1,249
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of groundwater potential zones in data-scarce regions using GIS-based multicriteria decision making approach

, , , , , , , , , & show all
Article: 2311202 | Received 15 Oct 2023, Accepted 23 Jan 2024, Published online: 12 Feb 2024

References

  • Achu AL, Anjali N, Gopinath G. 2022. Delineation of groundwater potential zones in a tropical river basin using geospatial techniques and analytical hierarchy process. In: Singh VP, Yadav S, Yadav KK, Corzo Perez GA, Muñoz-Arriola F, Yadava RN, editors. Application of remote sensing and GIS in natural resources and built infrastructure management. Cham: springer International Publishing. p. 259–278. doi:10.1007/978-3-031-14096-9_13.
  • Agarwal R, Garg PK. 2015. Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resour Manage. 30(1):243–260. doi:10.1007/s11269-015-1159-8.
  • Akinlalu AA, Adegbuyiro A, Adiat KAN, Akeredolu BE, Lateef WY. 2017. Application of multi-criteria decision analysis in prediction of groundwater resources potential: a case of Oke-Ana, Ilesa Area Southwestern, Nigeria. NRIAG J Astron Geophys. 6(1):184–200. doi:10.1016/j.nrjag.2017.03.001.
  • Al-Abadi AM, Shahid S. 2015. A comparison between index of entropy and catastrophe theory methods for mapping groundwater potential in an arid region. Environ Monit Assess. 187(9):576. doi:10.1007/s10661-015-4801-2.
  • Anbarasu S, Brindha K, Elango L. 2020. Multi-influencing factor method for delineation of groundwater potential zones using remote sensing and GIS techniques in the western part of Perambalur district, southern India. Earth Sci Inform. 13(2):317–332. doi:10.1007/s12145-019-00426-8.
  • Arnous MO. 2016. Groundwater potentiality mapping of hard-rock terrain in arid regions using geospatial modelling: example from Wadi Feiran basin, South Sinai, Egypt. Hydrogeol J. 24(6):1375–1392. doi:10.1007/s10040-016-1417-8.
  • Balamurugan P, Kumar PS, Shankar K. 2020. Dataset on the suitability of groundwater for drinking and irrigation purposes in the Sarabanga River region, Tamil Nadu, India. Data Brief. 29:105255. doi:10.1016/j.dib.2020.105255.
  • Bello-Dambatta A, Farmani R, Javadi AA, Evans BM. 2009. The Analytical Hierarchy Process for contaminated land management. Adv Eng Inf. 23(4):433–441. doi:10.1016/j.aei.2009.06.006.
  • Bera A, Mukhopadhyay BP, Das D. 2019. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat Hazards. 96(2):935–959. doi:10.1007/s11069-019-03580-w.
  • Bera B, Shit PK, Sengupta N, Saha S, Bhattacharjee S. 2021. Trends and variability of drought in the extended part of Chhota Nagpur plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environ Challeng. 5:100310. doi:10.1016/j.envc.2021.100310.
  • Bhadran A, Girishbai D, Jesiya NP, Gopinath G, Krishnan RG, Vijesh VK. 2022. A GIS based Fuzzy-AHP for delineating groundwater potential zones in tropical river basin, southern part of India. Geosyst Geoenviron. 1(4):100093. doi:10.1016/j.geogeo.2022.100093.
  • Biswas T, Pal SC, Ruidas D, Islam ARMT, Saha A, Costache R, Shit M. 2023a. Modelling of groundwater potential zone in hard rock-dominated drought-prone region of eastern India using integrated geospatial approach. Environ Earth Sci. 82(3):81. doi:10.1007/s12665-023-10768-8.
  • Biswas T, Pal SC, Saha A. 2023b. Hydro-chemical assessment of coastal groundwater aquifers for human health risk from elevated arsenic and fluoride in West Bengal, India. Mar Pollut Bull. 186:114440. doi:10.1016/j.marpolbul.2022.114440.
