160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of landuse and landcover dynamics and their impact on runoff generation patterns in dam catchments of Northern Ghana

, &
Article: 2335247 | Received 04 Dec 2023, Accepted 21 Mar 2024, Published online: 11 Apr 2024

References

  • Ampim PAY, Ogbe M, Obeng E, Akley EK, Maccarthy DS. 2021. Land cover changes in Ghana over the past 24 years. Sustainability. 13(9):4951. https://doi.org/10.3390/su13094951.
  • Andoh C, Gupta S, Khare D. 2018. Status of rainwater harvesting (RWH) in Ghana. Curr World Environ. 13(1):172–179. https://doi.org/10.12944/CWE.13.1.17.
  • Antwi-Agyei P, Dougill AJ, Stringer LC. 2015. Barriers to climate change adaptation: evidence from northeast Ghana in the context of a systematic literature review. Clim Develop. 7(4):297–309. https://doi.org/10.1080/17565529.2014.951013.
  • Anua SN, Wong WVC. 2022. Utilizing Landsat 8 OLI for land cover classification in plantations area. IOP Conf Ser: earth Environ Sci. 1053(1):012027. https://doi.org/10.1088/1755-1315/1053/1/012027.
  • Apollonio C, Balacco G, Novelli A, Tarantino E, Piccinni AF. 2016. Land use change impact on flooding areas: the case study of Cervaro Basin (Italy). Sustainability. 8(10):996. https://doi.org/10.3390/su8100996.
  • Ara Z, Zakwan M. 2018. Estimating runoff using SCS curve number method. Int J Emerg Technol Adv Eng. 8(5):195–200.
  • Bahremand A. 2006. Simulating the effects of reforestation on floods using spatially distributed hydrologic modeling and GIS. p. 186. Brussel: Vrije Universiteit Brussel.
  • Baiyinbaoligao, Ding W, XiangYang L. 2011. Application of Arc GIS in the calculation of basin rainfall runoff. Proccedia Environ Sci. 10:1980–1984. doi: 10.1016/j.proenv.2011.09.310.
  • Bandira PNA, Tan ML, Teh SY, Samat N, Shaharudin SM, Mahamud MA, Tangang F, Juneng L, Chung JX, Samsudin MS. 2022. Optimal solar farm site selection in the George Town conurbation using GIS-based multi-criteria decision making (MCDM) and NASA power data. Atmosphere. 13(12):2105. https://doi.org/10.3390/atmos13122105.
  • Barnes DA. 2009. Assessment of rainwater harvesting in northern Ghana. p. 101. (Doctoral dissertation). Massachusetts Institute of Technology.
  • Barasa BN, Perera EDP. 2018. Analysis of land use change impacts on flash flood occurrences in the Sosiani River basin Kenya. Int J River Basin Manag. 16(2):179–188. https://doi.org/10.1080/15715124.2017.1411922.
  • Beegam N S, Arulraj G P. 2018. A review article on impact of urbanization on hydrological parameters. Int J Civ Eng Technol. 9(199–208):199–208.
  • Bekoe J, Balana BB, Nimoh F. 2021. Social cost-benefit analysis of investment in rehabilitation of multipurpose small reservoirs in northern Ghana using an ecosystem services-based approach. Ecosyst Serv. 50(June):101329. https://doi.org/10.1016/j.ecoser.2021.101329.
  • Bhatti NB, Siyal AA, Qureshi AL, Bhatti IA. 2019. Land covers change assessment after small dam’s construction based on the satellite data. Civ Eng J. 5(4):810–818. https://doi.org/10.28991/cej-2019-03091290.
  • Bussi G, Dadson SJ, Prudhomme C, Whitehead PG. 2016. Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK). J Hydrol. 542:357–372. doi: 10.1016/j.jhydrol.2016.09.010.
