151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deformation monitoring and analysis of liujiaxia reservoir landslide based on time-series InSAR and wavelet transform

, &
Article: 2339287 | Received 24 Jan 2024, Accepted 01 Apr 2024, Published online: 13 Apr 2024

References

  • Bales S. 2022. Policy uncertainty and the Sovereign-Bank Nexus: a time-frequency analysis using wavelet transformation. Finance Res Lett. 44(1544-6123):102038. doi: 10.1016/j.frl.2021.102038.
  • Dai K, Deng J, Xu Q, Li Z, Shi X, Hancock C, Wen N, Zhang L, Zhuo G. 2022. Interpretation and sensitivity analysis of the insar line of sight displacements in landslide measurements. GISci Remote Sens. 59(1):1226–1242. doi: 10.1080/15481603.2022.2100054.
  • Dai K, Li Z, Xu Q, Burgmann R, Milledge DG, Tomas R, Fan X, Zhao C, Liu X, Peng J, et al. 2020. Entering the era of earth observation-based landslide warning systems: a novel and exciting framework. IEEE Geosci Remote Sens Mag. 8(1):136–153. doi: 10.1109/MGRS.2019.2954395.
  • Ding YX, Peng SZ. 2020. Spatiotemporal trends and attribution of drought across China from 1901 - 2100. Sustainability. 12(2):477. doi: 10.3390/su12020477.
  • Dong J, Zhang L, Liao M, Gong J. 2019. Improved correction of seasonal tropospheric delay in insar observations for landslide deformation monitoring. Remote Senting of Environ. 233(0034-4257):1–18. doi: 10.1016/j.rse.2019.111370.
  • Dun J, Feng W, Yi X, Zhang G, Wu M. 2021. Detection and mapping of active landslides before impoundment in the Baihetan Reservoir Area (China) based on the time-series insar method. Remote Senting 13. doi: 10.3390/rs13163213.
  • Dykes AP, Bromhead EN. 2018. New, simplified and improved interpretation of the vaiont landslide mechanics. Landslides. 15(10):2001–2015. doi: 10.1007/s10346-018-0998-9.
  • Fei XF, Tian Y, Zhao CY, Liu HM, Chen HW. 2023. Ldentification and deformation monitoring of unstable slopes in Longyangxia Reservoir Area. The upper reach of Yellow River, China based on multi- temporal Lnsar technology. J Earth Sci Environ. 45(1672-6561):578–589. doi: 10.19814/j.jese.2022.11042.
  • Fu BJ, Xia WR, Zhu Z. J 1989. Study on the Stability of the Left Shoulder Slope of the Liujiaxia Hydropower Station. Chinese J Rock Mech Engin. 1000-0860:43–51. doi: 10.13928/j.cnki.wrahe.
  • Gabriel AK, Goldstein RM, Zebker HA. 1989. Mapping small elevation changes over large areas; Differential radar interferometry. J Geophys Res. 94(B7):9183–9191. doi: 10.1029/JB094iB07p09183.
  • Gao BH, He Y, Zhang LF, Yao S, Yang W, Chen Y, He X, Zhao ZA, Chen HS. 2023. Dynamic evaluation of landslide susceptibility by CNN considering insar deformation: A case study of Liujiaxia Reservoir. Chinese J Rock Mech Engin. 42(1000-6915):450–465. doi: 10.13722/j.cnki.jrme.2022.0266.
  • Grinsted A, Moore JC, Jevrejeva S. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin Processes Geophys. 11(5/6):561–566. doi: 10.5194/npg-11-561-2004.
  • Issartel J, Bardainne T, Gaillot P, Marin L. 2014. The relevance of the cross-wavelet transform in the analysis of human interaction - a tutorial. Front Psychol. 5(1664-1078):1566. doi: 10.3389/fpsyg.2014.01566.
  • Jiang J, Ehret D, Xiang W, Rohn J, Huang L, Yan S, Bi R. 2011. Numerical simulation of Qiaotou landslide deformation caused by drawdown of the three Gorges Reservoir, China. Environ Earth Sci. 62(2):411–419. doi: 10.1007/s12665-010-0536-0.
  • Kang Y, Zhao C, Zhang Q, Lu Z, Li B. 2017. Application of Insar techniques to an analysis of the Guanling landslide. Remote Senting. 9:1–17. doi: 10.3390/rs9101046.
  • Li X,Ma J,Hu G. 2007. Genetic analysis on huge landslides alongthe section from Longyang Gorge to Liujia Gorge of the Yellow River. The Chinese Journal of Geological Hazard and Control. 18(01):28–32. doi: 10.3969/j.issn.1003-8035.2007.01.007.
  • Liu P, Li ZH, Hoey T, Kincal C, Zhang JF, Zeng QM, Muller JP. 2013. Using advanced Insar time series techniques to monitor landslide movements in Badong of the three Gorges region, China. Int J Appl Earth Obs Geoinf. 21(0303-2434):253–264. doi: 10.1016/j.jag.2011.10.010.
  • Matsuura S, Asano S, Okamoto T. 2008. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Engin Geol. 101(1–2):49–59. doi: 10.1016/j.enggeo.2008.03.007.
  • Ngui WK, Leong M, Hee LM, Abdelrhman AM. 2013. Wavelet analysis: mother wavelet selection methods. Appl Mech Mat. 393(2013):953–958. doi: 10.4028/www.scientific.net/AMM.393.953.
  • Peng SZ, Ding YX, Wen ZM, Chen YM, Cao Y, Ren JY. 2017. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess plateau of China during 2011-2100. Agric for Meteorol. 233(0168-1923):183–194. doi: 10.1016/j.agrformet.2016.11.129.
