195
Views
31
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

The prospects for peroxidase-based biorefining of petroleum fuels

, &
Pages 114-129 | Published online: 11 Jul 2009

References

  • Arnao MB, Acosta M, del Rio JA, Varon R, Garcia-Canovas F. A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochim Biophys Acta 1990; 1041: 43–47
  • Ator MA, Ortiz de Montellano PR. Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidase. J Biol Chem 1987; 262: 1542–1551
  • Ayala M, Vazquez-Duhalt R. Enzymatic catalysis on petroleum products. Petroleum biotechnology: Developments and perspectives, R Vazquez-Duhalt, R Quintero-Ramirez. Elsevier, Amsterdam 2004; 151: 67–111
  • Ayala M, Tinoco R, Hernandez V, Bremauntz P, Vazquez-Duhalt R. Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol 1998; 57: 101–111
  • Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R. Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 2000; 34: 2804–2809
  • Ayala M, Horjales E, Pickard MA, Vazquez-Duhalt R. Cross-linked crystals of chloroperoxidase. Biochem Biophys Res Commun 2002; 295: 828–831
  • Banci L. Structural properties of peroxidases. J Biotechnol 1997; 53: 253–263
  • Banci L, Bertini I, Turano P, Tien M, Kirk TK. Proton NMR investigation into the basis for the relatively high redox potential of lignin peroxidase. Biochemistry 1991; 88: 6956–6960
  • Barrows TP, Poulos TL. Role of electrostatics and salt bridges in stabilizing the Compound I radical in ascorbate peroxidase. Biochemistry 2005; 44: 14062–14068
  • Barrows TP, Bhaskar B, Poulos TL. Electrostatic control of the tryptophan radical in cytochrome c peroxidase. Biochemistry 2004; 43: 8826–8834
  • Battistuzzi G, Bellei M, De Rienzo F, Sola M. Redox properties of the Fe+2/Fe+3 couple in Arthromyces ramosus class II peroxidase and its cyanide adduct. J Biol Inorg Chem 2006; 11: 586–592
  • Blodig W, Smith AT, Doyle WA, Piontek K. Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J Mol Biol 2001; 305: 851–861
  • Bogan BW, Lamar RT, Hammel KE. Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 1996; 62: 1788–1792
  • Bonagura CA, Sundaramoorthy M, Pappa HS, Patterson WR, Poulos TL. An engineered cation site in cytochrome c peroxidase alters the reactivity of the redox active tryptophan. Biochemistry 1996; 35: 6107–6115
  • Bruns N, Tiller JC. Amphiphilic network as nanoreactor for enzymes in organic solvents. Nano Lett 2005; 5: 45–48
  • Buenrostro-Gonzalez E, Groenzin H, Lira-Galeana C, Mullins OC. The overriding chemical principles that define asphaltenes. Energy Fuels 2001; 15: 972–978
  • Cao LQ, van Langen L, Sheldon RA. Immobilised enzymes: Carrier-bound or carrier-free?. Curr Opin Biotechnol 2003; 14: 387–394
  • Cavalieri EL, Rogan EG, Roth RW, Saugier RK, Hakam A. The relationship between ionization potential and horseradish peroxidase/hydrogen peroxide-catalyzed binding of aromatic hydrocarbons to DNA. Chem Biol Interact 1983; 47: 87–109
  • Celik A, Cullis PM, Sutcliffe MJ, Sangar R, Raven EL. Engineering the active site of ascorbate peroxidase. Eur J Biochem 2001; 268: 78–85
  • Chen S, Schopfer P. Hydroxyl-radical production in physiological reactions. Eur J Biochem 1999; 260: 726–735
  • Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH. Directed evolution of a fungal peroxidase. Nat Biotechnol 1999; 17: 379–384