  • Daliakopoulos IΝ, Coulibaly P, Tsanis IK. 2005. Groundwater level forecasting using artificial neural networks. J Hydrol. 309(1-4):229–240. doi:10.1016/j.jhydrol.2004.12.001.
  • Dar IA, Sankar K, Dar MA. 2010. Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in Hardrock terrain, Mamundiyar basin. J Hydrol. 394(3-4):285–295. doi:10.1016/j.jhydrol.2010.08.022.
  • Das B, Pal SC, Malik S, Chakrabortty R. 2019. Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geol Ecol Landscapes. 3(3):223–237. doi:10.1080/24749508.2018.1555740.
  • Das S. 2019. Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundwater Sustain Dev. 8:617–629. doi:10.1016/j.gsd.2019.03.003.
  • Deng F, Deng Z, Lv D, Wang D, Duan H, Xing Z. 2016. Application of remote sensing and GIS analysis in groundwater potential estimation in west Liaoning Province, China. J Engineer Res. 4(3):1–17. https://kuwaitjournals.org/jer/index.php/JER/article/view/976
  • Dinesan VP, Gopinath G, Ashitha MK. 2015. Application of geoinformatics for the delineation of groundwater prospects zones- a case study for Melattur Grama Panchayat in Kerala, India. Aquat Procedia. 4:1389–1396. doi:10.1016/j.aqpro.2015.02.180.
  • Donahue RL, Miller RW, Shickluna JC. 1978. Soils – An introduction to soils and plant growth. Soil Sci. 125(4):271. doi:10.1097/00010694-197804000-00019.
  • Ejepu JS, Jimoh MO, Abdullahi S, Mba MA. 2022. Groundwater Exploration using multi criteria decision analysis and analytic hierarchy process in federal capital territory, Abuja, Central Nigeria. IJG. 13(01):33–53. doi:10.4236/ijg.2022.131003.
  • Foster SSD. 2001. The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water. 3(3):185–192. doi:10.1016/S1462-0758(01)00043-7.
  • Ghosh PK, Bandyopadhyay S, Jana NC. 2015. Mapping of groundwater potential zones in hard rock terrain using geoinformatics: a case of Kumari watershed in western part of West Bengal. Model Earth Syst Environ. 2(1):1. doi:10.1007/s40808-015-0044-z.
  • Godfray G, Tembo MM. 2022. Assessment of ground water potentiality in semi-arid area of central Tanzania. implication from geology and geomorphology of the dodoman supergroup. Geol Ecol Landscapes. 1–20. doi:10.1080/24749508.2022.2109833.
  • Gopinath G, Seralathan P. 2004. Identification of groundwater prospective zones using irs-id liss iii and pump test methods. J Indian Soc Remote Sens. 32(4):329–342. doi:10.1007/BF03030858.
  • Guchhait S, Dolui G, Das S, Das N. 2023. Chapter 15 - Groundwater fluctuation and agricultural insecurity: a geospatial analysis of West Bengal in India. In: Shit P, Bhunia G, Adhikary P, editors. Case studies in geospatial applications to groundwater resources. Elsevier. p. 275–288. doi:10.1016/B978-0-323-99963-2.00002-X.
  • Hasanuzzaman M, Mandal MH, Hasnine M, Shit PK. 2022. Groundwater potential mapping using multi-criteria decision, bivariate statistic and machine learning algorithms: evidence from Chota Nagpur Plateau, India. Appl Water Sci. 12(4):58. doi:10.1007/s13201-022-01584-9.
  • Holt CLR. 1965. Geology and water resources of Portage County, Wisconsin. U.S. Geological Survey. doi:10.3133/wsp1796.
  • Jesiya NP, Gopinath G. 2019. A Customized FuzzyAHP - GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters. Groundwater Sustain Dev. 8:654–666. doi:10.1016/j.gsd.2019.03.005.