  • Descroix L, Mahé G, Lebel T, Favreau G, Galle S, Gautier E, Olivry JC, Albergel J, Amogu O, Cappelaere B, et al. 2009. Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: a synthesis. J Hydrol. 375(1–2):90–102. https://doi.org/10.1016/j.jhydrol.2008.12.012.
  • Dionizio EA, Costa MH. 2019. Influence of land use and land cover on hydraulic and physical soil properties at the Cerrado agricultural frontier. Agriculture. 9(1):1–14. https://doi.org/10.3390/agriculture9010024.
  • Du S, Leng Y, Liang X, Li J, Liu W, Du Q. 2023. Degradation aware unfolding network for spectral super-resolution. IEEE Geosci Remote Sens Lett. 21:1–1. https://doi.org/10.1109/lgrs.2023.3346929.
  • FAO. 2016. Map accuracy assessment and area estimation: a practical guide. National Forest Monitoring Assessment Working Paper. Rome: Food and Agriculture Organization of the United Nations. p. 69. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=KQFl_6AAAAAJ&citation_for_view=KQFl_6AAAAAJ:roLk4NBRz8UC
  • Gajbhiye S, Mishra SK, Pandey A. 2014. Relationship between SCS-CN AND SEDIMENT YIELD. Appl Water Sci. 4(4):363–370. https://doi.org/10.1007/s13201-013-0152-8.
  • Gardelle J, Hiernaux P, Kergoat L, Grippa M. 2010. Less rain, more water in ponds: a remote sensing study of the dynamics of surface waters from 1950 to present in pastoral Sahel (Gourma region, Mali). Hydrol Earth Syst Sci. 14(2):309–324. https://doi.org/10.5194/hess-14-309-2010.
  • Garen DC, Moore DS. 2005. Curve number hydrology in water quality modeling: uses, abuses, and future directions. J Am Water Resources Assoc. 41(2):377–388. https://doi.org/10.1111/j.1752-1688.2005.tb03742.x.
  • Gbohoui YP, Paturel JE, Tazen F, Mounirou LA, Yonaba R, Karambiri H, Yacouba H. 2021. Impacts of climate and environmental changes on water resources: a multi-scale study based on Nakanbé nested watersheds in West African Sahel. J Hydrol Reg Stud. 35:100828. https://doi.org/10.1016/j.ejrh.2021.100828.
  • Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA, Darmenov A, Bosilovich MG, Reichle R, et al. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Climate. 30(14):5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1.
  • Grimaldi S, Petroselli A, Tauro F, Porfiri M. 2012. Temps de concentration: un paradoxe dans l’hydrologie moderne. Hydrol Sci J. 57(2):217–228. https://doi.org/10.1080/02626667.2011.644244.
  • Guo H, Li X, Huang Q, Zhang D. 2011. Effect of Lulc change on surface runoff inurbanization area Zhongchang SUN. In Proceedings of the ASPRS 2011 Annual Conference, Milwaukee, Wisconsin, May (Vol. 1, No. 5).
  • Guzha AC, Rufino MC, Okoth S, Jacobs S, Nóbrega RLB. 2018. Impacts of land use and land cover change on surface runoff, discharge and low flows: evidence from East Africa. J Hydrol Reg Stud. 15:49–67. https://doi.org/10.1016/j.ejrh.2017.11.005.
  • Habete D, Ferreira CM. 2016. Impact of forecasted land use change on design peak discharge at watershed and catchment scales: simple equation to predict changes. J Hydrol Eng. 21(7):04016019. https://doi.org/10.1061/(asce)he.1943-5584.0001384.
  • Hassan NA, Gathenya JM, Raude JM. 2021. Estimating groundwater recharge rates and identifying groundwater recharge zones in Kakia and Esamburmbur Sub-catchmnet Narok, Kenya. J Sustain Res Eng. 7(1):31–45.
  • Hengl T, De Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, et al. 2017. SoilGrids250m: global gridded soil information based on machine learning. PLOS One. 12(2):e0169748. (https://doi.org/10.1371/journal.pone.0169748.
