288
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assigning resistivity values to rock quality designation indices using integrated unmanned aerial vehicle and 2D electrical resistivity tomography in granitic rock

, , , , , & show all
Article: 2343019 | Received 17 Jan 2024, Accepted 09 Apr 2024, Published online: 22 Apr 2024

References

  • 3GSM. https://3gsm.at/.
  • (JMG), M. a. G. d. 2014. Geological map of peninsular Malaysia. (Peta Geologi Semenanjung). https://www.jmg.gov.my/add_on/mt/smnjg/tiles/.
  • Alemdag S, Sari M, Seren A. 2022. Determination of rock quality designation (RQD) in metamorphic rocks: a case study (Bayburt-Kırklartepe Dam). Bull Eng Geol Environ. 81(5):214. doi: 10.1007/s10064-022-02675-2.
  • Alpaslan N. 2021. Determination of borehole locations and saline-water intrusion for groundwater in Central Anatolia Region, Turkey using electrical tomography (ERT) method. Environ Earth Sci. 80(24):810. doi: 10.1007/s12665-021-10117-7.
  • Asriza S, Kristyanto T, Indra T, Syahputra R, Tempessy A. 2017. Determination of the landslide slip surface using electrical resistivity tomography (ERT) technique. Paper presented at the Advancing Culture of Living with Landslides: Vol. 2, Advances in Landslide Science: 53.
  • Attwa M, El Bastawesy M, Ragab D, Othman A, Assaggaf HM, Abotalib AZ. 2021. Toward an integrated and sustainable water resources management in structurally-controlled watersheds in desert environments using geophysical and remote sensing methods. Sustainability. 13(7):4004. doi: 10.3390/su13074004.
  • Azimian A. 2016. A new method for improving the RQD determination of rock core in borehole. Rock Mech Rock Eng. 49(4):1559–1566. doi: 10.1007/s00603-015-0789-8.
  • Boyle A, Wilkinson PB, Chambers JE, Meldrum PI, Uhlemann S, Adler A. 2017. Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring. Geophys J Int. 212(2):1167–1182. doi: 10.1093/gji/ggx453.
  • Buen B, Palmstrom A. 1982. Design and supervision of unlined hydro power shafts and tunnels with head up to 590 meters. Paper presented at the ISRM international symposium. Aachen, Germany, May 1982.
  • Buša J, Rusnák M, Kušnirák D, Greif V, Bednarik M, Putiška R, Dostál I, Sládek J, Rusnáková D. 2020. Urban landslide monitoring by combined use of multiple methodologies-a case study on Sv. Anton town, Slovakia. Phys Geogr. 41(2):169–194. doi: 10.1080/02723646.2019.1630232.
  • Camarero PL, Moreira CA, Pereira HG. 2019. Analysis of the physical integrity of earth dams from electrical resistivity tomography (ERT) in Brazil. Pure Appl Geophys. 176(12):5363–5375. doi: 10.1007/s00024-019-02271-8.
  • Carrión-Mero P, Briones-Bitar J, Morante-Carballo F, Stay-Coello D, Blanco-Torrens R, Berrezueta E. 2021. Evaluation of slope stability in an urban area as a basis for territorial planning: a case study. Appl Sci. 11(11):5013. doi: 10.3390/app11115013.
  • Cheng C, Li X, Li S, Zheng B. 2016. Geomechanical studies on granite intrusions in Alxa area for high-level radioactive waste disposal. Sustainability. 8(12):1329. doi: 10.3390/su8121329.
  • Choi S, Park H. 2004. Variation of rock quality designation (RQD) with scanline orientation and length: a case study in Korea. Int J Rock Mech Min Sci. 41(2):207–221. doi: 10.1016/S1365-1609(03)00091-1.
  • Choong CM. Structural History of the Kinta Valley, MSc Thesis, Geoscience Dept., Faculty of Geoscience and Petroleum; 2014.
  • Coulibaly Y, Belem T, Cheng L. 2017. Numerical analysis and geophysical monitoring for stability assessment of the Northwest tailings dam at Westwood Mine. Int J Min Sci Technol. 27(4):701–710. doi: 10.1016/j.ijmst.2017.05.012.
  • dji. https://www.dji.com/phantom-4-pro-v2.
  • Falae PO, Kanungo D, Chauhan P, Dash RK. 2019. Recent trends in application of electrical resistivity tomography for landslide study. Paper presented at the Renewable Energy and Its Innovative Technologies. Proceedings of ICEMIT 2017, Volume 1. Springer; p. 195–204.
  • Gao Q, Hasan M, Shang Y, Qi S. 2024. Geophysical estimation of 2D hydraulic conductivity for groundwater assessment in hard rock. Acta Geophys. 1–12. doi: 10.1007/s11600-024-01310-w.