  • Choinowski T, Blodig W, Winterhalter KH, Piontek K. The crystal structure of lignin peroxidase at 1.70 Å resolution reveals a hydroxy group on the Cβ of tryptophan 171: A novel radical site formed during the redox cycle. J Mol Biol 1999; 286: 809–827
  • Ciaccio C, Rosati A, De Sanctis G, Sinibaldi F, Marini S, Santucci R, Ascenzi P, Welinder KG, Coletta M. Relationships of ligand binding, redox properties, and protonation in Coprinus cinereus peroxidase. J Biol Chem 2003; 278: 18730–18737
  • Conesa A, van de Velde F, van Rantwijk F, Sheldon RA, van den Hondel CAMJJ, Punt PJ. Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J Biol Chem 2001; 276: 17635–17640
  • Conroy CW, Tyma P, Daum PH, Erman JE. Oxidation–reduction potential measurements of cytochrome c peroxidase and pH dependent spectral transitions in the ferrous enzyme. Biochim Biophys Acta 1978; 537: 62–69
  • Dai L, Klibanov AM. Striking activation of oxidative enzymes suspended in nonaqueous media. Proc Natl Acad Sci USA 1999; 96: 9475–9478
  • Dai L, Klibanov AM. Peroxidase-catalyzed asymmetric sulfoxidation in organic solvents versus in water. Biotechnol Bioeng 2000; 70: 353–357
  • de Visser SP, Shaik S, Sharma PK, Kumar D, Thiel W. Active species of horseradish peroxidase HRP and cytochrome P450: Two electronic chameleons. J Am Chem Soc 2003; 125: 15779–15788
  • DePillis GD, Wariishi H, Gold MH, Ortiz de Montellano PR. Inactivation of lignin peroxidase by phenylhydrazine and sodium azide. Arch Biochem Biophys 1990; 280: 217–223
  • DeSantis G, Jones JB. Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 1999; 10: 324–330
  • Doyle WA, Smith AT. Expression of lignin peroxidase H8 in Escherichia coli: Folding and activation of the recombinant enzyme with Ca2 +  and haem. Biochem J 1996; 315: 15–19
  • Erman JE, Vitello LB. Yeast cytochrome c peroxidase: Mechanistic studies via protein engineering. Biochim Biophys Acta 2002; 1597: 193–220
  • Farhangrazi ZS, Copeland BR, Nakayama T, Amachi T, Yamazaki I, Powers LS. Oxidation–reduction properties of compounds I and II of Arthromyces ramosus peroxidase. Biochemistry 1994; 33: 5647–5652
  • Farhangrazi ZS, Fosset ME, Powers LS, Ellis WR. Variable-temperature spectroelectrochemical study of horseradish peroxidase. Biochemistry 1995; 34: 2866–2871
  • Fedorak PM, Semple KM, Vazquez-Duhalt R, Westlake DWS. Chloroperoxidase mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb Technol 1993; 15: 429–437
  • Fowler D, Smith RI, Mullera JBA, Hayman G, Vincent KJ. Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environ Pollut 2005; 137: 15–25
  • Garcia-Arellano H, Valderrama B, Saab-Rincon G, Vazquez-Duhalt R. High temperature biocatalysis by chemically modified cytochrome c. Bioconj Chem 2002; 13: 1336–1344
  • Garcia-Arellano H, Buenrostro-Gonzalez E, Vazquez-Duhalt R. Biocatalytic transformation of petroporphyrins by chemically modified cytochrome c. Biotechnol Bioeng 2004; 85: 790–798
  • Gilfoyle D, Rodriguez-Lopez JN, Smith AT. Probing the aromatic-donor-binding site of horseradish peroxidase using site-directed mutagenesis and the suicide substrate phenylhydrazine. Eur J Biochem 1996; 236: 714–722
  • Goodin DB, McRee DE. The Asp–His–Fe triad of cytochrome c peroxidase controls the reduction potential, electronic structure, and coupling of the tryptophan free radical to the heme. Biochemistry 1993; 32: 3313–3324
  • Government of Alberta, Canada [Internet] Department of Energy, Canada. 2002. Available from:, , http://www.energy.gov.ab.ca.