  • Hong D, Zhang B, Li X, Li Y, Li C, Yao J, Yokoya N, Li H, Ghamisi P, Jia X, et al. 2023. SpectralGPT: spectral foundation model. arXiv preprint arXiv:2311.07113. p. 1–15.
  • Hu S, Fan Y, Zhang T. 2020. Assessing the effect of land use change on surface runoff in a rapidly urbanized City: a case study of the central area of Beijing. Land. 9(1):17. https://doi.org/10.3390/land9010017.
  • Hundecha Y, Bárdossy A. 2004. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J Hydrol. 292(1-4):281–295. https://doi.org/10.1016/j.jhydrol.2004.01.002.
  • Hussain S, Mubeen M, Karuppannan S. 2022. Land use and land cover (LULC) change analysis using TM, ETM + and OLI Landsat images in district of Okara, Punjab, Pakistan. Phys Chem Earth Parts A/B/C. 126(June 2021):1–10.
  • Jawale A. 2019. Comparison of image classification techniques: binary and multiclass using convolutional neural network and support vector machines. INFOCOMP J Comput Sci. 18(2):28–35.
  • Kalantari Z, Lyon SW, Folkeson L, French HK, Stolte J, Jansson PE, Sassner M. 2014. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Sci Total Environ. 466–467:741–754. https://doi.org/10.1016/j.scitotenv.2013.07.047.
  • Kang M, Yoo C. 2020. Application of the SCS–CN method to the Hancheon basin on the volcanic Jeju Island, Korea. Water. 12(12):3350. doi: 10.3390/w12123350.
  • Kowalik T, Walega A. 2015. Estimation of CN parameter for small agricultural watersheds using asymptotic functions. Water. 7(12):939–955. https://doi.org/10.3390/w7030939.
  • Manzoor SA, Griffiths GH, Robinson E, Shoyama K, Lukac M. 2022. Linking pattern to process: intensity analysis of land-change dynamics in Ghana as correlated to past socioeconomic and policy contexts. Land. 11(7):1070. https://doi.org/10.3390/land11071070.
  • Marie Mireille N, M. Mwangi H, K. Mwangi J, Mwangi Gathenya J. 2019. Analysis of land use change and its impact on the hydrology of Kakia and Esamburmbur sub-watersheds of Narok County, Kenya. Hydrology. 6(4):86. https://doi.org/10.3390/hydrology6040086.
  • Marzouk OA. 2021. Assessment of global warming in Al Buraimi, sultanate of Oman based on statistical analysis of NASA POWER data over 39 years, and testing the reliability of NASA POWER against meteorological measurements. Heliyon. 7(3):e06625. https://doi.org/10.1016/j.heliyon.2021.e06625.
  • Mishra SK, Singh VP. 2006. A relook at NEH-4 curve number data and antecedent moisture condition criteria. Hydrol Processes. 20(13):2755–2768. https://doi.org/10.1002/hyp.6066.
  • Mohamed MA, Anders J, Schneider C. 2020. Monitoring of changes in land use/land cover in Syria from 2010 to 2018 using multitemporal Landsat imagery and GIS. Land. 9(7):226. https://doi.org/10.3390/land9070226.
  • Mohd Hasmadi I, Pakhriazad HZ, Shahrin MF. 2009. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Malaysia J Soc Space. 5(1):1–10.
  • Mounirou LA, Yonaba R, Koïta M, Paturel JE, Mahé G, Yacouba H, Karambiri H. 2021. Hydrologic similarity: dimensionless runoff indices across scales in a semi-arid catchment. J Arid Environ. 193:104590. https://doi.org/10.1016/j.jaridenv.2021.104590.
  • Mounirou LA, Yonaba R, Tazen F, Ayele GT, Yaseen ZM, Karambiri H, Yacouba H. 2022. Soil erosion across scales: assessing its sources of variation in Sahelian landscapes under semi-arid climate. Land. 11(12):2302. https://doi.org/10.3390/land11122302.
