394
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flood susceptibility mapping using ANNs: a case study in model generalization and accuracy from Ontario, Canada

&
Article: 2316653 | Received 27 Nov 2023, Accepted 05 Feb 2024, Published online: 28 Feb 2024

References

  • Abedi R, Costache R, Shafizadeh-Moghadam H, Pham QB. 2021. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 37(19):5479–5496. doi: 10.1080/10106049.2021.1920636.
  • Ahmadlou M, Al-Fugara A, Al-Shabeeb AR, Arora A, Al-Adamat R, Pham QB, Al-Ansari N, Linh NTT, Sajedi H. 2021. Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks. J Flood Risk Manage. 14(1):e12683. doi: 10.1111/jfr3.12683.
  • Ahmed N, Hoque MAA, Arabameri A, Pal SC, Chakrabortty R, Jui J. 2021. Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh using deep boost, deep learning neural network, and artificial neural network. Geocarto Int. 37(25):8770–8791. doi: 10.1080/10106049.2021.2005698.
  • Akay H. 2021. Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Comput. 25(14):9325–9346. doi: 10.1007/s00500-021-05903-1.
  • Al-Abadi AM. 2018. Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci. 11(9):1–19. doi: 10.1007/S12517-018-3584-5/TABLES/7.
  • Al-Abadi AM, Pradhan B. 2020. In flood susceptibility assessment, is it scientifically correct to represent flood events as a point vector format and create flood inventory map? J Hydrol. 590:125475. doi: 10.1016/j.jhydrol.2020.125475.
  • Al-Juaidi AEM, Nassar AM, Al-Juaidi OEM. 2018. Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci. 11(24):1–10. doi: 10.1007/S12517-018-4095-0/FIGURES/7.
  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA. 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecol Indic. 117:106620. doi: 10.1016/j.ecolind.2020.106620.
  • An NN, Song Nhut H, Anh Phuong T, Quang Huy V, Cao Hanh N, Thi Phuong Thao G, Chi Minh H, Pham The Trinh V, The Trinh P, Viet Hoa P, et al. 2022. Groundwater simulation in Dak Lak province based on MODFLOW model and climate change scenarios. FEBE. 2(1):55–67. doi: 10.1108/FEBE-11-2021-0055.
  • Andaryani S, Nourani V, Haghighi AT, Keesstra S. 2021. Integration of hard and soft supervised machine learning for flood susceptibility mapping. J Environ Manage. 291:112731. doi: 10.1016/J.JENVMAN.2021.112731.
  • Asadi H, Shahedi K, Jarihani B, Sidle RC. 2019. Rainfall-runoff modelling using hydrological connectivity index and artificial neural network approach. Water. 11(2):212. doi: 10.3390/w11020212.
  • Batista G, Prati RC, Monard MC. 2004. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor Newsl. 6(1):20–29. doi: 10.1145/1007730.1007735.
  • Bera A, Meraj G, Kanga S, Farooq M, Singh SK, Sahu N, Kumar P. 2022. Vulnerability and risk assessment to climate change in Sagar Island, India. Water. 14(5):823. doi: 10.3390/w14050823.
  • Bui QT, Nguyen QH, Nguyen XL, Pham VD, Nguyen HD, Pham VM. 2020. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J Hydrol. 581:124379. doi: 10.1016/j.jhydrol.2019.124379.
  • Bunmi Mudashiru R, Sabtu N, Abdullah R, Saleh A, Abustan I. 2022. Optimality of flood influencing factors for flood hazard mapping: an evaluation of two multi-criteria decision-making methods. J Hydrol. 612:128055. doi: 10.1016/j.jhydrol.2022.128055.
  • Cabrera JS, Lee HS. 2020. Flood risk assessment for Davao Oriental in the Philippines using geographic information system-based multi-criteria analysis and the maximum Entropy model. J Flood Risk Manage. 13(2):e12607. doi: 10.1111/jfr3.12607.
  • Chakrabortty R, Chandra Pal S, Rezaie F, Arabameri A, Lee S, Roy P, Saha A, Chowdhuri I, Moayedi H. 2021. Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India. Geocarto Int. 37(23):6713–6735. doi: 10.1080/10106049.2021.1953618.
  • Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 2002. SMOTE: synthetic minority over-sampling technique. arXiv:1106.1813. 16:321–357. doi: 10.1613/jair.953.
  • Chen J, Huang G, Chen W. 2021. Towards better flood risk management: assessing flood risk and investigating the potential mechanism based on machine learning models. J Environ Manage. 293:112810. doi: 10.1016/J.JENVMAN.2021.112810.
  • Cheng M, Fang F, Kinouchi T, Navon IM, Pain CC. 2020. Long lead-time daily and monthly streamflow forecasting using machine learning methods. J Hydrol. 590:125376. doi: 10.1016/j.jhydrol.2020.125376.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096. doi: 10.1016/J.SCITOTENV.2018.10.064.
  • Costache R, Ngo PTT, Bui DT. 2020. Novel ensembles of deep learning neural network and statistical learning for flash-flood susceptibility mapping. Water. 12(6):1549. doi: 10.3390/w12061549.
  • Costache R, Pham QB, Avand M, Thuy Linh NT, Vojtek M, Vojteková J, Lee S, Khoi DN, Thao Nhi PT, Dung TD. 2020. Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment. J Environ Manage. 265:110485. doi: 10.1016/J.JENVMAN.2020.110485.
  • Costache R, Țîncu R, Elkhrachy I, Pham QB, Popa MC, Diaconu DC, Avand M, Costache I, Arabameri A, Bui DT. 2020. New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping. Hydrol Sci J. 65(16):2816–2837. doi: 10.1080/02626667.2020.1842412.
  • Costache R, Trung Tin T, Arabameri A, Crăciun A, Ajin RS, Costache I, Reza Md. Towfiqul Islam A, Abba SI, Sahana M, Avand M, et al. 2022. Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. J Hydrol. 609:127747. doi: 10.1016/j.jhydrol.2022.127747.
  • Dahri N, Yousfi R, Bouamrane A, Abida H, Pham QB, Derdous O. 2022. Comparison of analytic network process and artificial neural network models for flash flood susceptibility assessment. J Afr Earth Sci. 193:104576. doi: 10.1016/j.jafrearsci.2022.104576.
  • Das S. 2020. Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sens Appl. 20:100379. doi: 10.1016/j.rsase.2020.100379.
  • Dilts T. 2015. Topography Tools for ArcGIS 10.3 and earlier - Overview. [accessed 2021 Dec 19]. https://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9.
  • Farhadi H, Najafzadeh M, Mohammadi B, Zhang Y. 2021. Flood risk mapping by remote sensing data and random forest technique. Water. 13(21):3115. doi: 10.3390/w13213115.
  • Giovannettone J, Copenhaver T, Burns M, Choquette S. 2018. A statistical approach to mapping flood susceptibility in the lower connecticut river valley region. Water Resour Res. 54(10):7603–7618. doi: 10.1029/2018WR023018.
  • Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T. 2020. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol (Amst). 590:125275. doi: 10.1016/j.jhydrol.2020.125275.
  • Guo Z, Moosavi V, Leitão JP. 2022. Data-driven rapid flood prediction mapping with catchment generalizability. J Hydrol. 609:127726. doi: 10.1016/j.jhydrol.2022.127726.
  • Hammami S, Zouhri L, Souissi D, Souei A, Zghibi A, Marzougui A, Dlala M. 2019. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci. 12(21):1–16. doi: 10.1007/S12517-019-4754-9/TABLES/7.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Chen W. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci Total Environ. 625:575–588. doi: 10.1016/J.SCITOTENV.2017.12.256.
  • How Does TRCA Define Flood Risk? 2023. Toronto and Region Conservation Authority. [accessed 2023 Jul 10]. https://trca.ca/conservation/flood-risk-management/defining-flood-risk/.
  • Hu P, Zhang Q, Shi P, Chen B, Fang J. 2018. Flood-induced mortality across the globe: spatiotemporal pattern and influencing factors. Sci Total Environ. 643:171–182. doi: 10.1016/J.SCITOTENV.2018.06.197.
  • IBI Group. 2019. Toronto and Region Conservation Authority Flood Risk Assessment and Ranking Project. Report No.: 114571.
