469
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancements in remote sensing technologies for accurate monitoring and management of surface water resources in Africa: an overview, limitations, and future directions

, &
Article: 2347935 | Received 23 Jan 2024, Accepted 22 Apr 2024, Published online: 16 May 2024

References

  • Acharya BS, Bhandari M, Bandini F, Pizarro A, Perks M, Joshi DR, Wang S, Dogwiler T, Ray RL, Kharel G, et al. 2021. Unmanned aerial vehicles in hydrology and water management: applications, challenges, and perspectives. Water Resour Res. 57(11): e2021WR029925. doi: 10.1029/2021WR029925.
  • Acharya TD, Subedi A, Lee DH. 2018. Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal. Sensors (Basel). 18(8):2580. doi: 10.3390/s18082580.
  • Adetoro O-IO, Osarenren V, Popoola SO. 2022. Effects of increasing impervious surface on water quality in Ile-Ife Urban Watershed, Southwestern Nigeria. GEP. 10(12):126–160. doi: 10.4236/gep.2022.1012010.
  • Aguilar AL, Flores H, Crespo G, Marín MI, Campos I, Calera A. 2018. Performance assessment of MOD16 in evapotranspiration evaluation in Northwestern Mexico. Water. 10(7):901. doi: 10.3390/w10070901.
  • Ahmed M, Wiese DN. 2019. Short-term trends in Africa’s freshwater resources: rates and drivers. Sci Total Environ. 695:133843. doi: 10.1016/j.scitotenv.2019.133843.
  • Albertini C, Gioia A, Iacobellis V, Manfreda S. 2022. Detection of surface water and floods with multispectral satellites. Remote Sens. 14(23):6005. doi: 10.3390/rs14236005.
  • Ali I, Greifeneder F, Stamenkovic J, Neumann M, Notarnicola C. 2015. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 7(12):16398–16421. doi: 10.3390/rs71215841.
  • Alsdorf DE, Rodríguez E, Lettenmaier DP. 2007. Measuring surface water from space. Rev Geophys. 45(2):10–1029. doi: 10.1029/2006RG000197.
  • Arroyo-Mora JP, Kalacska M, Inamdar D, Soffer R, Lucanus O, Gorman J, Naprstek T, Schaaf ES, Ifimov G, Elmer K, et al. 2019. Implementation of a UAV–hyperspectral pushbroom imager for ecological monitoring. Drones. 3(1):12. doi: 10.3390/drones3010012.
  • Asam S, Eisfelder C, Hirner A, Reiners P, Holzwarth S, Bachmann M. 2023. AVHRR NDVI compositing method comparison and generation of multi-decadal time series—a TIMELINE thematic processor. Remote Sensing. 15(6):1631. doi: 10.3390/rs15061631.
  • Asfaw W, Haile AT, Rientjes T. 2020. Combining multisource satellite data to estimate storage variation of a lake in the Rift Valley Basin, Ethiopia. Int J Appl Earth Obs Geoinf. 89:102095. doi: 10.1016/j.jag.2020.102095.
  • Baggio G, Qadir M, Smakhtin V. 2021. Freshwater availability status across countries for human and ecosystem needs. Sci Total Environ. 792:148230. doi: 10.1016/j.scitotenv.2021.148230.
  • Baker A, Harvey VL, Buckley M. 2023. Machine Learning for collagen peptide biomarker determination in the taxonomic identification of archaeological fish remains. J Archaeolog Sci: Rep. 49:104001. doi: 10.1016/j.jasrep.2023.104001.
  • Banda VD, Dzwairo RB, Singh SK, Kanyerere T. 2022. Hydrological modelling and climate adaptation under changing climate: a review with a focus in Sub-Saharan Africa. Water. 14(24):4031. doi: 10.3390/w14244031.
  • Bangira T, Alfieri SM, Menenti M, Van Niekerk A, Vekerdy Z. 2017. A spectral unmixing method with ensemble estimation of endmembers: application to flood mapping in the caprivi floodplain. Remote Sens. 9(10):1013. doi: 10.3390/rs9101013.
  • Barasa B, Wanyama J. 2020. Freshwater lake inundation monitoring using Sentinel-1 SAR imagery in Eastern Uganda. Ann Gis. 26(2):191–200. doi: 10.1080/19475683.2020.1743754.
  • Barnieh BA, Jia L, Menenti M, Zhou J, Zeng Y. 2020. Mapping land use land cover transitions at different spatiotemporal scales in West Africa. Sustainability. 12(20):8565. doi: 10.3390/su12208565.
  • Barton IJ, Bathols JM. 1989. Monitoring floods with AVHRR. Remote Sens Environ. 30(1):89–94. doi: 10.1016/0034-4257.(89)90050-3.
  • Becker RH, Sayers M, Dehm D, Shuchman R, Quintero K, Bosse K, Sawtell R. 2019. Unmanned aerial system based spectroradiometer for monitoring harmful algal blooms: a new paradigm in water quality monitoring. J Great Lakes Res. 45(3):444–453. doi: 10.1016/j.jglr.2019.03.006.
  • Belgiu M, Drăguţ L. 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens. 114:24–31. doi: 10.1016/j.isprsjprs.2016.01.011.
  • Belhassan K. 2022. Managing drought and water stress in Northern Africa. In: Eyvaz M, Albahnasawi A, Gürbulak E, Tekbaş M, editors. Arid environment - perspectives, challenges and management. London, UK: IntechOpen. doi: 10.5772/intechopen.107391.
  • Belmahdi F, Lazri M, Ouallouche F, Labadi K, Absi R, Ameur S. 2023. Application of Dempster-Shafer theory for optimization of precipitation classification and estimation results from remote sensing data using machine learning. Remote Sens Appl: Soc Environ. 29:100906. doi: 10.1016/j.rsase.2022.100906.
  • Bhaga TD, Dube T, Shekede MD, Shoko C. 2020. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: a review. Remote Sens. 12(24):4184. doi: 10.3390/rs12244184.
  • Bhaga TD, Dube T, Shekede MD, Shoko C. 2023. Investigating the effectiveness of Landsat-8 OLI and Sentinel-2 MSI satellite data in monitoring the effects of drought on surface water resources in the Western Cape Province, South Africa. Remote Sens Appl: Soc Environ. 32:101037. doi: 10.1016/j.rsase.2023.101037.