  • Peng SZ, Gang CC, Cao Y, Chen YM. 2018. Assessment of climate change trends over the loess plateau in China from 1901 to 2100. Intl J Climatol. 38(5):2250–2264. doi: 10.1002/joc.5331.
  • Peng S. 2020. 1-Km monthly precipitation dataset for China (1901-2022). National Tibetan Plateau Data Center. doi: 10.5281/zenodo.3185722.
  • Peng S, Ding Y, Liu W, Li Z. 2019. 1 Km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst Sci Data. 11(4):1931–1946. doi: 10.5194/essd-11-1931-2019.
  • Rateb A, Kuo CY. 2019. Quantifying vertical deformation in the Tigris - Euphrates basin due to the groundwater abstraction: insights from grace and sentinel-1 satellites. Water. 11(8):1658. doi: 10.3390/w11081658.
  • Shi X, Yang C, Zhang L, Jiang H, Liao M, Zhang L, Liu X. 2019. Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal insar datasets. Sci Total Environ. 674(00489697):200–210. doi: 10.1016/j.scitotenv.2019.04.140.
  • Sloukia FE, Bybi A, Drissi H. 2017. Selection of mother wavelets for analyzing bearing vibration signals. 3rd International Conference on Electrical and Information Technologies. IEEE; p. 1–6.
  • Su L, Miao CY, Borthwick AGL, Duan QY. 2017. Wavelet-based variability of Yellow River discharge at 500 -, 100 -, and 50-year timescales. Gondwana Res. 49(1342-937X):94–105. doi: 10.1016/j.gr.2017.05.013.
  • Sun Q, Zhang L, Ding X, Hu J, Li ZW, Zhu JJ. 2015. Slope deformation prior to Zhouqu, China landslide from insar time series analysis. Remote Senting of Environ. 156(0034-4257):45–57. doi: 10.1016/j.rse.2014.09.029.
  • Tang HM, Wasowski J, Juang CH. 2019. Geohazards in the three gorges reservoir Area, China lessons learned from decades of research. Eng Geol. 261(0013-7952):105267. doi: 10.1016/j.enggeo.2019.105267.
  • Tomás R, Li Z, Liu P, Singleton A, Hoey T, Cheng X. 2014. Spatiotemporal characteristics of the Huangtupo landslide in the three Gorges region (China) constrained by radar interferometry. Geophys J Int. 197(1):213–232. doi: 10.1093/gji/ggu017.
  • Tomás R, Li Z, Lopez-Sanchez JM, Liu P, Singleton A. 2016. Using wavelet tools to analyse seasonal variations from insar time-series data: A case study of the Huangtupo landslide. Landslides. 13(3):437–450. doi: 10.1007/s10346-015-0589-y.
  • Tomás R, Pastor JL, Béjar-Pizarro M, Bonì R, Ezquerro P, Fernández-Merodo JA, Guardiola-Albert C, Herrera G, Meisina C, Teatini P, et al. 2020. Wavelet analysis of land subsidence time-series: Madrid tertiary aquifer case study. Proc IAHS. 382(2199-899X):353–359. doi: 10.5194/piahs-382-353-2020.
  • Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bull Amer Meteor Soc. 79(1):61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
  • Wang LZ, Song HL, An J, Dong B, Wu XY, Wu YZ, Wang Y, Li B, Liu QJ, Yu WN. 2023. Nutrients and environmental factors cross wavelet analysis of river Yi in East China: A multi-scale approach. Int J Environ Res Public Health. 20(1):1–19. doi: 10.3390/ijerph20010496.
  • Wen NL, Dai K, Tomas R, Wu MT, Chen C, Deng J, Shi XL, Feng WK. 2023. Revealing the time lag between slope stability and reservoir water fluctuation from Insar observations and wavelet tools - a case study in Maoergai Reservoir (China). GISci Remote Sens. 60(1):1–18. doi: 10.1080/15481603.2023.2170125.
  • Wu SS, Hu XL, Zheng WB, He CC, Zhang GC, Zhang H, Wang X. 2021. Effects of reservoir water level fluctuations and rainfall on a landslide by two-way anova and K-means clustering. Bull Eng Geol Environ. 80(7):5405–5421. doi: 10.1007/s10064-021-02273-8.
  • Yang BB, Yin KL, Lacasse S, Liu ZQ. 2019. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides. 16(4):677–694. doi: 10.1007/s10346-018-01127-x.
  • Yi XY, Feng WK, Wu MT, Ye ZP, Fang YF, Wang P, Li RJ, Dun JW. 2022. The initial impoundment of the Baihetan Reservoir Region (China) exacerbated the deformation of the Wangjiashan landslide: characteristics and mechanism. Landslides. 19(8):1897–1912. doi: 10.1007/s10346-022-01898-4.
  • Zhao CY, Kang Y, Zhang Q, Lu Z, Li B. 2018. Landslide identification and monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, using the Insar method. Remote Senting. 10(2072-4292):1–16. doi: 10.3390/rs10070993.
  • Zhou C,Yin K,Cao Y,Ahmed B. 2016. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng. Geol. 204:108–120. doi: 10.1016/j.enggeo.2016.02.009.
  • Zhou C,Cao Y,Hu Xie,Yin K,Wang Yue,Catani F. 2022. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area. Landslides. 19(7):1585–1597. doi: 10.1007/s10346-021-01796-1.
  • Zhou C, Yin KL, Cao Y, Intrieri E, Ahmed B, Catani F. 2018. Displacement prediction of step-like landslide by applying a novel Kernel extreme learning machine method. Landslides. 15(11):2211–2225. doi: 10.1007/s10346-018-1022-0.