  • Islam ARMT, Bappi MMR, Alqadhi S, Bindajam AA, Mallick J, Talukdar S. 2023. Improvement of flood susceptibility mapping by introducing hybrid ensemble learning algorithms and high-resolution satellite imageries. Nat Hazards. 119(1):1–37. doi: 10.1007/s11069-023-06106-7.
  • Jahangir MH, Mousavi Reineh SM, Abolghasemi M. 2019. Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather Clim Extrem. 25:100215. doi: 10.1016/j.wace.2019.100215.
  • Janizadeh S, Avand M, Jaafari A, Van Phong T, Bayat M, Ahmadisharaf E, Prakash I, Pham BT, Lee S. 2019. Prediction success of machine learning methods for flash flood susceptibility mapping in the tafresh watershed, Iran. Sustainability. 11(19):5426. doi: 10.3390/su11195426.
  • Kalantar B, Ueda N, Saeidi V, Janizadeh S, Shabani F, Ahmadi K, Shabani F. 2021. Deep neural network utilizing remote sensing datasets for flood hazard susceptibility mapping in Brisbane, Australia. Remote Sens. 13(13):2638. doi: 10.3390/rs13132638.
  • Khan UT, He J, Valeo C. 2018. River flood prediction using fuzzy neural networks: an investigation on automated network architecture. Water Sci Technol. 2017(1):238–247. doi: 10.2166/WST.2018.107.
  • Khosravi K, Pourghasemi HR, Chapi K, Bahri M. 2016. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s Entropy, statistical index, and weighting factor models. Environ Monit Assess. 188(12):656. doi: 10.1007/S10661-016-5665-9/FIGURES/6.
  • Kim HII, Han KY. 2020. Urban flood prediction using deep neural network with data augmentation. Water. 12(3):899. doi: 10.3390/w12030899.
  • Latifi M, Rakhshandehroo G, Nikoo MR, Sadegh M. 2019. A game theoretical low impact development optimization model for urban storm water management. J Clean Prod. 241:118323. doi: 10.1016/j.jclepro.2019.118323.
  • Lin L, Tang C, Liang Q, Wu Z, Wang X, Zhao S. 2023. Rapid urban flood risk mapping for data-scarce environments using social sensing and region-stable deep neural network. J Hydrol. 617:128758. doi: 10.1016/j.jhydrol.2022.128758.
  • Liu J, Wang J, Xiong J, Cheng W, Li Y, Cao Y, He Y, Duan Y, He W, Yang G. 2022. Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region. Geocarto Int. 37(25):9817–9846. doi: 10.1080/10106049.2022.2025918.
  • Mahmoody Vanolya N, Jelokhani-Niaraki M. 2021. The use of subjective–objective weights in GIS-based multi-criteria decision analysis for flood hazard assessment: a case study in Mazandaran, Iran. GeoJournal. 86(1):379–398. doi: 10.1007/S10708-019-10075-5/FIGURES/8.
  • Malekinezhad H, Sepehri M, Pham QB, Hosseini SZ, Meshram SG, Vojtek M, Vojteková J. 2021. Application of entropy weighting method for urban flood hazard mapping. Acta Geophys. 69(3):841–854. doi: 10.1007/S11600-021-00586-6/TABLES/4.
  • Mudashiru RB, Sabtu N, Abustan I. 2021a. Quantitative and semi-quantitative methods in flood hazard/susceptibility mapping: a review. Arab J Geosci. 14(11):1–24. doi: 10.1007/s12517-021-07263-4.
  • Mudashiru RB, Sabtu N, Abustan I, Balogun W. 2021b. Flood hazard mapping methods: a review. J Hydrol. 603:126846. doi: 10.1016/j.jhydrol.2021.126846.
  • Ontario GeoHub. 2019a. Provincial digital elevation model (PDEM). [accessed 2023 Aug 3]. https://geohub.lio.gov.on.ca/maps/mnrf::provincial-digital-elevation-model-pdem/explore?location=45.644126%2C-79.315587%2C4.58.