  • Bie W, Fei T, Liu X, Liu H, Wu G. 2020. Small water bodies mapped from Sentinel-2 MSI (MultiSpectral Imager) imagery with higher accuracy. Int J Remote Sens. 41(20):7912–7930. doi: 10.1080/01431161.2020.1766150.
  • Bigot S, Dumas D, Brou TY, Ramboarison R, Razanaka S, Philippon N. 2021. Studying recent hydroclimatic variability in Madagascar despite deficient measurement networks: use of CHIRPS and GRACE data at the scale of the Mahajunga province. In: Proceedings of IAHS. Hydrology of Large River Basins of Africa - 4th International Conference on the ‘“Hydrology of the Great Rivers of Africa, Copernicus GmbH, pp. 43–48. doi: 10.5194/piahs-384-43-2021.
  • Braune E, Xu Y. 2008. Groundwater management issues in Southern Africa: an IWRM perspective. WSA. 34(6):699–706. doi: 10.4314/wsa.v34i6.183672.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Brisco B, Short N, Sanden J. v. d, Landry R, Raymond D. 2009. A semi-automated tool for surface water mapping with RADARSAT. Can J Remote Sens. 35. (4):336–344. [Preprint]. doi: 10.5589/m09-025.
  • Buma WG, Lee S-I, Seo JY. 2018. Recent surface water extent of lake chad from multispectral sensors and GRACE. Sensors. 18(7):2082. doi: 10.3390/s18072082.
  • Camps-Valls G, Tuia D, Zhu XX, Reichstein M. 2021. Deep learning for the earth sciences: a comprehensive approach to remote sensing, climate science and geosciences. Hoboken, New Jersey: John Wiley & Sons.
  • Carroll ML, Townshend JR, DiMiceli CM, Noojipady P, Sohlberg RA. 2009. A new global raster water mask at 250 m resolution. Int J Digital Earth. 2(4):291–308. doi: 10.1080/17538940902951401.
  • Cavallo C, Papa MN, Gargiulo M, Palau-Salvador G, Vezza P, Ruello G. 2021. Continuous monitoring of the flooding dynamics in the Albufera Wetland (Spain) by Landsat-8 and Sentinel-2 datasets. Remote Sens. 13(17):3525. doi: 10.3390/rs13173525.
  • Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ. 113(5):893–903. doi: 10.1016/j.rse.2009.01.007.
  • Chaves MED, Picoli MCA, D. Sanches I. 2020. Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: a systematic review. Remote Sens. 12(18):3062. doi: 10.3390/rs12183062.
  • Chawla I, Karthikeyan L, Mishra AK. 2020. A review of remote sensing applications for water security: quantity, quality, and extremes. J Hydrol. 585:124826. doi: 10.1016/j.jhydrol.2020.124826.
  • Che X, Feng M, Jiang H, Song J, Jia B. 2015. Downscaling MODIS surface reflectance to improve water body extraction. Adv Meteorol. 2015:e424291–13. doi: 10.1155/2015/424291.
  • Cherif I, Ovakoglou G, Alexandridis TK, Kganyago M, Mashiyi N. (2021) Improving water bodies detection from Sentinel-1 in South Africa using drainage and terrain data. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII. Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, SPIE, pp. 171–178. doi: 10.1117/12.2599671.
  • Chiloane C, Dube T, Shoko C. 2020. Monitoring and assessment of the seasonal and inter-annual pan inundation dynamics in the Kgalagadi Transfrontier Park, Southern Africa. Phys Chem Earth Parts A/B/C. 118–119:102905. doi: 10.1016/j.pce.2020.102905.
  • Chisadza B, Gwate O, Ncube F, Moyo N, Chiwara P. 2022. Detecting land surface water changes in the Upper Mzingwane sub-catchment using remotely sensed data. AQUA Water Infrastruct Ecosyst Soc. 71(10):1180–1196. doi: 10.2166/aqua.2022.089.
  • Cortes C, Vapnik V. 1995. Support-vector networks. Mach Learn. 20(3):273–297. doi: 10.1007/BF00994018.
  • Cristianini N, Ricci E. 2008. Support vector machines. In: Kao M-Y, editor. Encyclopedia of algorithms. Boston, MA: Springer US; p. 928–932. doi: 10.1007/978-0-387-30162-4_415.
  • d’Andrimont R, Defourny P. 2018. Monitoring African water bodies from twice-daily MODIS observation. GIScience Remote Sens. 55(1):130–153. doi: 10.1080/15481603.2017.1366677.
  • De Oliveira e Lucas P, Alves MA, de Lima e Silva PC, Guimarães FG. 2020. Reference evapotranspiration time series forecasting with ensemble of convolutional neural networks. Comput Electron Agric. 177:105700. doi: 10.1016/j.compag.2020.105700.
  • Deng Y, Jiang W, Tang Z, Ling Z, Wu Z. 2019. Long-term changes of open-surface water bodies in the Yangtze River basin based on the google earth engine cloud platform. Remote Sens. 11(19):2213. doi: 10.3390/rs11192213.
  • Deoli V, Kumar D, Kuriqi A. 2022. Detection of water spread area changes in eutrophic lake using Landsat data. Sensors. 22(18):6827. doi: 10.3390/s22186827.
  • DigitalGlobe data portal. 2024. [Accessed 2024 Mar 4].https://evwhs.digitalglobe.com/.
  • Dile YT, Tekleab S, Ayana EK, Gebrehiwot SG, Worqlul AW, Bayabil HK, Yimam YT, Tilahun SA, Daggupati P, Karlberg L, et al. 2018. Advances in water resources research in the Upper Blue Nile basin and the way forward: a review. J Hydrol. 560:407–423. doi: 10.1016/j.jhydrol.2018.03.042.
  • Dimitrovski I, Kitanovski I, Kocev D, Simidjievski N. 2023. Current trends in deep learning for Earth Observation: an open-source benchmark arena for image classification. ISPRS J Photogramm Remote Sens. 197:18–35. doi: 10.1016/j.isprsjprs.2023.01.014.
  • Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H, Ceccato P. 2018. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quart J Royal Meteoro Soc. 144(S1):292–312. doi: 10.1002/qj.3244.
  • Dong Y, Fan L, Zhao J, Huang S, Geiß C, Wang L, Taubenböck H. 2022. Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing. J Hydrol. 614:128580. doi: 10.1016/j.jhydrol.2022.128580.
  • Donmez C, Berberoglu S, Erdogan MA, Tanriover AA, Cilek A. 2015. Response of the regression tree model to high resolution remote sensing data for predicting percent tree cover in a Mediterranean ecosystem. Environ Monit Assess. 187(2):4. doi: 10.1007/s10661-014-4151-5.
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, et al. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36. doi: 10.1016/j.rse.2011.11.026.
  • Dube T, Mutanga O, Seutloali K, Adelabu S, Shoko C. 2015. Water quality monitoring in sub-Saharan African lakes: a review of remote sensing applications. Afr J Aquat Sci. 40(1):1–7. doi: 10.2989/16085914.2015.1014994.
  • Dube T, Seaton D, Shoko C, Mbow C. 2023. Advancements in earth observation for water resources monitoring and management in Africa: a comprehensive review. J Hydrol. 623:129738. doi: 10.1016/j.jhydrol.2023.129738.
  • Ekpetere K, Abdelkader M, Ishaya S, Makwe E, Ekpetere P. 2023. Integrating satellite imagery and ground-based measurements with a machine learning model for monitoring lake dynamics over a semi-arid region. Hydrology. 10(4):78. doi: 10.3390/hydrology10040078.
  • El Bilali A, Taghi Y, Briouel O, Taleb A, Brouziyne Y. 2022. A framework based on high-resolution imagery datasets and MCS for forecasting evaporation loss from small reservoirs in groundwater-based agriculture. Agric Water Manage. 262:107434. doi: 10.1016/j.agwat.2021.107434.
  • El-Asmar HM, Hereher ME, El Kafrawy SB. 2013. Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: a remote sensing approach. Egypt J Remote Sens Space Sci. 16(1):119–123. doi: 10.1016/j.ejrs.2013.04.004.
  • Fernandez-Moran R, Gómez-Chova L, Alonso L, Mateo-García G, López-Puigdollers D. 2021. Towards a novel approach for Sentinel-3 synergistic OLCI/SLSTR cloud and cloud shadow detection based on stereo cloud-top height estimation. ISPRS J Photogramm Remote Sens. 181:238–253. doi: 10.1016/j.isprsjprs.2021.09.013.
  • Feyisa GL, Meilby H, Fensholt R, Proud SR. 2014. Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ. 140:23–35. doi: 10.1016/j.rse.2013.08.029.
  • Fielding L, Najman Y, Millar I, Butterworth P, Garzanti E, Vezzoli G, Barfod D, Kneller B. 2018. The initiation and evolution of the River Nile. Earth Planet Sci Lett. 489:166–178. doi: 10.1016/j.epsl.2018.02.031.
  • Fisher A, Flood N, Danaher T. 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens Environ. 175:167–182. doi: 10.1016/j.rse.2015.12.055.
  • Folwell S, Farqhuarson F. 2006. The impacts of climate change on water resources in the Okavango basin. IAHS-AISH publication [Preprint]. [Accessed 2023 May 2]. https://www.semanticscholar.org/paper/The-impacts-of-climate-change-on-water-resources-in-Folwell-Farqhuarson/9355f5a2b6748b5f9bd83d5c7767dece27b7a61b.
  • Frappart F, Zeiger P, Betbeder J, Gond V, Bellot R, Baghdadi N, Blarel F, Darrozes J, Bourrel L, Seyler F. 2021. Automatic detection of inland water bodies along altimetry tracks for estimating surface water storage variations in the Congo Basin. Remote Sens. 13(19):3804. doi: 10.3390/rs13193804.
  • Frenkel-Pinter M, Rajaei V, Glass JB, Hud NV, Williams LD. 2021. Water and life: the medium is the message. J Mol Evol. 89(1–2):2–11. doi: 10.1007/s00239-020-09978-6.
  • Gašparović M, Singh SK. 2023. Urban surface water bodies mapping using the automatic k-means based approach and sentinel-2 imagery. Geocarto Int. 38(1):2148757. doi: 10.1080/10106049.2022.2148757.
  • Gebrechorkos SH, Hülsmann S, Bernhofer C. 2018. Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrol Earth Syst Sci. 22(8):4547–4564. doi: 10.5194/hess-22-4547-2018.
  • Gidey E, Mhangara P. 2023. An application of machine-learning model for analyzing the impact of land-use change on surface water resources in Gauteng Province, South Africa. Remote Sens. 15(16):4092. doi: 10.3390/rs15164092.
  • Gong L, Zhang X, Pan G, Zhao J, Zhao Y. 2023. Hydrological responses to co-impacts of climate change and land use/cover change based on CMIP6 in the Ganjiang River, Poyang Lake basin. Anthropocene. 41:100368. doi: 10.1016/j.ancene.2023.100368.
  • Govender T, Dube T, Shoko C. 2022. Remote sensing of land use-land cover change and climate variability on hydrological processes in Sub-Saharan Africa: key scientific strides and challenges. Geocarto Int. 37(25):10925–10949. doi: 10.1080/10106049.2022.2043451.
  • Hamunyela E, Hipondoka M, Persendt F, Sevelia Nghiyalwa H, Thomas C, Matengu K. 2022. Spatio-temporal characterization of surface water dynamics with Landsat in endorheic Cuvelai-Etosha Basin (1990–2021). ISPRS J Photogramm Remote Sens. 191:68–84. doi: 10.1016/j.isprsjprs.2022.07.007.
  • Haula K, Agbozo E. 2020. A systematic review on unmanned aerial vehicles in Sub-Saharan Africa: a socio-technical perspective. Technol Soc. 63:101357. doi: 10.1016/j.techsoc.2020.101357.
  • Henchiri M, Ali S, Essifi B, Kalisa W, Zhang S, Bai Y. 2020. Monitoring land cover change detection with NOAA-AVHRR and MODIS remotely sensed data in the North and West of Africa from 1982 to 2015. Environ Sci Pollut Res Int. 27(6):5873–5889. doi: 10.1007/s11356-019-07216-1.