  • Mustafa YM, Amin MSM, Lee TS, Shariff ARM. 2012. Evaluation of land development impact on a tropical watershed hydrology using remote sensing and GIS. J Spat Hydrol. 5(2):16–30.
  • Mwangi HM, Lariu P, Julich S, Patil SD, McDonald MA, Feger KH. 2017. Characterizing the intensity and dynamics of land-use change in the Mara River Basin, East Africa. Forests. 9(1):8. https://doi.org/10.3390/f9010008.
  • Nair AM, Vijayan A, George B. 2015. Impact of temporal variation on land use on surface runoff-a case study of Cochin city. Int J Adv Earth Sci Eng. 4(1):265–274.
  • Ngurah G, Dharmayasa P, Simatupang CA, Sinaga DM. 2022. NASA Power’s: an alternative rainfall data resources for hydrology research and planning activities in Bali Island, Indonesia. J Infrastruct Plan Eng. 1(1):1–7.
  • Nyatuame M, Agodzo S, Amekudzi LK, Mensah-Brako B. 2023. Assessment of past and future land use/cover change over Tordzie watershed in Ghana. Front Environ Sci. 11:1–14. https://doi.org/10.3389/fenvs.2023.1139264.
  • Obahoundje S, Diedhiou A. 2022. Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: a review. Environ Res Lett. 17(4):043005. https://doi.org/10.1088/1748-9326/ac5b3b.
  • Ohana-Levi N, Givati A, Alfasi N, Peeters A, Karnieli A. 2018. Predicting the effects of urbanization on runoff after frequent rainfall events. J Land Use Sci. 13(1–2):81–101. https://doi.org/10.1080/1747423X.2017.1385653.
  • Othow OO, Sl G, Gemeda DO. 2017. Analyzing the rate of land use and land cover change and determining the causes of forest cover change in Gog district, Gambella regional state. Ethiopia J Remote Sens. GIS. 6(4):218.
  • Owar Othow O, Legesse Gebre S, Obsi Gemeda D. 2017. Analyzing the rate of land use and land cover change and determining the causes of forest cover change in Gog District, Gambella Regional State, Ethiopia. J Remote Sens GIS. 06(04):218. https://doi.org/10.4172/2469-4134.1000219.
  • Pechlivanidis IG, Jackson BM, Mcintyre NR, Wheater HS. 2011. Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global Nest J. 13(3):193–214. https://doi.org/10.30955/gnj.000778.
  • Piscopia R, Petroselli A, Grimaldi S. 2015. A software package for predicting design-flood hydrographs in small and ungauged basins. J Agricult Engineer. 46(2):74–84. https://doi.org/10.4081/jae.2015.432.
  • Praskievicz S, Chang H. 2011. Impacts of climate change and urban development on water resources in the Tualatin River Basin, Oregon. Ann Assoc Am Geograph. 101(2):249–271. https://doi.org/10.1080/00045608.2010.544934.
  • Rodrigues GC, Braga RP. 2021. Evaluation of NASA power reanalysis products to estimate daily weather variables in a hot summer Mediterranean climate. Agronomy. 11(6):1207. https://doi.org/10.3390/agronomy11061207.
  • Ross CW, Prihodko L, Anchang J, Kumar S, Ji W, Hanan NP. 2018. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci Data. 5(1):180091. https://doi.org/10.1038/sdata.2018.91.
  • Sertel E, Topaloğlu RH, Şallı B, Algan IY, Aksu GA. 2018. Comparison of landscape metrics for three different level land cover/land use maps. IJGI. 7(10):408. https://doi.org/10.3390/ijgi7100408.
  • Sitterson J, Knightes C, Parmar R, Wolfe K, Avant B, Muche M. 2018. An overview of rainfall-runoff model types. Types An Overview of Rainfall-Runoff Model. September. p. 0–29.
