100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Research on downscaling method of the enhanced TROPOMI solar-induced chlorophyll fluorescence data

, , , , , , & show all
Article: 2354417 | Received 26 Dec 2023, Accepted 07 May 2024, Published online: 15 May 2024

References

  • Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 59(1):89–113. doi:10.1146/annurev.arplant.59.032607.092759.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32. doi:10.1023/A:1010933404324.
  • Chen SY, Jing X, Dong YY, Liu LY. 2019. Detection of wheat stripe rust using solar-induced chlorophyll fluorescence and reflectance spectral indices. Remote Sens Technol Appl. 34(3):511–520.
  • Damm A, Elbers JA, Erler A, Giolis B, Rascher U. 2010. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production. Glob Change Biol. 16(1):171–186.
  • Duveiller G, Cescatti A. 2016. Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity. Remote Sens Environ. 182:72–89.
  • Fang XR, Wen ZF, Chen JL, Wu SJ, Huang YY, Ma MH. 2018. Remote sensing estimation of suspended sediment concentration based on random forest regression model. J Remote Sens. 23:756–772.
  • Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee J-E, Toon GC, Butz A, Jung M, Kuze A, et al. 2011. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys Res Lett. 38(17):L17706. doi:10.1029/2011GL048738.
  • Frankenberg C, O’Dell C, Berry J, Guanter L, Joiner J, Köhler P, Pollock R, Taylor TE. 2014. Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2. Remote Sens Environ. 147:1–12.
  • Gensheimer J, Turner AJ, Köhler P, Frankenberg C, Chen J. 2022. A convolutional neural network for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet). Biogeosciences. 19(6):1777–1793. doi:10.5194/bg-19-1777-2022.
  • Gentine P, Alemohammad SH. 2018. Reconstructed solar-induced fluorescence: A machine learning vegetation product based on MODIS surface reflectance to reproduce GOME-2 solar-induced fluorescence. Geophys Res Lett. 45(7):3136–3146.
  • Grace J, Nichol C, Disney M, Lewis P, Quaife T, Bowyer P. 2007. Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Global Change Biol. 13(7):1484–1497. doi:10.1111/j.1365-2486.2007.01352.x.
  • Guanter L, Frankenberg C, Dudhia A, Lewis PE, Gómez-Dans J, Kuze A, Suto H, Grainger RG. 2012. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens Environ. 121:236–251.
  • Hu FM, Wei ZS, Zhang W, Dorjee D, Meng LK. 2020. A spatial downscaling method for SMAP soil moisture through visible and shortwave-infrared remote sensing Data. J Hydrol. 590:125360.
  • Ji MH, Tang BH, Li ZL. 2019. Review of solar-induced chlorophyll fluorescence retrieval methods from satellite. Remote Sens Technol Appl. 34(3):455–466.
  • Koehler P, Frankenberg C, Magney T, Guanter L, Joiner J, Landgraf J. 2018. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and inter-sensor comparison to OCO-2. Geophys Res Lett. 45(19):10456–10463.
  • Li HK, Wu GH, Wang XL. 2021. Land surface temperature downscaling method in ion-type rare earth mining area oriented to mining disturbance. Geomatics Inf Sci Wuhan Univ. 46(1):133–142.
  • Li X, Xiao JF. 2019. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11(5):517–530.
  • Li X, Xiao JF, He BB. 2018. Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests. Remote Sens Environ. 204:659–671.
  • Liu X, Liu L, Bacour C, Guanter L, Chen J, Ma Y, Chen, R, Du S. 2022a. A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band. Remote Sens Environ. 284:113341.
  • Liu YY, Wang SQ, Wang XB, Chen B, Chen JH, Wang JB, Huang M, Wang ZS, Ma L, Wang PY, et al. 2022b. Exploring the superiority of solar-induced chlorophyll fluorescence data in predicting wheat yield using machine learning and deep learning methods. Comput Electron Agric. 192:106612.
  • Lu X, Zhou Y, Zhang X, Yu H, Cai G. 2022. Using time series vector features for annual cultivated land mapping: a trial in northern Henan, China. PLoS One. 17(8):e0272300.