  • Jesiya NP, Gopinath G. 2020. A fuzzy based MCDM–GIS framework to evaluate groundwater potential index for sustainable groundwater management - A case study in an urban-periurban ensemble, southern India. Groundwater Sustain Dev. 11:100466. doi:10.1016/j.gsd.2020.100466.
  • Jhariya DC, Kumar T, Gobinath M, Diwan P, Kishore N. 2016. Assessment of groundwater potential zone using remote sensing, GIS and multi criteria decision analysis techniques. J Geol Soc India. 88(4):481–492. doi:10.1007/s12594-016-0511-9.
  • Krakauer NY, Li H, Fan Y. 2014. Groundwater flow across spatial scales: importance for climate modeling. Environ Res Lett. 9(3):034003. doi:10.1088/1748-9326/9/3/034003.
  • Kumar KK, Patwardhan SK, Kulkarni A, Kamala K, Rao KK, Jones R. 2011. Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Current Science. 101(3):312–326.
  • Kumari A, Singh A. 2021. Delineation of Groundwater Potential Zone using Analytical Hierarchy Process. J Geol Soc India. 97(8):935–942. doi:10.1007/s12594-021-1794-z.
  • Madani A, Niyazi B. 2015. Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: a case study from Wadi Yalamlam basin, Makkah Province, Western Saudi Arabia. Environ Earth Sci. 74(6):5129–5142. doi:10.1007/s12665-015-4524-2.
  • Magesh NS, Chandrasekar N, Soundranayagam JP. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front. 3(2):189–196. doi:10.1016/j.gsf.2011.10.007.
  • Mahmoud SH, Alazba AA. 2016. Integrated remote sensing and GIS‐based approach for deciphering groundwater potential zones in the central region of Saudi Arabia. Environ Earth Sci. 75(4):344. doi:10.1007/s12665-015-5156-2.
  • Maity DK, Mandal S. 2017. Identification of groundwater potential zones of the Kumari river basin, India: an RS & GIS based semi-quantitative approach. Environ Dev Sustain. 21(2):1013–1034. Mismatch] doi:10.1007/s10668-017-0072-0.
  • Mall RK, Gupta A, Singh R, Singh RS, Rathore LS. 2006. Water resources and climate change: an Indian perspective. Current Sci. 90(12):1610–1626.
  • Manap MA, Sulaiman WNA, Ramli MF, Pradhan B, Surip N. 2013. A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab J Geosci. 6(5):1621–1637. doi:10.1007/s12517-011-0469-2.
  • Miraki S, Zanganeh SH, Chapi K, Singh VP, Shirzadi A, Shahabi H, Pham BT. 2018. Mapping groundwater potential using a novel hybrid intelligence approach. Water Resour Manage. 33(1):281–302. doi:10.1007/s11269-018-2102-6.
  • Mishra RK. 2023. Fresh Water availability and Its Global challenge. BJMAS. 4(3):1–78. doi:10.37745/bjmas.2022.0208.
  • Mogaji KA. 2016. Combining geophysical techniques and multi-criteria GIS-based application modeling approach for groundwater potential assessment in southwestern Nigeria. Environ Earth Sci. 75(16):1181. doi:10.1007/s12665-016-5897-6.
  • Mohammady M, Pourghasemi HR, Pradhan B. 2012. Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. J Asian Earth Sci. 61:221–236. doi:10.1016/j.jseaes.2012.10.005.
  • Moharir KN, Pande CB, Gautam VK, Singh SK, Rane NL. 2023. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Environ Res. 228:115832. doi:10.1016/j.envres.2023.115832.
  • Moiwo JP, Yang Y, Li H, Han S, Yang Y. 2010. Impact of water resource exploitation on the hydrology and water storage in Baiyangdian Lake. Hydrol Processes. 24(21):3026–3039. doi:10.1002/hyp.7716.
  • Mukherjee I, Singh UK. 2018. Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context. Environ Geochem Health. 40(6):2259–2301. doi:10.1007/s10653-018-0096-x.
