189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ensemble stacking: a powerful tool for landslide susceptibility assessment – a case study in Anhua County, Hunan Province, China

, , &
Article: 2326005 | Received 12 Nov 2023, Accepted 27 Feb 2024, Published online: 23 Mar 2024

References

  • Abedini M, Tulabi S. 2018. Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province, Iran. Environ Earth Sci. 77(11):1–13. doi: 10.1007/s12665-018-7524-1.
  • Achu A, Aju C, Di Napoli M, Prakash P, Gopinath G, Shaji E, Chandra V. 2023a. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geosci Front. 14(6):101657. doi: 10.1016/j.gsf.2023.101657.
  • Achu AL, Thomas J, Aju CD, Remani PK, Gopinath G. 2023b. Performance evaluation of machine learning and statistical techniques for modelling landslide susceptibility with limited field data. Earth Sci Inform. 16(1):1025–1039. doi: 10.1007/s12145-022-00910-8.
  • Aghdam IN, Pradhan B, Panahi M. 2017. Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system (ANFIS) at southern Zagros Mountains in Iran. Environ Earth Sci. 76(6):237. doi: 10.1007/s12665-017-6558-0.
  • Agrawal N, Dixit J. 2022. Assessment of landslide susceptibility for Meghalaya (India) using bivariate (frequency ratio and Shannon entropy) and multi-criteria decision analysis (AHP and fuzzy-AHP) models. All Earth. 34(1):179–201. doi: 10.1080/27669645.2022.2101256.
  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH. 2014. A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides. 11(6):1063–1078. doi: 10.1007/s10346-014-0466-0.
  • Arabameri A, Pradhan B, Rezaei K, Sohrabi M, Kalantari Z. 2019. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J Mt Sci. 16(3):595–618. doi: 10.1007/s11629-018-5168-y.
  • Arulbalaji P, Padmalal D, Sreelash K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep. 9(1):2082. doi: 10.1038/s41598-019-38567-x.
  • Bai S, Wang J, Zhang Z, Cheng C. 2012. Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China. Catena. 99:18–25. doi: 10.1016/j.catena.2012.06.012.
  • Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens. 114:24–31. doi: 10.1016/j.isprsjprs.2016.01.011.
  • Botzen WJ, Aerts J, Van den Bergh J. 2013. Individual preferences for reducing flood risk to near zero through elevation. Mitig Adapt Strateg Glob Change. 18(2):229–244. doi: 10.1007/s11027-012-9359-5.
  • Bragagnolo L, Da Silva R, Grzybowski J. 2020. Artificial neural network ensembles applied to the mapping of landslide susceptibility. Catena. 184:104240. doi: 10.1016/j.catena.2019.104240.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140. doi: 10.1007/BF00058655.
  • Breiman L. 2001a. Random forests. Mach Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Breiman L. 2001b. Using iterated bagging to debias regressions. Mach Learn. 45(3):261–277. doi: 10.1023/A:1017934522171.
  • Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci. 13(11):2815–2831. doi: 10.5194/nhess-13-2815-2013.
  • Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. pp. 785–794. doi: 10.1145/2939672.2939785.
  • Chen T, Zhu L, Niu RQ, Trinder CJ, Peng L, Lei T. 2020a. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J Mt Sci. 17(3):670–685. doi: 10.1007/s11629-019-5839-3.
  • Chen W, Chen Y, Tsangaratos P, Ilia I, Wang X. 2020b. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments. Remote Sens. 12(23):3854. doi: 10.3390/rs12233854.
  • Chen W, Li Y. 2020c. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena. 195:104777. doi: 10.1016/j.catena.2020.104777.
  • Chen W, Panahi M, Tsangaratos P, Shahabi H, Ilia I, Panahi S, Li S, Jaafari A, Ahmad BB. 2019. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena. 172:212–231. doi: 10.1016/j.catena.2018.08.025.
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z. 2018a. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135. doi: 10.1016/j.scitotenv.2018.01.124.
  • Chen W, Xie X, Peng J, Shahabi H, Hong H, Bui DT, Duan Z, Li S, Zhu A-X. 2018b. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena. 164:135–149. doi: 10.1016/j.catena.2018.01.012.
  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J. 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena. 151:147–160. doi: 10.1016/j.catena.2016.11.032.
