149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the impact of urban development on mountain view visualization using a GIS-based landscape assessment model: a case study in Lishui, China

, , , &
Article: 2322697 | Received 08 Nov 2023, Accepted 19 Feb 2024, Published online: 11 Mar 2024

References

  • Aben J, Pellikka P, Travis JM. 2018. A call for viewshed ecology: advancing our understanding of the ecology of information through viewshed analysis. Methods Ecol Evol. 9(3):624–633. doi: 10.1111/2041-210X.12902.
  • Alberti M, Waddell P. 2000. An integrated urban development and ecological simulation model. Integ Assess. 1(3):215–227. doi: 10.1023/A:1019140101212.
  • Anderson CC, Rex A. 2019. Preserving the scenic views from North Carolina’s Blue Ridge Parkway: a decision support system for strategic land conservation planning. Appl Geogr. 104:75–82. doi: 10.1016/j.apgeog.2019.01.008.
  • Bacon Warren R. 1979. The visual management system of the Forest Service, USDA. USDA Forest Service general technical report PSW. United States. Pacific Southwest Forest and Range Experiment Station.
  • Chamberlain BC, Meitner MJ. 2013. A route-based visibility analysis for landscape management. Landscape Urban Plann. 111:13–24. doi: 10.1016/j.landurbplan.2012.12.004.
  • Crowe S. 1964. Shaping tomorrow’s landscape. Amsterdam, Holland: Djambatan.
  • Dafna FG, Israel AW. 2006. The Spatial Openness Index: an automated model for Three-Dimensional visual analysis of urban environments. J Archit Plan Res. 23(1):77–89.
  • de Vries S, de Groot M, Boers J. 2012. Eyesores in sight: quantifying the impact of man-made elements on the scenic beauty of Dutch landscapes. Landscape Urban Plann. 105(1–2):118–127. doi: 10.1016/j.landurbplan.2011.12.005.
  • Dean DJ, Lizarraga-Blackard AC. 2007. Modeling the magnitude and spatial distribution of aesthetic impacts. Environ Plann B. 34(1):121–138. doi: 10.1068/b30101.
  • Depellegrin D. 2016. Assessing cumulative visual impacts in coastal areas of the Baltic Sea. Ocean Coast Manag. 119:184–198. doi: 10.1016/j.ocecoaman.2015.10.012.
  • Gao Y, Cheng S, Wang Y, Zhang G, Su Z. 2023. The delicacy control of building height in consideration of mountain landscape and development capacity: a parctical exploration of One-Third height control rule in preserving the Mufu Mountain skyline in Nanjing. Archit J. 2:112–116.
  • Garcia-Moreno A. 2013. To see or to be seen… is that the question? An evaluation of palaeolithic sites’ visual presence and their role in social organization. J Anthropol Archaeol. 32(4):647–658. doi: 10.1016/j.jaa.2013.03.003.
  • Geng H, Yang S, Yang C, Zhou H, Han G. 2021. Research on “Mountain-City” view planning control: taking Ganzhou as a sample. City Plan Rev. 45(10):95–109.
  • Han W, Dong L. 2013. Study on visual entropy of commercial walking streetscape and its correlation evaluation. Build Sci. 29(4):90–94.
  • Hanks EH, Hanks JL. 1969. An environmental bill of rights: the citizen suit and the National Environmental Policy Act of 1969. Rutgers L Rev. 24:230.
  • He D, Hu P. 2020. Research on view protection and management system of historic cities: a case study of London, UK. Landscape Archit. 27(08):97–100.
  • Heng L, Liang S. 2006. Introduction and comments on Japanese landscape law. Huazhong Archit. 10:159–161.
  • Herbst H, Förster M, Kleinschmit B. 2009. Contribution of landscape metrics to the assessment of scenic quality – the example of the landscape structure plan Havelland/Gemany. Landsc Online. 10:1–17. doi: 10.3097/LO.200910.
  • Inglis NC, Vukomanovic J. 2020. Climate change disproportionately affects visual quality of cultural ecosystem services in a mountain region. Ecosyst Serv. 45:101190. doi: 10.1016/j.ecoser.2020.101190.
  • Integra. 2010. Visual assessment report: springdale to Blackwall 500 kV Transmission Line. Scarborough, Queensland, Australia: Parsons Brinckerhoffl.
  • Jafarnejad J, Salmanmahiny AR, Sakieh Y. 2015. Subjectivity versus objectivity: comparative study between brute force method and genetic algorithm for calibrating the SLEUTH urban growth model. J Urban Plan D-ASCE. 142(3):126–144.
