landscapes: a case study of pine wood nematode. Remote Sensing. 15(5):1181. doi: 10.3390/rs15051181.
  • Zhang R, Xia L, Chen L, Xie C, Chen M, Wang W. 2020. Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images. Trans Chin Soc Agricult Eng. 36(12):61–68.
  • Zhang D, Zhang H, Tang J, Wang M, Hua X, Sun Q. 2020. Feature pyramid transformer. In: Computer Vision – ECCV 2020. 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16. Cham: Springer.
  • Zheng S, Lu J, Zhao H, Zhu X, Luo Z, Wang Y, Fu Y, Feng J, Xiang T, Torr PHS, et al. 2021. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
  • Zhou Z, Li R, Ben Z, He B, Shi Y, Dai W. 2022. Automatic identification of Bursaphelenchus xylophilus from remote sensing images using residual network. J For Eng. 7:185–191.
  • Zhu X, Wang R, Shi W, Yu Q, Li X, Chen X. 2023. Automatic detection and classification of dead nematode-infested pine wood in stages based on YOLO v4 and GoogLeNet. Forests. 14(3):601. doi: 10.3390/f14030601.