  • Herndon K, Muench R, Cherrington E, Griffin R. 2020. An assessment of surface water detection methods for water resource management in the Nigerien Sahel. Sensors. 20(2):431. doi: 10.3390/s20020431.
  • Huang C, Chen Y, Zhang S, Wu J. 2018. Detecting, extracting, and monitoring surface water from space using optical sensors: a review. Rev Geophys. 56(2):333–360. doi: 10.1029/2018RG000598.
  • Jan N, Minallah N, Sher M, Frnda J, Nedoma J. 2023. Deep learning based minerals’ recognition and mapping using Sentinel-2 imagery. doi: 10.21203/rs.3.rs-2690326/v1.
  • Jiang D, Wang K. 2019. The role of satellite-based remote sensing in improving simulated streamflow: a review. Water. 11(8):1615. doi: 10.3390/w11081615.
  • Jones SK, Fremier AK, DeClerck FA, Smedley D, Ortega Pieck A, Mulligan M. 2017. Big data and multiple methods for mapping small reservoirs: comparing accuracies for applications in agricultural landscapes. Remote Sens. 9(12):1307. doi: 10.3390/rs9121307.
  • Kalu I, Ndehedehe CE, Okwuashi O, Eyoh AE. 2021. Assessing freshwater changes over Southern and Central Africa (2002–2017). Remote Sens. 13(13):2543. doi: 10.3390/rs13132543.
  • Khan MS, Liaqat UW, Baik J, Choi M. 2018. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric Meteorol. 252:256–268. doi: 10.1016/j.agrformet.2018.01.022.
  • King MD, Platnick S, Menzel WP, Ackerman SA, Hubanks PA. 2013. Spatial and temporal distribution of clouds observed by MODIS onboard the terra and aqua satellites. IEEE Trans Geosci Remote Sens. 51(7):3826–3852. [Accessed 2023 May 29]. https://www.academia.edu/13749096/Spatial_and_Temporal_Distribution_of_Clouds_Observed_by_MODIS_Onboard_the_Terra_and_Aqua_Satellites. doi: 10.1109/TGRS.2012.2227333.
  • Kittel CMM, Jiang L, Tøttrup C, Bauer-Gottwein P. 2021. Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B. Hydrol Earth Syst Sci. 25(1):333–357. doi: 10.5194/hess-25-333-2021.
  • Koffi B, Brou AL, Kouadio KJO, Ebodé VB, N'guessan KJ-Y, Yangouliba GI, Yaya K, Brou D, Kouassi KL. 2023. Impact of climate and land use/land cover change on Lobo reservoir inflow, West-Central of Côte d’Ivoire. J Hydrol: Reg Stud. 47:101417. doi: 10.1016/j.ejrh.2023.101417.
  • Kseňak Ľ, Pukanská K, Bartoš K, Blišťan P. 2022. Assessment of the usability of SAR and optical satellite data for monitoring spatio-temporal changes in surface water: Bodrog River case study. Water. 14(3):299. doi: 10.3390/w14030299.
  • Lary D, Alavi A, Gandomi A, Walker A. 2015. Machine learning in geosciences and remote sensing. Geosci Front. 7(1):3–10. doi: 10.1016/j.gsf.2015.07.003.
  • Leal Filho W, Totin E, Franke JA, Andrew SM, Abubakar IR, Azadi H, Nunn PD, Ouweneel B, Williams PA, Simpson NP, Global Adaptation Mapping Initiative Team. Electronic address: https://globaladaptation.github.io/. 2022. Understanding responses to climate-related water scarcity in Africa. Sci Total Environ. 806(Pt 1):150420. doi: 10.1016/j.scitotenv.2021.150420.
  • Li J, Ma R, Cao Z, Xue K, Xiong J, Hu M, Feng X. 2022. Satellite detection of surface water extent: a review of methodology. Water. 14(7):1148. doi: 10.3390/w14071148.
  • Li K, Xu E. 2021. High-accuracy continuous mapping of surface water dynamics using automatic update of training samples and temporal consistency modification based on Google Earth Engine: a case study from Huizhou, China. ISPRS J Photogramm Remote Sens. 179:66–80. doi: 10.1016/j.isprsjprs.2021.07.009.
  • Lin Y, Li X, Zhang T, Chao N, Yu J, Cai J, Sneeuw N. 2020. Water volume variations estimation and analysis using multisource satellite data: a case study of Lake Victoria. Remote Sens. 12(18):3052. doi: 10.3390/rs12183052.
  • Li L, Vrieling A, Skidmore A, Wang T. 2020. Evaluation of a new 18-year MODIS-derived surface water fraction dataset for constructing Mediterranean wetland open surface water dynamics. J Hydrol. 587:124956. doi: 10.1016/j.jhydrol.2020.124956.
  • Lin Y, Zhang H, Ma P, Lin H. 2020. A shadow free multisource stack sparse autoencoder framework for urban impervious surface mapping. In: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 4422–4425. doi: 10.1109/IGARSS39084.2020.9323813.
  • Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J Photogramm Remote Sens. 152:166–177. doi: 10.1016/j.isprsjprs.2019.04.015.
  • Mahamat A-AA, Al-Hurban A, Saied N. 2021. Change detection of Lake Chad water surface area using remote sensing and satellite imagery. JGIS. 13(05):561–577. doi: 10.4236/jgis.2021.135031.
  • Mahe G, Orange D, Mariko A, Bricquet J. 2011. Estimation of the flooded area of the Inner Delta of the River Niger in Mali by hydrological balance and satellite data. In: Frank SW, Boegh E, Blyth E, Hannah DM, Yilmaz KK, editors. Hydro-Climatology: variability and change: proceedings of symposium J-H02. Wallingford: IAHS-AISH Publication; p. 138–143.
  • Makaka RR, Misi S, Masocha M, Kimwaga R. 2021. Spatial and temporal variation of selected water quality parameters in the Tanzanian side of Lake Victoria. TJET. 40(2):1–23. doi: 10.52339/tjet.v40i2.729.