  • Chen W, Zhang S. 2021. GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena. 203:105344. doi: 10.1016/j.catena.2021.105344.
  • Chen W, Zhang S, Li R, Shahabi H. 2018c. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci Total Environ. 644:1006–1018. doi: 10.1016/j.scitotenv.2018.06.389.
  • Chowdhuri I, Pal SC, Arabameri A, Ngo PTT, Chakrabortty R, Malik S, Das B, Roy P. 2020. Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region, India. Environ Earth Sci. 79(20):1–28. doi: 10.1007/s12665-020-09227-5.
  • Chung CJF, Fabbri AG. 2005. Systematic procedures of landslide hazard mapping for risk assessment using spatial prediction models. Landslide hazard and risk. Hoboken (NJ): John Wiley & Sons, Ltd.; p. 139–174.
  • Dai J, Xu Q. 2013. Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl Soft Comput. 13(1):211–221. doi: 10.1016/j.asoc.2012.07.029.
  • Dehnavi A, Aghdam IN, Pradhan B, Varzandeh MHM. 2015. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena. 135:122–148. doi: 10.1016/j.catena.2015.07.020.
  • Demir G. 2019. GIS-based landslide susceptibility mapping for a part of the North Anatolian Fault Zone between Reşadiye and Koyulhisar (Turkey). Catena. 183:104211. doi: 10.1016/j.catena.2019.104211.
  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF. 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards. 65(1):135–165. doi: 10.1007/s11069-012-0347-6.
  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D. 2020. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides. 17(8):1897–1914. doi: 10.1007/s10346-020-01392-9.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ. 662:332–346. doi: 10.1016/j.scitotenv.2019.01.221.
  • Fang Z, Wang Y, Peng L, Hong H. 2021. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int J Geograph Inform Sci. 35(2):321–347. doi: 10.1080/13658816.2020.1808897.
  • Farrar DE, Glauber RR. 1967. Multicollinearity in regression analysis: the problem revisited. Rev Econ Statist. 49(1):92–107. doi: 10.2307/1937887.
  • Freund Y. 1995. Boosting a weak learning algorithm by majority. Inf Comput. 121(2):256–285. doi: 10.1006/inco.1995.1136.
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Statist. 29(5):1189–1232. http://www.jstor.org/stable/2699986
  • Gigović L, Drobnjak S, Pamučar D. 2019. The application of the hybrid GIS spatial multi-criteria decision analysis best–worst methodology for landslide susceptibility mapping. IJGI. 8(2):79. doi: 10.3390/ijgi8020079.
  • Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random forests for land cover classification. Pattern Recog Lett. 27(4):294–300. doi: 10.1016/j.patrec.2005.08.011.
  • Goetz J, Brenning A, Petschko H, Leopold P. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci. 81:1–11. doi: 10.1016/j.cageo.2015.04.007.
  • Green IRA, Stephenson D. 1986. Criteria for comparison of single event models. Hydrol Sci J. 31(3):395–411.
  • Guha-Sapir D, Below R, Hoyois P. 2019. EM-DAT. International disaster database. Brussels, Belgium: Université Catholique de Louvain.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology. 31(1–4):181–216. doi: 10.1016/S0169-555X(99)00078-1.
  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M. 2006. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth Syst Sci. 6(1):115–131. doi: 10.5194/nhess-6-115-2006.
  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology. 72(1–4):272–299. doi: 10.1016/j.geomorph.2005.06.002.
  • Hanley JA, McNeil BJ. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 143(1):29–36. doi: 10.1148/radiology.143.1.7063747.
  • Hastie T, Tibshirani R, Friedman JH, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. Berlin, Germany: Springer.
  • Hong H, Naghibi SA, Pourghasemi HR, Pradhan B. 2016. GIS-based landslide spatial modeling in Ganzhou City, China. Arab J Geosci. 9(2):1–26. doi: 10.1007/s12517-015-2094-y.
  • Hu Q, Zhou Y, Wang S, Wang F. 2020a. Machine learning and fractal theory models for landslide susceptibility mapping: case study from the Jinsha River Basin. Geomorphology. 351:106975. doi: 10.1016/j.geomorph.2019.106975.
  • Hu X, Mei H, Zhang H, Li Y, Li M. 2021. Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China. Nat Hazards. 105(2):1663–1689. doi: 10.1007/s11069-020-04371-4.