  • Stewart D, Canfield E, Hawkins R. 2012. Curve number determination methods and uncertainty in hydrologic soil groups from semiarid watershed data. J Hydrol Eng. 17(11):1180–1187. https://doi.org/10.1061/(asce)he.1943-5584.0000452.
  • Toure SI, Stow DA, Clarke K, Weeks J. 2020. Patterns of land cover and land use change within the two major metropolitan areas of Ghana. Geocarto Int. 35(2):209–223. https://doi.org/10.1080/10106049.2018.1516244.
  • Umukiza E, Raude JM, Petroselli A, Wandera SM, Gathenya JM, Apollonio C. 2022. Drainage systems design in urbanized areas under land use changes scenarios. Acta Hydrologica Slovaca. 23(2):29–37. https://doi.org/10.31577/ahs-2022-0023.02.0017.
  • Umukiza E, Raude JM, Wandera SM, Petroselli A, Gathenya JM. 2021. Impacts of land use and land cover changes on peak discharge and flow volume in Kakia and Esamburmbur sub-catchments of Narok Town, Kenya. Hydrology. 8(2):82. https://doi.org/10.3390/hydrology8020082.
  • USDA-NRCS. 2010. National engineering handbook chapter 15, time of concentration. p. 1–15.
  • Vojtek M, Vojteková J. 2019. Land use change and its impact on surface runoff from small basins: a case of Radiša basin. Folia Geographica. 61(2):104–125.
  • Wróbel M, Boczoń A. 2020. Determining the potential retention of a forest catchment based on the CN parameter. Model Earth Syst Environ. 7(3):2145–2148. https://doi.org/10.1007/s40808-020-00938-z.
  • Yang W, Jin F, Si Y, Li Z. 2021. Runoff change controlled by combined effects of multiple environmental factors in a headwater catchment with cold and arid climate in northwest China. Sci Total Environ. 756:143995. https://doi.org/10.1016/j.scitotenv.2020.143995.
  • Yang W, Long D, Bai P. 2019. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. J Hydrol. 570:201–219. https://doi.org/10.1016/j.jhydrol.2018.12.055.
  • Yomo M, Villamor GB, Aziadekey M, Olorunfemi F, Mourad KA. 2020. Climate change adaptation in semi-arid ecosystems: a case study from Ghana. Clim Risk Manage. 27:100206. https://doi.org/10.1016/j.crm.2019.100206.
  • Yonaba R, Biaou AC, Koïta M, Tazen F, Mounirou LA, Zouré CO, Queloz P, Karambiri H, Yacouba H. 2021. A dynamic land use/land cover input helps in picturing the Sahelian paradox: assessing variability and attribution of changes in surface runoff in a Sahelian watershed. Sci Total Environ. 757:143792. https://doi.org/10.1016/j.scitotenv.2020.143792.
  • Yonaba R, Koïta M, Mounirou LA, Tazen F, Queloz P, Biaou AC, Niang D, Zouré C, Karambiri H, Yacouba H. 2021. Spatial and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern Burkina Faso. Land Use Pol. 103:105305. https://doi.org/10.1016/j.landusepol.2021.105305.
  • Yonaba R, Mounirou LA, Tazen F, Koïta M, Biaou AC, Zouré CO, Queloz P, Karambiri H, Yacouba H. 2023. Future climate or land use? Attribution of changes in surface runoff in a typical Sahelian landscape. Comptes Rendus. Géoscience. 355(S1):1–28.
  • Zeng Z, Tang G, Hong Y, Zeng C, Yang Y. 2017. Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications. Remote Sens Lett. 8(6):528–536. https://doi.org/10.1080/2150704X.2017.1297544.
  • Zhu H, Li Q, Miao K, Wang J, Hou B, Jiao L. 2024. LargeRSDet: a large mini-batch object detector for remote sensing images. IEEE Geosci Remote Sensing Lett. 21:1–5. https://doi.org/10.1109/LGRS.2023.3345946.