  • Malahlela OE. 2016. Inland waterbody mapping: towards improving discrimination and extraction of inland surface water features. Int J Remote Sens. 37(19):4574–4589. doi: 10.1080/01431161.2016.1217441.
  • Mas JF, Flores JJ. 2008. The application of artificial neural networks to the analysis of remotely sensed data. Int J Remote Sens. 29(3):617–663. doi: 10.1080/01431160701352154.
  • Mashala MJ, Dube T, Mudereri BT, Ayisi KK, Ramudzuli MR. 2023. A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sens. 15(16):3926. doi: 10.3390/rs15163926.
  • Masocha M, Dube T, Makore M, Shekede MD, Funani J. 2018. Surface water bodies mapping in Zimbabwe using landsat 8 OLI multispectral imagery: a comparison of multiple water indices. Phys Chem Earth Parts A/B/C. 106:63–67. doi: 10.1016/j.pce.2018.05.005.
  • Maswanganye SE, Dube T, Jovanovic N, Mazvimavi D. 2022. Use of multi-source remotely sensed data in monitoring the spatial distribution of pools and pool dynamics along non-perennial rivers in semi-arid environments, South Africa. Geocarto Int. 37(25):10970–10989. doi: 10.1080/10106049.2022.2043453.
  • Mbaiwa J. 2004. Causes and possible solutions to water resource conflicts in the Okavango River Basin: the case of Angola, Namibia and Botswana. Phys Chem Earth Parts A/B/C. 29(15–18):1319–1326. doi: 10.1016/j.pce.2004.09.015.
  • McCarthy JM, Gumbricht T, McCarthy T, Frost P, Wessels K, Seidel F. 2003. Flooding patterns of the Okavango Wetland in Botswana between 1972 and 2000. AMBIO: A Journal of the Human Environment. 32(7):453–457. doi: 10.1579/0044-7447-32.7.453.
  • McFEETERS SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17(7):1425–1432. doi: 10.1080/01431169608948714.
  • Mfundisi K, Mubea K, Yuan F, Burton C, Boamah E. 2022. Analysing effects of drought on inundation extent and vegetation cover dynamics in the Okavango delta. Geography. Authorea Preprints. doi: 10.1002/essoar.10510000.1.
  • Mishra V, Limaye AS, Muench RE, Cherrington EA, Markert KN. 2020. Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa. Int J Appl Earth Obs Geoinf. 93:102218. doi: 10.1016/j.jag.2020.102218.
  • Mokgedi L, Nobert J, Munishi S. 2019. Assessment of lake surface dynamics using satellite imagery and in-situ data; case of Lake Ngami in North-West Botswana. Phys Chem Earth Parts A/B/C. 112:175–186. doi: 10.1016/j.pce.2018.12.008.
  • Molekoa MD, Avtar R, Kumar P, Thu Minh HV, Dasgupta R, Johnson BA, Sahu N, Verma RL, Yunus AP. 2021. Spatio-temporal analysis of surface water quality in Mokopane Area, Limpopo, South Africa. Water. 13(2):220. doi: 10.3390/w13020220.
  • Molekoa MD, Kumar P, Choudhary BK, Yunus AP, Kharrazi A, Khedher KM, Alshayeb MJ, Singh BP, Minh HVT, Kurniawan TA, et al. 2022. Spatio-temporal variations in the water quality of the Doorndraai Dam, South Africa: an assessment of sustainable water resource management. Curr Res Environ Sustain. 4:100187. doi: 10.1016/j.crsust.2022.100187.
  • Mosepele KL, Hambira WEJ, Mogomotsi GK, Mogomotsi P, Moses O, Dhliwayo M, Makati A, Setomba B. 2019. Water, ecosystem dynamics and human livelihoods in the Okavango River Basin (ORB): competing needs or balanced use? A review. In: Thanjavur Chandrasekaran P, editor. Water and sustainability. London, UK: IntechOpen. doi: 10.5772/intechopen.80554.
  • Moses O, Blamey RC, Reason CJC. 2022. Relationships between NDVI, river discharge and climate in the Okavango River Basin region. Intl J Climatol. 42(2):691–713. doi: 10.1002/joc.7267.
  • Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens. 66(3):247–259. doi: 10.1016/j.isprsjprs.2010.11.001.
  • Muthoni FK, Odongo VO, Ochieng J, Mugalavai EM, Mourice SK, Hoesche-Zeledon I, Mwila M, Bekunda M. 2019. Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theor Appl Climatol. 137(3–4):1869–1882. doi: 10.1007/s00704-018-2712-1.
  • Ndayisaba F, Nahayo L, Guo H, Bao A, Kayiranga A, Karamage F, Nyesheja EM. 2017. Mapping and monitoring the Akagera Wetland in Rwanda. Sustainability. 9(2):174. doi: 10.3390/su9020174.
  • Ngwenya K, Marambanyika T. 2021. Trends in use of remotely sensed data in wetlands assessment and monitoring in Zimbabwe. Afr J Ecol. 59(3):676–686. doi: 10.1111/aje.12858.
  • Nhamo L, Magidi J, Nyamugama A, Clulow AD, Sibanda M, Chimonyo VGP, Mabhaudhi T. 2020. Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture. 10(7):256. doi: 10.3390/agriculture10070256.
  • Nigatu ZM, Fan D, You W. 2021. GRACE products and land surface models for estimating the changes in key water storage components in the Nile River Basin. Adv Space Res. 67(6):1896–1913. doi: 10.1016/j.asr.2020.12.042.
  • Nsubuga FWN, Botai JO, Olwoch JM, Rautenbach CJ, deW Kalumba AM, Tsela P, Adeola AM, Sentongo AA, Mearns KF. 2017. Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate. Theor Appl Climatol. 127(1–2):327–337. doi: 10.1007/s00704-015-1637-1.
  • Ogilvie A, Belaud G, Massuel S, Mulligan M, Le Goulven P, Calvez R. 2018. Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series. Hydrol Earth Syst Sci. 22(8):4349–4380. doi: 10.5194/hess-22-4349-2018.
  • Ogilvie A, Poussin J-C, Bader J-C, Bayo F, Bodian A, Dacosta H, Dia D, Diop L, Martin D, Sambou S. 2020. Combining multi-sensor satellite imagery to improve long-term monitoring of temporary surface water bodies in the Senegal river floodplain. Remote Sens. 12(19):3157. doi: 10.3390/rs12193157.