  • Ontario GeoHub. 2019b. Soil Survey Complex | Soil Survey Complex. [accessed 2023 Aug 3]. https://geohub.lio.gov.on.ca/datasets/ontarioca11::soil-survey-complex/explore?location=43.785026%2C-79.392323%2C9.84.
  • Ontario GeoHub. 2019c. Southern Ontario Land Resource Information System (SOLRIS) 3.0. [accessed 2023 Aug 3]. https://geohub.lio.gov.on.ca/documents/0279f65b82314121b5b5ec93d76bc6ba/about.
  • Open Government Portal. 2017. Topographic Data of Canada - CanVec Series. [accessed 2023 Aug 3]. https://open.canada.ca/data/en/dataset/8ba2aa2a-7bb9-4448-b4d7-f164409fe056.
  • Park S, Choi C, Kim B, Kim J. 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci. 68(5):1443–1464. doi: 10.1007/S12665-012-1842-5/TABLES/7.
  • Pham BT, Phong TV, Nguyen HD, Qi C, Al-Ansari N, Amini A, Ho LS, Tuyen TT, Yen HPH, Ly HB, et al. 2020. A comparative study of kernel logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic model tree for flash flood susceptibility mapping. Water. 12(1):239. doi: 10.3390/w12010239.
  • Priscillia S, Schillaci C, Lipani A. 2021. Flood susceptibility assessment using artificial neural networks in Indonesia. Artif Intell Geosci. 2:215–222. doi: 10.1016/j.aiig.2022.03.002.
  • Raei E, Reza Alizadeh M, Reza Nikoo M, Adamowski J. 2019. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J Hydrol. 579:124091. doi: 10.1016/j.jhydrol.2019.124091.
  • Rahmati O, Darabi H, Panahi M, Kalantari Z, Naghibi SA, Ferreira CSS, Kornejady A, Karimidastenaei Z, Mohammadi F, Stefanidis S, et al. 2020. Development of novel hybridized models for urban flood susceptibility mapping. Sci Rep. 10(1):12937. doi: 10.1038/s41598-020-69703-7.
  • Rahmati O, Pourghasemi HR, Zeinivand H. 2015. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 31(1):42–70. doi: 10.1080/10106049.2015.1041559.
  • Ren Y, Zhang L, Suganthan PN. 2016. Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput Intell Mag. 11(1):41–53. doi: 10.1109/MCI.2015.2471235.
  • Rincón D, Khan UT, Armenakis C. 2018. Flood risk mapping using gis and multi-criteria analysis: a greater Toronto area case study. Geosciences. 8(8):275. doi: 10.3390/geosciences8080275.
  • Saaty TL. 1988. What is the analytic herarchy process? In: Mitra G, Greenberg HJ, Lootsma FA, Rijkaert MJ, Zimmermann HJ, editors. Mathematical models for decision support. vol 48. Heidelberg, Berlin: Springer; p. 109–121.
  • Seleem O, Ayzel G, de Souza ACT, Bronstert A, Heistermann M. 2022. Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany. Geomatics Nat Haz Risk. 13(1):1640–1662. doi: 10.1080/19475705.2022.2097131.
  • Shafizadeh-Moghadam H, Valavi R, Shahabi H, Chapi K, Shirzadi A. 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J Environ Manage. 217:1–11. doi: 10.1016/J.JENVMAN.2018.03.089.
  • Shahabi H, Shirzadi A, Ronoud S, Asadi S, Pham BT, Mansouripour F, Geertsema M, Clague JJ, Bui DT. 2021. Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geosci Front. 12(3):101100. doi: 10.1016/j.gsf.2020.10.007.
  • Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O. 2017. Spatial prediction of flood-susceptible areas using frequency ratio and maximum Entropy models. Geocarto Int. 33(9):927–941. doi: 10.1080/10106049.2017.1316780.
  • Simonovic SP, Schardong A, Srivastav R, Sandink D. 2015. IDF_CC web-based tool for updating intensity-duration-frequency curves to changing climate – ver 6.5. Western University Facility for Intelligent Decision Support and Institute for Catastrophic Loss Reduction. [accessed 2021 Nov 21]. https://www.idf-cc-uwo.ca.