  • Ma Y, Liu LY, Chen RN, Du SS, Liu XJ. 2020. Generation of a global spatially continuous TanSAT solar-induced chlorophyll fluorescence product by considering the impact of the solar radiation intensity. Remote Sens. 12(13):2167.
  • Ma Y, Liu LY, Liu XJ, Chen JD. 2022. An improved downscaled sun-induced chlorophyll fluorescence product of GOME-2 dataset. Eur J Remot Sens. 55(1):168–180.
  • Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J. 2009. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens Environ. 113(10):2037–2051.
  • Plascyk JA, Gabriel FC. 1975. The fraunhofer line discriminator MKII-an airborne instrument for precise and standardized ecological luminescence measurement. IEEE Trans Instrum Meas. 24(4):306–313.
  • Shen ZX, Yuan SN. 2020. Regional load clustering integration forecasting based on convolutional neural network support vector regression machine. Power System Technol. 44(6):2237–2244.
  • Sun G, Liu LY, Zheng WG, Huang WJ, Yin M. 2009. Solar induced chlorophyll fluorescence instrument based on fraunhofer dark line principle. Trans Chin Soc Agric. 40:248–251.
  • Sun H, Zhou BC, Li H, Ruan L. 2021a. Study on microwave soil moisture downscaling by coupling MOD16 and SMAP. J Remote Sens. 25(3):776–790.
  • Sun ZQ, Gao XL, Du SS, Liu XJ. 2021b. Research progress and prospective of global satellite based solar-induced chlorophyll fluorescence products. Remote Sens Technol Appl. 36:1044–1056.
  • Verrelst J, Rivera JP, van der Tol C, Magnani F, Mohammed G, Moreno J, et al. 2015. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence. Remote Sens Environ. 166:8–21.
  • Wang LG, Zheng GQ, Guo Y, He J, Cheng YZ. 2022. Prediction of winter wheat yield based on fusing multi-source spatio-temporal data. Trans Chin Soc Agric. 53:198–204.
  • Wang R, Liu ZG, Yang PQ. 2012. Principle and progress in remote sensing of vegetation solar-induced chlorophyll fluorescence. Adv Earth Sci. 27(11):1221–1228.
  • Wang XX, Cai GS, Lu XP, Yang ZN, Zhang XJ, Zhang QG. 2022. Inversion of wheat leaf area index by multivariate red-edge spectral vegetation index. Sustainability. 14(23):15875. doi:10.3390/su142315875.
  • Wen FP, Zhao W, Hu L, Xu HX, Cui Q. 2021. SMAP passive microwave soil moisture spatial downscalingbased on optical remote sensing data: a case study in Shandian river basin. J Remote Sens. 25(4):962–973.
  • Wood JD, Griffis TJ, Baker JM, Frankenberg C, Verma M, Yune K. 2017. Multiscale analyses of solar‐induced florescence and gross primary production. Geophys Res Lett. 44(1):533–541.
  • Wu LS, Zhang YG, Zhang ZY, Zhang XK, Wu YF. 2022. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring. Chinese J Plant Ecol. 46(10):1167–1199. doi:10.17521/cjpe.2022.0233.
  • Yang FZ, Wang ZS, Zhang Q, Sun SL, Liu YB. 2022. Consistency analysis of five global sun-induced chlorophyll fluorescence products over China. Remote Sens Technol Appl. 37(1):125–136.
  • Yang X, Tang J, Mustard JF, Lee JE, Rossini M, Joiner J, Munger JW, Kornfeld A, Richardson AD. 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys Res Lett. 42(8):2977–2987.
  • Yu L, Wen J, Chang CY, Frankenberg C, Sun Y. 2019. High-resolution global contiguous SIF of OCO-2. Geophys Res Lett. 46(3):1449–1458.
  • Zarco-Tejada PJ, CA, Gonzalez MR, Martin P. 2013. Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. Remote Sens Environ. 136:247–258.
  • Zhang Y, Joiner J, Alemohammad SH, Zhou S, Gentine P. 2018. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences. 15(19):5779–5800. doi:10.5194/bg-15-5779-2018.
  • Zhang YJ, Liu LY, Hou MY, Liu LT, Li CD. 2009. Progress in remote sensing of vegetation chlorophyll fluorescence. J Remote Sens. 13(5):963–978.
  • Zhang Z, Wang S, Qiu B, Song L, Zhang Y. 2019. Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application. J Remote Sens. 23(1):37–52.
  • Zhang ZX, Xu W, Qin QM, Long ZH. 2020. Downscaling solar-induced chlorophyll fluorescence based on convolutional neural network method to monitor agricultural drought. IEEE Trans Geosci Remote Sens. 59(2):1012–1028.