  • Olowoyeye OS, Kanwar RS. 2023. Water and food sustainability in the Riparian countries of Lake Chad in Africa. Sustainability. 15(13):10009. doi: 10.3390/su151310009.
  • Olthof I, Tolszczuk-Leclerc S. 2018. Comparing landsat and RADARSAT for current and historical dynamic flood mapping. Remote Sensing. 10(5):780. doi: 10.3390/rs10050780.
  • Ondari O, Awange J, Song Y, Kasedde A. 2023. Understanding the spatial–temporal patterns of floating islands impacting the major dams of the White Nile. Remote Sens. 15(9):2304. doi: 10.3390/rs15092304.
  • O’Neil GL, Goodall JL, Behl M, Saby L. 2020. Deep learning using physically-informed input data for wetland identification. Environ Modell Softw. 126:104665. doi: 10.1016/j.envsoft.2020.104665.
  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 372:n71. doi: 10.1136/bmj.n71.
  • Palmer AR, Ezenne GI, Choruma DJ, Gwate O, Mantel SK, Tanner JL. 2020. A comparison of three models used to determine water fluxes over the Albany Thicket, Eastern Cape, South Africa. Agric Meteorol. 288–289:107984. doi: 10.1016/j.agrformet.2020.107984.
  • Papa F, Crétaux J-F, Grippa M, Robert E, Trigg M, Tshimanga RM, Kitambo B, Paris A, Carr A, Fleischmann AS, et al. 2023. Water resources in Africa under global change: monitoring surface waters from space. Surv Geophys. 44(1):43–93. doi: 10.1007/s10712-022-09700-9.
  • Park H, Kim N, Park S, Choi J. 2020. Sharpening of worldview-3 satellite images by generating optimal high-spatial-resolution images. Appl Sci. 10(20):7313. doi: 10.3390/app10207313.
  • Pekel J-F, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature. 540(7633):418–422. doi: 10.1038/nature20584.
  • Perin V, Tulbure MG, Gaines MD, Reba ML, Yaeger MA. 2021. On-farm reservoir monitoring using Landsat inundation datasets. Agric Water Manage. 246:106694. doi: 10.1016/j.agwat.2020.106694.
  • Peter KH, Nnko HJ, Mubako S. 2020. Impacts of anthropogenic and climate variation on spatiotemporal pattern of water resources: a case study of Lake Babati, Tanzania. Sustain Water Resour Manag. 6(3):47. doi: 10.1007/s40899-020-00400-z.
  • Pham-Duc B, Sylvestre F, Papa F, Frappart F, Bouchez C, Crétaux J-F. 2020. The Lake Chad hydrology under current climate change. Sci Rep. 10(1):5498. doi: 10.1038/s41598-020-62417-w.
  • Prigent C, Lettenmaier DP, Aires F, Papa F. 2016. Toward a high-resolution monitoring of continental surface water extent and dynamics, at global scale: from GIEMS (global inundation extent from multi-satellites) to SWOT (surface water ocean topography). Surv Geophys. 37(2):339–355. doi: 10.1007/s10712-015-9339-x.
  • Prošek J, Gdulová K, Barták V, Vojar J, Solský M, Rocchini D, Moudrý V. 2020. Integration of hyperspectral and LiDAR data for mapping small water bodies. Int J Appl Earth Obs Geoinf. 92:102181. doi: 10.1016/j.jag.2020.102181.
  • Quintano C, Fernández-Manso A, Shimabukuro YE, Pereira G. 2012. Spectral unmixing. Int J Remote Sens. 33(17):5307–5340. doi: 10.1080/01431161.2012.661095.
  • Rad AM, Kreitler J, Sadegh M. 2021. Augmented Normalized Difference Water Index for improved surface water monitoring. Environ Model Softw. 140:105030. doi: 10.1016/j.envsoft.2021.105030.
  • Ramatsabana P, Tanner J, Mantel S, Palmer A, Ezenne G. 2019. Evaluation of remote-sensing based estimates of actual evapotranspiration over (diverse shape and sized) Palmiet wetlands. Geosciences. 9(12):491. doi: 10.3390/geosciences9120491.
  • Rao P, Jiang W, Hou Y, Chen Z, Jia K. 2018. Dynamic change analysis of surface water in the Yangtze river basin based on MODIS products. Remote Sens. 10(7):1025. doi: 10.3390/rs10071025.
  • Raza A, Hu Y, Acharki S, Buttar N, Ray R, Khaliq A, Zubair M, Elbeltagi A. 2023. Evapotranspiration importance in water resources management through cutting-edge approaches of remote sensing and machine learning algorithms. 1–20. doi: 10.1007/978-3-031-29394-8_1.
  • Ridolfi E, Manciola P. 2018. Water level measurements from drones: a pilot case study at a dam site. Water. 10(3):297. doi: 10.3390/w10030297.
  • Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK, Landerer FW, Lo M-H. 2018. Emerging trends in global freshwater availability. Nature. 557(7707):651–659. doi: 10.1038/s41586-018-0123-1.
  • Rokach L. 2010. Ensemble-based classifiers. Artif Intell Rev. 33(1–2):1–39. doi: 10.1007/s10462-009-9124-7.
  • Rouibah K, Belabbas M. 2022. Modeling and monitoring surface water dynamics in the context of climate changes using remote sensing data and techniques: case of Ain Zada Dam (North-East Algeria). Arab J Geosci. 15(9):807. doi: 10.1007/s12517-022-09910-w.
  • Rouse JW, Jr., Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the great plains with Erts. NASA Special Publication. 351:309. [Accessed 2023 Oct 30]. https://ui.adsabs.harvard.edu/abs/1974NASSP.351.309R.
  • Ruwaimana M, Satyanarayana B, Otero V, Muslim AM, A MS, Ibrahim S, Raymaekers D, Koedam N, Dahdouh-Guebas F. 2018. The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLoS One. 13(7):e0200288. doi: 10.1371/journal.pone.0200288.
  • Sagi O, Rokach L. 2018. Ensemble learning: a survey. WIREs Data Min Knowl. 8(4):e1249. doi: 10.1002/widm.1249.