  • Snieder E, Abogadil K, Khan UT. 2021. Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy. Hydrol Earth Syst Sci. 25(5):2543–2566. doi: 10.5194/hess-25-2543-2021.
  • Snieder E, Shakir R, Khan UT. 2020. A comprehensive comparison of four input variable selection methods for artificial neural network flow forecasting models. J Hydrol. 583:124299. doi: 10.1016/j.jhydrol.2019.124299.
  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M. 2019. GIS-based MCDM – AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 35(9):991–1017. doi: 10.1080/10106049.2019.1566405.
  • Tehrany MS, Jones S. 2017. Evaluating the variations in the flood susceptibility maps accuracies due to the alterations in the type and extend of the flood inventory. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLII-4/W5(4W5):209–214. doi: 10.5194/isprs-archives-XLII-4-W5-209-2017.
  • Tehrany MS, Kumar L. 2018. The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environ Earth Sci. 77(13):1–24. doi: 10.1007/S12665-018-7667-0/TABLES/3.
  • Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol. 512:332–343. doi: 10.1016/j.jhydrol.2014.03.008.
  • TRCA Open Data Portal. 2020. Watercourses TRCA | Watercourses TRCA. [accessed 2023 Aug 3]. https://trca-camaps.opendata.arcgis.com/datasets/5a9254bf984949cca546a5ca64e2aff1/explore.
  • United States Department of Agriculture (USDA). 1986. Urban hydrology for small watersheds. Chapter 2, Estimating runoff; p. 2–1–2-11.
  • Vidyarthi VK, Jain A, Chourasiya S. 2020. Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity. Model Earth Syst Environ. 6(4):2177–2188. doi: 10.1007/s40808-020-00833-7.
  • Vilasan RT, Kapse VS. 2022. Evaluation of the prediction capability of AHP and F-AHP methods in flood susceptibility mapping of Ernakulam district (India). Nat Hazards. 112(2):1767–1793. doi: 10.1007/s11069-022-05248-4.
  • Vojtek M, Vojteková J. 2019. Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water. 11(2):364. doi: 10.3390/w11020364.
  • Vojtek M, Vojteková J, Costache R, Pham QB, Lee S, Arshad A, Sahoo S, Linh NTT, Anh DT. 2021. Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: a case study from Slovakia. Geomatics Nat Hazards Risk. 12(1):1153–1180. doi: 10.1080/19475705.2021.1912835.
  • Wang Y, Fang Z, Hong H, Costache R, Tang X. 2021. Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree. J Environ Manage. 289:112449. doi: 10.1016/j.jenvman.2021.112449.
  • Wang Y, Fang Z, Hong H, Peng L. 2020. Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol. 582:124482. doi: 10.1016/j.jhydol.2019.124482.
  • Wang Y, Wu X, Chen Z, Ren F, Feng L, Du Q. 2019. Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China. Int J Environ Res Public Health. 16(3):368. doi: 10.3390/ijerph16030368.
  • Yang W, Xu K, Lian J, Ma C, Bin L. 2018. Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods. Ecol Indic. 89:269–280. doi: 10.1016/j.ecolind.2018.02.015.
  • Yaseen A, Lu J, Chen X. 2022. Flood susceptibility mapping in an arid region of Pakistan through ensemble machine learning model. Stoch Environ Res Risk Assess. 36(10):3041–3061. doi: 10.1007/s00477-022-02179-1.
  • Zhao G, Pang B, Xu Z, Cui L, Wang J, Zuo D, Peng D. 2021. Improving urban flood susceptibility mapping using transfer learning. J Hydrol. 602:126777. doi: 10.1016/j.jhydrol.2021.126777.
  • Zhao G, Pang B, Xu Z, Peng D, Zuo D. 2020. Urban flood susceptibility assessment based on convolutional neural networks. J Hydrol. 590:125235. doi: 10.1016/j.jhydrol.2020.125235.
  • Zhao G, Pang B, Xu Z, Yue J, Tu T. 2018. Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ. 615:1133–1142. doi: 10.1016/j.scitotenv.2017.10.037.
  • Zhang G, Wang M, Liu K. 2021. Deep neural networks for global wildfire susceptibility modelling. Ecol Indic. 127:107735. doi: 10.1016/j.ecolind.2021.107735.