  • Ghani AA, Searle M, Robb L, Chung S-L. 2013. Transitional IS type characteristic in the main range granite, Peninsular Malaysia. J Asian Earth Sci. 76:225–240. doi: 10.1016/j.jseaes.2013.05.013.
  • Hudson J, Priest S. 1983. Discontinuity frequency in rock masses. Int J Rock Mech Min Sci Geomech Abstr, Elsevier. 20(2):73–89. doi: 10.1016/0148-9062(83)90329-7.
  • Ishak MF, Zaini MI, Zolkepli M, Wahap M, Sidek JJ, Yasin AM, Zolkepli M, Sidik MM, Arof KM, Talib ZA. 2020. Granite exploration by using electrical resistivity imaging (ERI): a case study in Johor. Int J Integr Eng. 12(8):328–347.
  • Ismail A, A Rashid AS, Sa’ari R, Rasib AW, Mustaffar M, Abdullah RA, Kassim A, Mohd Yusof N, Abd Rahaman N, Mohd Apandi N, et al. 2022. Application of UAV-based photogrammetry and normalised water index (NDWI) to estimate the rock mass rating (RMR): a case study. Phys Chem Earth Parts A/B/C. 127:103161. doi: 10.1016/j.pce.2022.103161.
  • Junaid M, Abdullah RA, Sa’ari R, Ali W, Islam A, Sari M. 2022a. 3D modelling and feasibility assessment of granite deposit using 2D electrical resistivity tomography, borehole, and unmanned aerial vehicle survey. J Min Environ. 13(4):929–942.
  • Junaid M, Abdullah RA, Sa’ari R, Ali W, Rehman H, Alel MNA, Ghani U. 2021. 2D Electrical Resistivity Tomography an advance and expeditious exploration technique for current challenges to mineral industry. J Himal Earth Sci. 54(1):11–32.
  • Junaid M, Abdullah RA, Sa’ari R, Ali W, Rehman H, Shah k S, Sari M. 2022b. Water-saturated zone recognition using integrated 2D electrical resistivity tomography, borehole, and aerial photogrammetry in granite deposit, Malaysia. Arab J Geosci. 15(14):1301. doi: 10.1007/s12517-022-10572-x.
  • Junaid M, Abdullah RA, Sa’ari R, Rehman H, Shah KS, Ullah R, Alel MNA, Zainal IZ, Zainuddin NE. 2022c. Quantification of rock mass condition based on fracture frequency using unmanned aerial vehicle survey for slope stability assessment. J Indian Soc Remote Sens. 50(11):2041–2054.
  • Junaid M, Abdullah RA, Sa’ari R, Shah KS, Ullah R. 2023. A comparative study of the influence of volumetric joint counts (Jv) and resistivity on rock quality designation (RQD) using multiple linear regression. Pure Appl Geophys. 180(6):2351–2368. doi: 10.1007/s00024-023-03260-8.
  • Junaid M, Abdullah RA, Saa’ri R, Alel M, Ali W, Ullah A. 2019. Recognition of boulder in granite deposit using integrated borehole and 2D electrical resistivity imaging for effective mine planning and development.
  • Kamran M, Ullah B, Ahmad M, Sabri MMS. 2022. Application of KNN-based Isometric Mapping and Fuzzy C-Means Algorithm to Predict Short-term Rockburst Risk in Deep Underground Projects.
  • Khan MS, Hossain S, Ahmed A, Faysal M. 2017. Investigation of a shallow slope failure on expansive clay in Texas. Eng Geol. 219:118–129. doi: 10.1016/j.enggeo.2016.10.004.
  • Khurshid MN, Khan AH, Rehman Z u, Chaudhary TS. 2022. The evaluation of rock mass characteristics against seepage for sustainable infrastructure development. Sustainability. 14(16):10109. doi: 10.3390/su141610109.
  • Kring K, Chatterjee S. 2020. Uncertainty quantification of structural and geotechnical parameter by geostatistical simulations applied to a stability analysis case study with limited exploration data. Int J Rock Mech Min Sci. 125:104157. doi: 10.1016/j.ijrmms.2019.104157.
  • Lin D, Yuan R, Lin X, Lin X, Lou C, Cai Y, Yu J, Qiu R, Su X, Wang H. 2021. Disturbed granite identification by integrating rock mass geophysical properties. Int J Rock Mech Min Sci. 138:104596. doi: 10.1016/j.ijrmms.2020.104596.
  • Liu X, Shen J, Yang M, Cai G, Liu S. 2022. Subsurface characterization of a construction site in Nanjing, China using ERT and CPTU methods. Eng Geol. 299:106563. doi: 10.1016/j.enggeo.2022.106563.