  • Sathianarayanan M. 2018. Assessment of surface water dynamics using multiple water indices around Adama Woreda, Ethiopia. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. IV-5:181–188. doi: 10.5194/isprs-annals-IV-5-181-2018.
  • Saturday A, Lyimo TJ, Machiwa J, Pamba S. 2021. Spatio-temporal variations in physicochemical water quality parameters of Lake Bunyonyi, Southwestern Uganda. SN Appl Sci. 3(7):684. doi: 10.1007/s42452-021-04672-8.
  • Seaton D, Dube T. 2021. A new modified spatial approach for monitoring non-perennial river water availability using remote sensing in the Tankwa Karoo, Western Cape, South Africa. Water SA. 47(3):338–346. doi: 10.17159/wsa/2021.v47.i3.11862.
  • Seaton D, Dube T, Mazvimavi D. 2020. Use of multi-temporal satellite data for monitoring pool surface areas occurring in non-perennial rivers in semi-arid environments of the Western Cape, South Africa. ISPRS J Photogramm Remote Sens. 167:375–384. doi: 10.1016/j.isprsjprs.2020.07.018.
  • Seka AM, Zhang J, Ayele GT, Demeke YG, Han J, Prodhan FA. 2022. Spatio-temporal analysis of water storage variation and temporal correlations in the East Africa lake basins. J Hydrol: Reg Stud. 41:101094. doi: 10.1016/j.ejrh.2022.101094.
  • Sentinel Scientific Data Hub. 2024. [Accessed 2024 Mar 4]. https://www.copernicus.eu/en/access-data.
  • Sheffield J, Wood EF, Pan M, Beck H, Coccia G, Serrat-Capdevila A, Verbist K. 2018. Satellite remote sensing for water resources management: potential for supporting sustainable development in data-poor regions. Water Resour Res. 54(12):9724–9758. doi: 10.1029/2017WR022437.
  • Shetty ST, Kushwaha A, Shetty A. 2023. Historical water body changes using spatio temporal indices - a case study of Dakshina Kannada. Mater Today: Proc. 80:1488–1494. doi: 10.1016/j.matpr.2023.01.283.
  • Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P, Homayouni S. 2020. Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:6308–6325. doi: 10.1109/JSTARS.2020.3026724.
  • Shirmard H, Farahbakhsh E, Müller D, Chandra R. 2021. A review of machine learning in processing remote sensing data for mineral exploration. s
  • Shirmard H, Farahbakhsh E, Müller D, Chandra R. 2022. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens Environ. 268:112750. doi: 10.1016/j.rse.2021.112750.
  • Sibanda M, Mutanga O, Chimonyo VGP, Clulow AD, Shoko C, Mazvimavi D, Dube T, Mabhaudhi T. 2021. Application of drone technologies in surface water resources monitoring and assessment: a systematic review of progress, challenges, and opportunities in the global south. Drones. 5(3):84. doi: 10.3390/drones5030084.
  • Singh KV, Setia R, Sahoo S, Prasad A, Pateriya B. 2015. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 30(6):650–661. doi: 10.1080/10106049.2014.965757.
  • Sisay A. 2017. Remote sensing based water surface extraction and change detection in the Central Rift Valley Region of Ethiopia.
  • Sit M, Demiray BZ, Xiang Z, Ewing GJ, Sermet Y, Demir I. 2020. A comprehensive review of deep learning applications in hydrology and water resources. Water Sci Technol. 82(12):2635–2670. doi: 10.2166/wst.2020.369.
  • Sivanpillai R, Miller SN. 2010. Improvements in mapping water bodies using ASTER data. Ecol Inf. 5(1):73–78. doi: 10.1016/j.ecoinf.2009.09.013.
  • Khaki M, Awange J. 2019. Improved remotely sensed satellite products for studying Lake Victoria’s water storage changes. Sci Total Environ. 652:915–926. doi: 10.1016/j.scitotenv.2018.10.279.
  • Slagter B, Tsendbazar N-E, Vollrath A, Reiche J. 2019. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int J Appl Earth Obs Geoinf. 86:102009. doi: 10.1016/j.jag.2019.102009.
  • Smith JA. 2019. Climate variability and change: implications for water resources management in the Southern United States. J Hydrol. 573.
  • Son N-T, Chen C-F, Cheng Y-S, Toscano P, Chen C-R, Chen S-L, Tseng K-H, Syu C-H, Guo H-Y, Zhang Y-T. 2022. Field-scale rice yield prediction from Sentinel-2 monthly image composites using machine learning algorithms. Ecol Inf. 69:101618. doi: 10.1016/j.ecoinf.2022.101618.
  • Song A, Kim Y, Kim Y. 2019. Change detection of surface water in remote sensing images based on fully convolutional network. J Coast Res. 91(sp1):426–430. doi: 10.2112/SI91-086.1.
  • Soti V, Tran A, Bailly J-S, Puech C, Seen DL, Bégué A. 2009. Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas. Int J Appl Earth Obs Geoinf. 11(5):344–351. doi: 10.1016/j.jag.2009.05.005.
  • Su L, Gao F, Li Z, Yu M. 2021. A review of remote sensing image water extraction. Remote Sens Nat Res. 33(1):9–11. doi: 10.6046/gtzyyg.2020170.
  • Sun D, Yu Y, Goldberg MD. 2011. Deriving water fraction and flood maps from MODIS images using a decision tree approach. IEEE J Sel Top Appl Earth Observ Remote Sens. 4(4):814–825. doi: 10.1109/JSTARS.2011.2125778.
  • Tadeyo E, Chen D, Ayugi B, Yao C. 2020. Characterization of Spatio-Temporal trends and periodicity of precipitation over Malawi during 1979–2015. Atmosphere. 11(9):891. doi: 10.3390/atmos11090891.
  • Tariq A, Qin S. 2023. Spatio-temporal variation in surface water in Punjab, Pakistan from 1985 to 2020 using machine-learning methods with time-series remote sensing data and driving factors. Agric Water Manage. 280:108228. doi: 10.1016/j.agwat.2023.108228.