  • Groenzin H, Mullins OC. Asphaltene molecular size and structure. J Phys Chem A 1999; 103: 11237–11245
  • Groenzin H, Mullins OC. Molecular size and structure of asphaltenes from various sources. Energy Fuels 2000; 14: 677–684
  • Guallar V, Olsen B. The role of the heme propionates in heme biochemistry. J Inorg Biochem 2006; 100: 755–760
  • Hall C, Tharakan P, Hallock J, Cleveland C, Jefferson M. Hydrocarbons and the evolution of human culture. Nature 2003; 426: 318–322
  • Hayashi Y, Yamazaki I. The oxidation–reduction potentials of Compound I/Compound II and Compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem 1979; 254: 101–106
  • He B, Sinclair R, Copeland BR, Makino R, Powers LS, Yamazaki I. The structure–function relationship and reduction potentials of high oxidation states of myoglobin and peroxidase. Biochemistry 1996; 35: 2413–2420
  • Henriksen A, Mirza O, Indiani C, Teilum K, Smulevich J, Welinder KG, Gajhede M. Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem–apoprotein interactions. Protein Sci 2001; 10: 108–115
  • Hiner A, Martinez JI, Arnao MB, Acosta M, Turner DD, Raven EL, Rodriguez-Lopez JN. Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide. Eur J Biochem 2001; 268: 3091–3098
  • Hiner A, Hernandez-Ruiz J, Rodriguez-Lopez JN, Garcia-Canovas F, Brisset NC, Smith AT, Arnao MB, Acosta M. Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide. J Biol Chem 2002; 277: 26879–26885
  • Houborg K, Harris P, Poulsen JC, Schneider P, Svendsen A, Larsen S. The structure of a mutant enzyme of Coprinus cinereus peroxidase provides an understanding of its increased thermostability. Acta Crystallogr 2003; D59: 997–1003
  • Howes BD, Brissett NC, Doyle WA, Smith AT, Smulevich G. Spectroscopic and kinetic properties of the horseradish peroxidase mutant T171S: Evidence for selective effects on the reduced state of the enzyme. FEBS J 2005; 272: 5514–5521
  • Iffland A, Tafelmeyer P, Saudan C, Johnsson K. Directed molecular evolution of cytochrome c peroxidase. Biochemistry 2000; 39: 10790–10798
  • Institute for the Analysis of Global Security [Internet] Washington DC, US. 2005. Available from:, , http://www.iags.org.
  • Ivancich A, Mazza G, Desbois A. Comparative electron paramagnetic resonance study of radical intermediates in turnip peroxidase isozymes. Biochemistry 2001; 40: 6860–6866
  • Jensen GM, Bunte SW, Warshel A, Goodin DB. Energetics of cation radical formation at the proximal active site tryptophan of cytochrome c peroxidase and ascorbate peroxidase. J Phys Chem B 1998; 102: 8221–8228
  • Jenzer H, Jones W, Kohler H. On the molecular mechanism of lactoperoxidase-catalyzed H2O2 metabolism and irreversible enzyme inactivation. J Biol Chem 1986; 261: 15550–15556
  • Johnson TM, Li JKK. Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 1991; 291: 371–378
  • Kilbane, JJ II. 1992. Mutant microorganisms useful for cleavage of organic C–S bonds. US Patent 5,104,801.