  • Hu X, Zhang H, Mei H, Xiao D, Li Y, Li M. 2020b. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Appl Sci. 10(11):4016. doi: 10.3390/app10114016.
  • Huan Y, Song L, Khan U, Zhang B. 2023. Stacking ensemble of machine learning methods for landslide susceptibility mapping in Zhangjiajie City, Hunan Province, China. Environ Earth Sci. 82(1):35. doi: 10.1007/s12665-022-10723-z.
  • Huang F, Cao Z, Guo J, Jiang SH, Li S, Guo Z. 2020a. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena. 191:104580. doi: 10.1016/j.catena.2020.104580.
  • Huang F, Chen J, Du Z, Yao C, Huang J, Jiang Q, Chang Z, Li S. 2020b. Landslide susceptibility prediction considering regional soil erosion based on machine-learning models. IJGI. 9(6):377. doi: 10.3390/ijgi9060377.
  • Hung LQ, Van NTH, Duc DM, Ha LTC, Van Son P, Khanh NH, Binh LT. 2016. Landslide susceptibility mapping by combining the analytical hierarchy process and weighted linear combination methods: a case study in the upper Lo River catchment (Vietnam). Landslides. 13(5):1285–1301. doi: 10.1007/s10346-015-0657-3.
  • Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update. Landslides. 11(2):167–194. doi: 10.1007/s10346-013-0436-y.
  • Juliev M, Mergili M, Mondal I, Nurtaev B, Pulatov A, Hübl J. 2019. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci Total Environ. 653:801–814. doi: 10.1016/j.scitotenv.2018.10.431.
  • Kadavi PR, Lee CW, Lee S. 2019. Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models. Environ Earth Sci. 78(4):1–17. doi: 10.1007/s12665-019-8119-1.
  • Kalantar B, Pradhan B, Naghibi SA, Motevalli A, Mansor S. 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat Nat Hazard Risk. 9(1):49–69. doi: 10.1080/19475705.2017.1407368.
  • Khan A, Khan A, Khan MM, Farid K, Alam MM, Su’ud MBM. 2022. Cardiovascular and diabetes diseases classification using ensemble stacking classifiers with SVM as a meta classifier. Diagnostics. 12(11):2595. doi: 10.3390/diagnostics12112595.
  • Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Prakash I, Bui DT. 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ. 627:744–755. doi: 10.1016/j.scitotenv.2018.01.266.
  • Lai JS, Tsai F. (2019). Improving GIS-based landslide susceptibility assessments with multi-temporal remote sensing and machine learning. Sensors, 19(17), 3717. doi: 10.3390/s19173717.
  • Lin Q, Wang Y. 2018. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides. 15(12):2357–2372. doi: 10.1007/s10346-018-1037-6.
  • Lin W, Yin K, Wang N, Xu Y, Guo Z, Li Y. 2021. Landslide hazard assessment of rainfall-induced landslide based on the CF-SINMAP model: a case study from Wuling Mountain in Hunan Province, China. Nat Hazards. 106(1):679–700. doi: 10.1007/s11069-020-04483-x.
  • Liu LL, Yang C, Huang FM, Wang XM. 2021a. Landslide susceptibility mapping by attentional factorization machines considering feature interactions. Geomatics Nat Hazards Risk. 12(1):1837–1861. doi: 10.1080/19475705.2021.1950217.
  • Liu LL, Yang C, Wang XM. 2021b. Landslide susceptibility assessment using feature selection-based machine learning models. Geomech Eng. 25(1):1–16.
  • Liu LL, Zhang YL, Xiao T, Yang C. 2022. A frequency ratio–based sampling strategy for landslide susceptibility assessment. Bull Eng Geol Environ. 81(9):360. doi: 10.1007/s10064-022-02836-3.
  • Mandal SP, Chakrabarty A, Maity P. 2018. Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya. Spat Inf Res. 26(2):127–141. doi: 10.1007/s41324-017-0160-0.
  • Masetic Z, Subasi A. 2016. Congestive heart failure detection using random forest classifier. Comput Methods Programs Biomed. 130:54–64. doi: 10.1016/j.cmpb.2016.03.020.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev. 207:103225. doi: 10.1016/j.earscirev.2020.103225.
  • Mondal S, Mandal S. 2020. Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India. Geocarto Int. 35(8):818–856. doi: 10.1080/10106049.2018.1544288.