  • Litton RB. 1968. Forest landscape description and inventories: a basis for land planning and design. No. 49. Albany, CA: Forest Service, US Department of Agriculture, Pacific Forest and Range Experiment Station.
  • Liu Q, Pan Y, Lai Y. 2019. View planning management between mountain and sea of coastal cities: the experience of Japan. UPI. 34(4):92–101. doi: 10.22217/upi.2016.416.
  • Marks R, Müller MJ, Leser H, Klink HJ. 1989. Anleitung zur Bewertung des Leistungsvermögens des Landschaftshaushaltes. Forschungen zur deutschen Landeskunde. Band 229. Trier, Germany: Zentralausschuss für deutsche Landeskunde.
  • Michael R, Dietwale G. 2018. Empirically-based Nation-wide modelling of scenic landscape quality. J Digit Landsc Archit. 3:129–137.
  • Palmer JF. 2016. Assigning a fixed height to land cover screen for use in visibility analysis. J Digit Landsc Archit. 1:125–132.
  • Palmer JF. 2019. The contribution of a GIS-based landscape assessment model to a scientifically rigorous approach to visual impact assessment. Landsc Urban Plann. 189:80–90. doi: 10.1016/j.landurbplan.2019.03.005.
  • Rød JK, van der Meer D. 2009. Visibility and dominance analysis: assessing a high-rise building project in Trondheim. Environ Plann B Plann Des. 36(4):698–710. doi: 10.1068/b34118.
  • Sepideh S, Mirkarimi SH, Marjan M, Abdolrassoul S, Colin A. 2019. Assessing the visual impacts of new urban features: coupling visibility analysis with 3D city modelling. Geocarto Int. 34(12):1315–1331. doi: 10.1080/10106049.2018.1478891.
  • Smardon RC. 1982. An organizational analysis of federal agency visual resource management systems. Berkeley: University of California.
  • Steffen N, Frank, VD, Hoeven. 2018. Exploring the skyline of Rotterdam and the Hague. Visibility analysis and its implications for tall building policy. Built Environ. 43:571–588.
  • Tandy CRV. 1967. The isovist method of landscape survey. Methods Landsc Anal. 10:9–10.
  • Van Dyke, RM, Bocinsky RK, Windes TC, Robinson TJ. 2016. Great houses, shrines, and high places: intervisibility in the Chacoan world. Am Antiq. 81(2):205–230. doi: 10.7183/0002-7316.81.2.205.
  • Wang Y, Chen X. 1999. Application of psychophysical method in evaluation of foreign forest landscapes. Sci Silvae Sin. 35(5):110–117.
  • Wang Z, Xiong L, Guo Z, Zhang W, Tang G. 2023. A view-tree method to compute viewsheds from digital elevation models. Int J Geogr Inf Sci. 37(1):68–87. doi: 10.1080/13658816.2022.2094385.
  • Weitkamp G. 2011. Mapping landscape openness with isovists. Res Urban Ser. 2(1):205–223.
  • Wu K, Qin B, Wu J, Zhou H, Xia Y, Niu L, Yu T, Wang T. 2016. Variation trends of atmospheric visibility and its influence factors in Nanjing. Hubei Agric Sci. 55(18):4691–4698.
  • Xi C, Guo Y, He R, Mu R, Zhang P, Li Y. 2022. The use of remote sensing to quantitatively assess the visual effect of urban landscape—a case study of Zhengzhou, China. Remote Sens. 14(1):203. doi: 10.3390/rs14010203.
  • Xiang B, Yang Z, Gu W. 2000. Comparisons in protection, regeneration and creation of traditional urban prospects between China and Japan: with examples of Kyoto, Japan and Suzhou, China. Urban Res. 84:39–44.
  • Xu L, Zhou F, Wu R. 2013. The preference and perception of the skyline of mountain-landscape city: the influence of building height and view corridor numbers. Chin Landsc Archit. 10:46–52.
  • Xu M, Matsushima H. 2023. Establishing landscape networks based on visual quality and ecological resistance: a case study in Tianmeng Scenic Spot, China. Forests. 14(3):516. doi: 10.3390/f14030516.
  • Yu B. 2003. On the norms and actions of urban design. City Plan Rev. 9:45–48.
  • Yusoff N, Noor A, Ghazali R. 2014. City skyline conservation: sustaining the premier image of Kuala Lumpur. Proc Environ Sci. 20:583–592. doi: 10.1016/j.proenv.2014.03.071.
  • Zacharias J. 1999. Preferences for view corridors through the urban environment. Landsc Urban Plann. 43(4):217–225. doi: 10.1016/S0169-2046(98)00104-2.
  • Zhang G, Edward V, Wang X. 2021. Approach to map visibility in built environment from airborne LiDAR point clouds. IEEE Access. 9:44150–44161. doi: 10.1109/ACCESS.2021.3066649.
  • Zhang G, Wang X. 2022. Visual analysis of urban mountains based on multi-precision detailed models: a case study of Mount Zijin, Nanjing. Chin Landsc Archit. 38(1):58–63.