  • Kimura M, Michizoe J, Oakazaki S, Furusaki S, Goto M, Tanaka H, Wariishi H. Activation of lignin peroxidase in organic media by reversed micelles. Biotechnol Bioeng 2004; 88: 495–501
  • Le Borgne S, Quintero R. Biotechnological processes for the refining of petroleum. Fuel Process Technol 2003; 81: 155–169
  • Lee MY, Dordick JS. Enzyme activation for nonaqueous media. Curr Opin Biotechnol 2002; 13: 376–384
  • Lin Z, Thorsen T, Arnold FH. Functional expression of horseradish peroxidase in E. coli by directed evolution. Biotechnol Prog 1999; 15: 467–471
  • Linguist L, Pacheco M. Enzyme-based diesel desulfurization process offers energy, CO2 advantages. Oil G J 1999; 22: 46–48
  • Liu J, Wang T, Huang M, Song H, Weng L, Ji L. Increased thermal and organic solvent tolerance of modified horseradish peroxidase. Prot Eng Des Selec 2006; 19: 169–173
  • Makino R, Chiang R, Hager LP. Oxidation-reduction potential measurements on chloroperoxidase and its complexes. Biochemistry 1976; 15: 4748–4754
  • McFarland BL. Biodesulfurization. Curr Opin Microbiol 1999; 2: 257–264
  • Michizoe J, Uchimura Y, Maruyama T, Kamiya N, Goto M. Control of water content by reverse micellar solutions for peroxidase catalysis in a water-immiscible organic solvent. J Biosci Bioeng 2003; 95: 425–427
  • Miland E, Smyth MR, O'Fagain C. Modification of horseradish peroxidase with bifunctional hydroxysuccinimide esters: Effects on molecular stability. Enzyme Microb Technol 1996; 19: 242–249
  • Miller VP, Goodin DB, Friedman AE, Hartmann C, Ortiz de Montellano PR. Horseradish peroxidase Phe172→Tyr mutant. Sequential formation of Compound I with a porphyrin radical cation and a protein radical. J Biol Chem 1995; 270: 181413–181419
  • Millis CD, Cai D, Stankovich MT, Tien M. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry 1989; 28: 8484–8489
  • Miyasaki C, Takahashi H. Engineering of the H2O2-binding pocket region of a recombinant manganese peroxidase to be resistant to H2O2. FEBS Lett 2001; 509: 111–114
  • Miyasaki-Imamura C, Oohira K, Kitagawa R, Nakano H, Yamane T, Takahashi H. Improvement of H2O2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulfide isomerase. Prot Eng 2003; 16: 423–428
  • Mogollon L, Rodriguez R, Larrota W, Ortiz C, Torres R. Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes. Appl Biochem Biotechnol 1998; 70–72: 765–777
  • Mondal MS, Fuller HA, Armstrong FA. Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase Compound I: Voltammetric detection of a reversible, cooperative two-electron transfer reaction. J Am Chem Soc 1996; 118: 263–264
  • Morawski B, Quan S, Arnold FH. Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. Biotechnol Bioeng 2001; 76: 99–107
  • Morimoto A, Tanaka M, Takahashi S, Ishimori K, Hori H, Morishima I. Detection of a tryptophan radical as an intermediate species in the reaction of horseradish peroxidase mutant Phe-221→Trp and hydrogen peroxide. J Biol Chem 1998; 273: 14753–14760
  • Nagano S, Tanaka M, Ishimori K, Watanabe Y, Morishima I. Catalytic roles of the distal site asparagine–histidine couple in peroxidases. Biochemistry 1996; 35: 14251–14258
  • Newmyer SL, Ortiz de Montellano PR. Horseradish peroxidase His-42→Ala, His-42→Val, and Phe-41→Ala mutants. Histidine catalysis and control of substrate access to the heme iron. J Biol Chem 1995; 270: 19430–19438
  • O'Brien AM, O'Fagain C, Nielsen PF, Welinder KG. Location of crosslinks in chemically stabilized horseradish peroxidase: Implications for design of crosslinks. Biotechnol Bioeng 2001; 76: 277–284
  • Park JB, Clark DS. New reaction system for hydrocarbon oxidation by chloroperoxidase. Biotechnol Bioeng 2006; 94: 189–192