  • Murmu P, Kumar M, Lal D, Sonker I, Singh SK. 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater Sustain Dev. 9:100239. doi:10.1016/j.gsd.2019.100239.
  • Naghibi SA, Pourghasemi HR, Dixon BM. 2015. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess. 188(1):44. doi:10.1007/s10661-015-5049-6.
  • Naghibi SA, Vafakhah M, Hashemi H, Pradhan B, Alavi SJ. 2018. Groundwater augmentation through the site selection of floodwater spreading using a data mining approach (case study: mashhad Plain, Iran). Water. 10(10):1405. doi:10.3390/w10101405.
  • Naidoo S, Olaniran AO. 2014. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources. Int J Environ Res Public Health. 11(1):249–270. doi:10.3390/ijerph110100249.
  • Pande CB, Moharir KN, Panneerselvam B, Singh SK, Elbeltagi A, Pham QB, Varade AM, Rajesh J. 2021. Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Appl Water Sci. 11(12):1–20. doi:10.1007/s13201-021-01522-1.
  • Pandey HK, Singh VK, Singh SK. 2022. Multi-criteria decision making and Dempster-Shafer model–based delineation of groundwater prospect zones from a semi-arid environment. Environ Sci Pollut Res. :1–19.
  • Paneerselvam B, Ravichandran N, Li P, Thomas M, Charoenlerkthawin W, Bidorn B. 2023. Machine learning approach to evaluate the groundwater quality and human health risk for sustainable drinking and irrigation purposes in South India. Chemosphere. 336:139228. doi:10.1016/j.chemosphere.2023.139228.
  • Panneerselvam B, Karuppannan S, Muniraj K. 2020. Evaluation of drinking and irrigation suitability of groundwater with special emphasizing the health risk posed by nitrate contamination using nitrate pollution index (NPI) and human health risk assessment (HHRA). Hum Ecolog Risk Assess International J. 27(5):1324–1348. doi:10.1080/10807039.2020.1833300.
  • Panneerselvam B, Muniraj K, Duraisamy K, Pande C, Karuppannan S, Thomas M. 2023. An integrated approach to explore the suitability of nitrate-contaminated groundwater for drinking purposes in a semiarid region of India. Environ Geochem Health. 45(3):647–663. doi:10.1007/s10653-022-01237-5.
  • Panneerselvam B, Muniraj K, Pande C, Ravichandran N. 2023. Prediction and evaluation of groundwater characteristics using the radial basic model in Semi-arid region, India. Inter J Environ Analyt Chem. 103(6):1377–1393. doi:10.1080/03067319.2021.1873316.
  • Park S, Hamm S-Y, Jeon H-T, Kim J. 2017. Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustainability. 9(7):1157. doi:10.3390/su9071157.
  • Pourtaghi ZS, Pourghasemi HR. 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J. 22(3):643–662. doi:10.1007/s10040-013-1089-6.
  • Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Saha A, Shit M. 2022. Climate change and groundwater overdraft impacts on agricultural drought in India: vulnerability assessment, food security measures and policy recommendation. Sci Total Environ. 849:157850. doi:10.1016/j.scitotenv.2022.157850.
  • Ruidas D, Pal SC, Islam T, Md AR, Saha A. 2022. Hydrogeochemical evaluation of groundwater aquifers and associated health hazard risk mapping using ensemble data driven model in a water scares plateau region of Eastern India. Expo Health. 15(1):113–131. doi:10.1007/s12403-022-00480-6.
  • Saha S. 2017. Groundwater potential mapping using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal. Spat Inf Res. 25(4):615–626. doi:10.1007/s41324-017-0127-1.
  • Sankar K, Karunanidhi D, Kalaivanan K, Subramani T, Shanthi D, Balamurugan P. 2023. Integrated hydrogeophysical and GIS based demarcation of groundwater potential and vulnerability zones in a hard rock and sedimentary terrain of Southern India. Chemosphere. 316:137305. doi:10.1016/j.chemosphere.2022.137305.