  • Mineo S, Caliò D, Pappalardo G. 2022. UAV-based photogrammetry and infrared thermography applied to rock mass survey for geomechanical purposes. Remote Sens. 14(3):473. doi: 10.3390/rs14030473.
  • Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S, Lapenna V. 2008. Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Eng Geol. 98(3-4):156–167. doi: 10.1016/j.enggeo.2008.02.008.
  • Olona J, Pulgar JA, Fernández‐Viejo G, López‐Fernández C, González‐Cortina JM. 2010. Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods. Near Surf Geophys. 8(6):585–599. doi: 10.3997/1873-0604.2010043.
  • Pánek T, Tábořík P, Klimeš J, Komárková V, Hradecký J, Šťastný M. 2011. Deep-seated gravitational slope deformations in the highest parts of the Czech Flysch Carpathians: evolutionary model based on kinematic analysis, electrical imaging and trenching. Geomorphology. 129(1-2):92–112. doi: 10.1016/j.geomorph.2011.01.016.
  • Peng D, Xu Q, Zhang X, Xing H, Zhang S, Kang K, Qi X, Ju Y, Zhao K. 2019. Hydrological response of loess slopes with reference to widespread landslide events in the Heifangtai terrace, NW China. J Asian Earth Sci. 171:259–276. doi: 10.1016/j.jseaes.2018.12.003.
  • Priest SD, Hudson J. 1976. Discontinuity spacings in rock. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
  • Safari Farrokhad S, Lashkaripour GR, Hafezi Moghaddas N, Aligholi S, Sabri MMS. 2022. The effect of the petrography, mineralogy, and physical properties of limestone on Mode I fracture toughness under dry and saturated conditions. Appl Sci. 12(18):9237. doi: 10.3390/app12189237.
  • Sari M. 2023. Evaluation of stability in rock-fill dams by numerical analysis methods: a case study (Gümüşhane-Midi Dam, Türkiye). Baltica. 36(7–12):89–99. doi: 10.5200/baltica.2023.2.1.
  • Sari M, Seren A, Alemdag S. 2020. Determination of geological structures by geophysical and geotechnical techniques in Kırklartepe Dam Site (Turkey). J Appl Geophys. 182:104174. doi: 10.1016/j.jappgeo.2020.104174.
  • Singh U, Sharma PK. 2022. Seasonal groundwater monitoring using surface NMR and 2D/3D ERT. Environ Earth Sci. 81(7):1–17. doi: 10.1007/s12665-022-10325-9.
  • Sonmez H, Ercanoglu M, Dagdelenler G. 2022. A novel approach to structural anisotropy classification for jointed rock masses using theoretical rock quality designation formulation adjusted to joint spacing. J Rock Mech Geotech Eng. 14(2):329–345. doi: 10.1016/j.jrmge.2021.08.009.
  • Strelec S, Mesec J, Grabar K, Jug J. 2017. Implementation of in-situ and geophysical investigation methods (ERT & MASW) with the purpose to determine 2D profile of landslide. Acta Montan Slovaca. 22(4):345.
  • Tsang L, He B, Rashid ASA, Jalil AT, Sabri MMS. 2022. Predicting the Young’s modulus of rock material based on petrographic and rock index tests using boosting and bagging intelligence techniques. Appl Sci. 12(20):10258. doi: 10.3390/app122010258.
  • Urban J, Pánek T, Hradecký J, Tábořík P. 2015. Deep structures of slopes connected with sandstone crags in the upland area of the Świętokrzyskie (Holy Cross) Mountains, Central Poland. Geomorphology. 246:519–530. doi: 10.1016/j.geomorph.2015.06.048.
  • Wu F, Wu J, Bao H, Li B, Shan Z, Kong D. 2021. Advances in statistical mechanics of rock masses and its engineering applications. J Rock Mech Geotech Eng. 13(1):22–45. doi: 10.1016/j.jrmge.2020.11.003.
  • Zheng J, Wang X, Lü Q, Liu J, Guo J, Liu T, Deng J. 2020. A contribution to relationship between volumetric joint count (J v) and rock quality designation (RQD) in three-dimensional (3-D) space. Rock Mech Rock Eng. 53(3):1485–1494. doi: 10.1007/s00603-019-01986-3.
  • Zheng J, Yang X, Lü Q, Zhao Y, Deng J, Ding Z. 2018. A new perspective for the directivity of Rock Quality Designation (RQD) and an anisotropy index of jointing degree for rock masses. Eng Geol. 240:81–94. doi: 10.1016/j.enggeo.2018.04.013.
  • Zumr D, David V, Jeřábek J, Noreika N, Krása J. 2020. Monitoring of the soil moisture regime of an earth-filled dam by means of electrical resistance tomography, close range photogrammetry, and thermal imaging. Environ Earth Sci. 79(12):1–11. doi: 10.1007/s12665-020-09052-w.