  • Nefeslioglu HA, Duman TY, Durmaz S. 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology. 94(3–4):401–418. doi: 10.1016/j.geomorph.2006.10.036.
  • Nguyen VT, Tran TH, Ha NA, Ngo VL, Nadhir A-A, Tran VP, Duy Nguyen H, M. A M, Amini A, Prakash I, et al. 2019. GIS based novel hybrid computational intelligence models for mapping landslide susceptibility: a case study at da lat city, Vietnam. Sustainability. 11(24):7118. doi: 10.3390/su11247118.
  • Nhu VH, Janizadeh S, Avand M, Chen W, Farzin M, Omidvar E, Shirzadi A, Shahabi H, J. Clague J, Jaafari A, et al. 2020. GIS-based gully erosion susceptibility mapping: a comparison of computational ensemble data mining models. Appl Sci. 10(6):2039. doi: 10.3390/app10062039.
  • Omajali JB, Gomez-Bolivar J, Mikheenko IP, Sharma S, Kayode B, Al-Duri B, Banerjee D, Walker M, Merroun ML, Macaskie LE. 2019. Novel catalytically active Pd/Ru bimetallic nanoparticles synthesized by Bacillus benzeovorans. Sci Rep. 9(1):4715. doi: 10.1038/s41598-019-40312-3.
  • Pal SC, Chakrabortty R, Malik S, Das B. 2018. Application of forest canopy density model for forest cover mapping using LISS-IV satellite data: a case study of Sali watershed, West Bengal. Model Earth Syst Environ. 4(2):853–865. doi: 10.1007/s40808-018-0445-x.
  • Pal SC, Chowdhuri I. 2019. GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Appl Sci. 1(5):1–25. doi: 10.1007/s42452-019-0422-7.
  • Pei X, Cui S, Liang Y, Wang H. 2023. The multiple earthquakes induced progressive failure of the Xinmo landslide, China: based on shaking table tests. Environ Earth Sci. 82(20):465. doi: 10.1007/s12665-023-11148-y.
  • Pereira S, Santos P, Zêzere J, Tavares A, Garcia R, Oliveira S. 2020. A landslide risk index for municipal land use planning in Portugal. Sci Total Environ. 735:139463. doi: 10.1016/j.scitotenv.2020.139463.
  • Petley D. 2012. Global patterns of loss of life from landslides. Geology. 40(10):927–930. doi: 10.1130/G33217.1.
  • Pham BT, Bui DT, Prakash I, Dholakia M. 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena. 149:52–63. doi: 10.1016/j.catena.2016.09.007.
  • Pham BT, Nguyen-Thoi T, Qi C, Van Phong T, Dou J, Ho LS, Van Le H, Prakash I. 2020a. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena. 195:104805. doi: 10.1016/j.catena.2020.104805.
  • Pham BT, Prakash I, Chen W, Ly HB, Ho LS, Omidvar E, Tran VP, Bui DT. (2019). A novel intelligence approach of a sequential minimal optimization-based support vector machine for landslide susceptibility mapping. Sustainability. 11(22), 6323. doi: 10.3390/su11226323.
  • Pham BT, Tien Bui D, Indra P, Dholakia M. 2015. Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS–based statistical approach of frequency ratio method. Int J Eng Res Technol. 4(11):338–344.
  • Pham BT, Phong TV, Nguyen-Thoi T, Trinh PT, Tran QC, Ho LS, Singh SK, Duyen TTT, Nguyen LT, Le HQ, et al. 2020b. GIS-based ensemble soft computing models for landslide susceptibility mapping. Adv Space Res. 66(6):1303–1320. doi: 10.1016/j.asr.2020.05.016.
  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci. 122(2):349–369. doi: 10.1007/s12040-013-0282-2.
  • Ravì D, Bober M, Farinella GM, Guarnera M, Battiato S. 2016. Semantic segmentation of images exploiting DCT based features and random forest. Pattern Recogn. 52:260–273. doi: 10.1016/j.patcog.2015.10.021.
  • Sadighi M, Motamedvaziri B, Ahmadi H, Moeini A. 2020. Assessing landslide susceptibility using machine learning models: a comparison between ANN, ANFIS, and ANFIS-ICA. Environ Earth Sci. 79(24):1–14. doi: 10.1007/s12665-020-09294-8.