  • Saaty TL. 1980. The analytical hierarchy process, planning, priority. Pittsburgh: RWS publications. New York, NY: McGraw-Hill.
  • Saaty TL. 1990a. Eigenvector and logarithmic least squares. Eur J Oper Res. 48(1):156–160. doi:10.1016/0377-2217(90)90073-K.
  • Saaty TL. 1990b. How to make a decision: the analytic hierarchy process. Eur J Oper Res. 48(1):9–26. doi:10.1016/0377-2217(90)90057-I.
  • Senapati U, Das TK. 2021. Assessment of basin-scale groundwater potentiality mapping in drought-prone upper Dwarakeshwar River basin, West Bengal, India, using GIS-based AHP techniques. Arab J Geosci. 14(11):960. doi:10.1007/s12517-021-07316-8.
  • Shaji E, Santosh M, Sarath KV, Prakash P, Deepchand V, Divya BV. 2021. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci Front. 12(3):101079. doi:10.1016/j.gsf.2020.08.015.
  • Shao Z, Huq M, Cai B, Altan O, Li Y. 2020. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environ Modell Softw. 134:104868. doi:10.1016/j.envsoft.2020.104868.
  • Shelar RS, Shinde SP, Pande CB, Moharir KN, Orimoloye IR, Mishra AP, Varade AM. 2022. Sub-watershed prioritization of Koyna river basin in India using multi criteria analytical hierarchical process, remote sensing and GIS techniques. Phys Chem Earth Parts A/B/C. 128:103219. doi:10.1016/j.pce.2022.103219.
  • Shiferaw B, Reddy VR, Wani SP. 2008. Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: the effect of alternative water pricing policies. Ecol Econ. 67(2):327–340. doi:10.1016/j.ecolecon.2008.05.011.
  • Sikakwe GU. 2023. Mineral exploration employing drones, contemporary geological satellite remote sensing and geographical information system (GIS) procedures: a review. Remote Sens Appl: soc Environ. 31:100988. doi:10.1016/j.rsase.2023.100988.
  • Strahler AN. 1952. Hypsometric (area-altitude) analysis of erosional topography. Geol Soc America Bull. 63(11):1117. doi:10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
  • Suryanarayana C, Sudheer C, Mahammood V, Panigrahi BK. 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam India. Neurocomputing. 145:324–335. doi:10.1016/j.neucom.2014.05.026.
  • Swetha TV, Gopinath G, Thrivikramji KP, Jesiya NP. 2017. Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin, Kerala. Environ Earth Sci. 76(12):428. doi:10.1007/s12665-017-6749-8.
  • Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S. 2015. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci. 9(1):79. doi:10.1007/s12517-015-2166-z.
  • Thakur JK, Singh SK, Ekanthalu VS. 2017. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. Appl Water Sci. 7(4):1595–1608. doi:10.1007/s13201-016-0384-5.
  • Torabi Haghighi A, Abou Zaki N, Rossi PM, Noori R, Hekmatzadeh AA, Saremi H, Kløve B. 2020. Unsustainability syndrome—from meteorological to agricultural drought in arid and semi-arid regions. Water. 12(3):838. doi:10.3390/w12030838.
  • Tucker GE, Catani F, Rinaldo A, Bras RL. 2001. Statistical analysis of drainage density from digital terrain data. Geomorphology. 36(3-4):187–202. doi:10.1016/S0169-555X(00)00056-8.
  • Wang Y, Li R, Wu X, Yan Y, Wei C, Luo M, Xiao Y, Zhang Y. 2023. Evaluation of groundwater quality for drinking and irrigation purposes using GIS-Based IWQI, EWQI and HHR model. Water. 15(12):2233. doi:10.3390/w15122233.
  • Yesilnacar MI, Gulluoglu MS. 2008. Hydrochemical characteristics and the effects of irrigation on groundwater quality in Harran Plain, GAP Project, Turkey. Environ Geol. 54(1):183–196. doi:10.1007/s00254-007-0804-9.