  • Tao H, Jawad AH, Shather AH, Al-Khafaji Z, Rashid TA, Ali M, Al-Ansari N, Marhoon HA, Shahid S, Yaseen ZM. 2023. Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters. Environ Int. 175:107931. doi: 10.1016/j.envint.2023.107931.
  • Thamaga K, Shoko C. 2021. An Assessment of Small Wetland Ecohydrological Dynamics Using Sentinel-2 MSI Derived Spectral Indices in Semi-Arid Environments of South Africa. doi: 10.21203/rs.3.rs-863296/v1.
  • Thito K, Wolski P, Murray-Hudson M. 2016. Mapping inundation extent, frequency and duration in the Okavango Delta from 2001 to 2012. Afr J Aquat Sci. 41(3):267–277. doi: 10.2989/16085914.2016.1173009.
  • Tong X, Pan H, Xie H, Xu X, Li F, Chen L, Luo X, Liu S, Chen P, Jin Y. 2016. Estimating water volume variations in Lake Victoria over the past 22years using multi-mission altimetry and remotely sensed images. Remote Sens Environ. 187:400–413. doi: 10.1016/j.rse.2016.10.012.
  • Torres-Sánchez J, Peña JM, de Castro AI, López-Granados F. 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput Electron Agric. 103:104–113. doi: 10.1016/j.compag.2014.02.009.
  • Tulbure MG, Broich M. 2019. Spatiotemporal patterns and effects of climate and land use on surface water extent dynamics in a dryland region with three decades of Landsat satellite data. Sci Total Environ. 658:1574–1585. doi: 10.1016/j.scitotenv.2018.11.390.
  • Turyasingura B, Chavula P, Hirwa H, Mohammed FS, Ayiga N, Bojago E, Benzougagh B, Ngabirano H. 2022. A Systematic Review and Meta-analysis of Climate Change and Water Resources in Sub-Sahara Africa.
  • U.S. Geological Survey (USGS) EarthExplorer. 2024. [Accessed 2024 Mar 4]. https://earthexplorer.usgs.gov.
  • Van Niekerk A, Jarmain C, Goudriaan R, Muller SJ, Ferreira F, Munch Z, Pauw T, Stephenson G, Gibson L. 2018. An earth observation approach towards mapping irrigated areas and quantifying water use by irrigated crops in South Africa. doi: 10.13140/RG.2.2.13599.46243.
  • Vundo A, Matsushita B, Jiang D, Gondwe M, Hamzah R, Setiawan F, Fukushima T. 2019. An overall evaluation of water transparency in Lake Malawi from MERIS data. Remote Sens. 11(3):279. doi: 10.3390/rs11030279.
  • Wang X, Gong J, Zhang Y, Atkinson PM. 2022. Near real-time surface water extraction from GOES-16 geostationary satellite ABI images by constructing and sharpening the green-like band. Sci Remote Sens. 5:100055. doi: 10.1016/j.srs.2022.100055.
  • Wang X, Ling F, Yao H, Liu Y, Xu S. 2019. Unsupervised sub-pixel water body mapping with Sentinel-3 OLCI image. Remote Sens. 11(3):327. doi: 10.3390/rs11030327.
  • Wang Y, Li X, Zhou P, Jiang L, Du Y. 2022. AHSWFM: automated and hierarchical surface water fraction mapping for small water bodies using Sentinel-2 images. Remote Sens. 14(7):1615. doi: 10.3390/rs14071615.
  • Wang R, Pan L, Niu W, Li R, Zhao X, Bian X, Yu C, Xia H, Chen T. 2021. Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine. Open Geosci. 13(1):1290–1302. doi: 10.1515/geo-2020-0305.
  • Wang J, Petersen WA, Wolff DB. 2021. Validation of satellite-based precipitation products from TRMM to GPM. Remote Sens. 13(9):1745. doi: 10.3390/rs13091745.
  • Wang Y, Qin R, Cheng H, Liang T, Zhang K, Chai N, Gao J, Feng Q, Hou M, Liu J, et al. 2022. Can machine learning algorithms successfully predict grassland aboveground biomass? Remote Sens. 14(16):3843. doi: 10.3390/rs14163843.
  • Wang R, Xia H, Qin Y, Niu W, Pan L, Li R, Zhao X, Bian X, Fu P. 2020. Dynamic monitoring of surface water area during 1989–2019 in the Hetao plain using landsat data in google earth engine. Water. 12(11):3010. doi: 10.3390/w12113010.
  • Wilson MD. 2008. Support vector machines. In: Jørgensen SE, Fath BD, editors. Encyclopedia of ecology. Oxford: Academic Press; p. 3431–3437. doi: 10.1016/B978-008045405-4.00168-3.
  • Wu G, Chen C, Yongwei L, Fan X, Niu H, Liu Y. 2023. Developing a high-resolution seamless surface water extent time-series over Lake Victoria by integrating MODIS and Landsat data. Remote Sens. 15(14):3500. doi: 10.3390/rs15143500.
  • Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens. 27(14):3025–3033. doi: 10.1080/01431160600589179.
  • Xu K, Guan K, Peng J, Luo Y, Wang S. 2019. DeepMask: an algorithm for cloud and cloud shadow detection in optical satellite remote sensing images using deep residual network. arXiv. doi: 10.48550/arXiv.1911.03607.
  • Xu J, Xia M, Ferreira VG, Wang D, Liu C. 2024. Estimating and assessing monthly water level changes of reservoirs and lakes in Jiangsu Province using Sentinel-3 radar altimetry data. Remote Sens. 16(5):808. doi: 10.3390/rs16050808.
  • Zhang Y, Liu J, Shen W. 2022. A review of ensemble learning algorithms used in remote sensing applications. Appl Sci. 12(17):8654. doi: 10.3390/app12178654.
  • Zheng Z, Du S, Taubenböck H, Zhang X. 2022. Remote sensing techniques in the investigation of aeolian sand dunes: a review of recent advances. Remote Sens Environ. 271:112913. doi: 10.1016/j.rse.2022.112913.
  • Zurqani HA, Post CJ, Mikhailova EA, Schlautman MA, Sharp JL. 2018. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int J Appl Earth Obs Geoinf. 69:175–185. doi: 10.1016/j.jag.2017.12.006.