  • Sahin EK. 2020. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl Sci. 2(7):1308. doi: 10.1007/s42452-020-3060-1.
  • Su Y, Zhang Y, Ji D, Wang Y, Wu H. 2013. Ensemble learning for sentiment classification. In Chinese Lexical Semantics: 13th Workshop, CLSW 2012; July 6–8, 2012; Wuhan, China. Revised Selected Papers 13. pp. 84–93. Springer Berlin Heidelberg.
  • Sun D, Xu J, Wen H, Wang D. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng Geol. 281:105972. doi: 10.1016/j.enggeo.2020.105972.
  • Sur U, Singh P, Meena SR. 2020. Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomatics Nat Hazards Risk. 11(1):2176–2209. doi: 10.1080/19475705.2020.1836038.
  • Thai Pham B, Tien Bui D, Prakash I. 2018. Landslide susceptibility modelling using different advanced decision trees methods. Civil Eng Environ Syst. 35(1–4):139–157. doi: 10.1080/10286608.2019.1568418.
  • Thien BB, Phuong VT. 2023. Using Landsat satellite imagery for assessment and monitoring of long-term forest cover changes in Dak Nong province, Vietnam. Geographic Pannonic. 27(1):69–82. doi: 10.5937/gp27-41813.
  • Tien Bui D, Shahabi H, Omidvar E, Shirzadi A, Geertsema M, Clague J, Khosravi K, Pradhan B, Pham B, Chapi K, et al. 2019. Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sens. 11(8):931. doi: 10.3390/rs11080931.
  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS. 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena. 118:124–135. doi: 10.1016/j.catena.2014.02.005.
  • Vapnik VN. 1995. The nature of statistical learning theory. Vol. 841. New York (NY): Springer-Verlag New York Inc.; p. 842.
  • Wang Y, Feng L, Li S, Ren F, Du Q. 2020. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena. 188:104425. doi: 10.1016/j.catena.2019.104425.
  • Webb GI. 2000. Multiboosting: a technique for combining boosting and wagging. Mach Learn. 40(2):159–196. doi: 10.1023/A:1007659514849.
  • Weiss A. 2001, July. Topographic position and landforms analysis. In Poster presentation at: ESRI User Conference; San Diego, CA. (Vol. 200).
  • Wu X, Wang J. 2023. Application of bagging, boosting and stacking ensemble and easyensemble methods for landslide susceptibility mapping in the three gorges reservoir area of China. Int J Environ Res Public Health. 20(6):4977. doi: 10.3390/ijerph20064977.
  • Yi Y, Zhang Z, Zhang W, Jia H, Zhang J. 2020. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou region. Catena. 195:104851. doi: 10.1016/j.catena.2020.104851.
  • Yuan X, Liu C, Nie R, Yang Z, Li W, Dai X, Cheng J, Zhang J, Ma L, Fu X, et al. 2022. A comparative analysis of certainty factor-based machine learning methods for collapse and landslide susceptibility mapping in Wenchuan County, China. Remote Sens. 14(14):3259. doi: 10.3390/rs14143259.
  • Zhang W, He Y, Wang L, Liu S, Meng X. 2023. Landslide susceptibility mapping using random forest and extreme gradient boosting: a case study of Fengjie, Chongqing. Geol J. 58(6):2372–2387. doi: 10.1002/gj.4683.
  • Zhang Y, Ge T, Tian W, Liou YA. 2019. Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China. Remote Sens. 11(23):2801. doi: 10.3390/rs11232801.
  • Zhao B, Ge Y, Chen H. 2021. Landslide susceptibility assessment for a transmission line in Gansu Province, China by using a hybrid approach of fractal theory, information value, and random forest models. Environ Earth Sci. 80(12):441. doi: 10.1007/s12665-021-09737-w.
  • Zhao X, Chen W. 2020. Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sens. 12(14):2180. doi: 10.3390/rs12142180.
  • Zhou K, Zhang J, Ren Y, Huang Z, Zhao L. 2020. A gradient boosting decision tree algorithm combining synthetic minority oversampling technique for lithology identification. Geophysics. 85(4):WA147–WA158. doi: 10.1190/geo2019-0429.1.
  • Zhou X, Wen H, Zhang Y, Xu J, Zhang W. 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci Front. 12(5):101211. doi: 10.1016/j.gsf.2021.101211.