  • Pease EA, Aust SD, Tien M. Heterologous expression of active manganese peroxidase from Phanerochaete chrysosporium using the baculovirus expression system. Biochem Biophys Res Commun 1991; 179: 897–903
  • Pellegrineschi A, Kis M, Dix I, Kavanagh TA, Dix PJ. Expression of horseradish peroxidase in transgenic tobacco. Biochem Soc Trans 1995; 23: 247–250
  • Perez-Boada M, Ruiz-Duenas FJ, Pogni R, Basosi R, Choinowski T, Martinez MJ, Piontek K, Martinez AT. Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 2005; 354: 385–402
  • Pfister TD, Gengenbach AJ, Syn S, Lu Y. The role of redox-active amino acids on Compound I stability, substrate oxidation, and protection cross linking in yeast cytochrome c peroxidase. Biochemistry 2001; 40: 14942–14951
  • Pogni R, Baratto MC, Giansanti S, Teutloff C, Verdin J, Valderrama B, Lendzian F, Lubitz W, Vazquez-Duhalt R, Basosi R. Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry 2005; 44: 4267–4274
  • Poulos TL, Kraut J. The stereochemistry of peroxidase catalysis. J Biol Chem 1981; 255: 8199–8205
  • Premuzic E, Lin MS, Bohenek M, Zhou WM. Bioconversion reactions in asphaltenes and heavy crude oils. Energy Fuels 1999; 13: 297–304
  • Purcell WL, Erman JE. Cytochrome c peroxidase catalyzed oxidations of substitution inert iron II complexes. J Am Chem Soc 1976; 98: 7033–7037
  • Radler M. Crude oil production climbs as reserves post modest rise. Oil G J 2004; 102: 18–20
  • Reading NS, Aust SD. Engineering a disulfide bond in recombinant manganese peroxidase results in increased thermostability. Biotechnol Prog 2000; 16: 326–333
  • Renganathan V, Gold MH. Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 1986; 25: 1626–1631
  • Ricard J, Mazza G, William RJP. Oxidation–reduction potentials and ionization states of two turnip peroxidases. Eur J Biochem 1972; 28: 566–578
  • Ryu K, Dordick JS. How do organic solvents affect peroxidase structure and function?. Biochemistry 1992; 31: 2588–2598
  • Santucci R, Bongiovanni C, Marini S, Del Conte R, Tien M, Banci L, Coletta M. Redox equilibria of manganese peroxidase from Phanerochaete chrysosporium: Functional role of residues on the proximal side of the haem pocket. Biochem J 2000; 349: 85–90
  • Schmitke JL, Wescott CR, Klibanov AM. The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents. J Am Chem Soc 1996; 118: 3360–3365
  • Seelbach K, van Deurzen MPJ, van Rantwijk F, Sheldon RA. Improvement of the total turnover number and space–time yield for chloroperoxidase catalyzed oxidation. Biotechnol Bioeng 1997; 55: 283–288
  • Skjelkvåle BL, Stoddard JL, Jeffries DS, Tørseth K, Høgåsen T, Bowman J, Mannio J, Monteith DT, Mosello R, Rogora M, et al. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ Pollut 2005; 137: 165–176
  • Smith AT, Veitch NC. Substrate binding and catalysis in heme peroxidases. Curr Opin Chem Biol 1998; 2: 269–278
  • Smith AT, Santama N, Dacey S, Edwards M, Bray RC, Thorneley RNF, Burke JF. Expression of a synthetic gene for horseradish peroxidase c in Escherichia coli and folding and activation of the recombinant enzyme with Ca2 +  and heme. J Biol Chem 1990; 265: 13335–13343
  • Smulevich G, Miller MA, Kraut J, Spiro TG. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: Resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase. Biochemistry 1991; 30: 9546–9558
  • Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 2003; 86: 211–263
  • Song H, Yaob J, Liu J, Zhou S, Xiong Y, Ji L. Effects of phthalic anhydride modification on horseradish peroxidase stability and structure. Enzyme Microb Technol 2005; 36: 605–611
  • Steward P, Whitwam RE, Kersten PJ, Cullen D, Tien M. Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 1996; 62: 860–864
  • Strausz OP, Mojelsky TW, Lown EM. The molecular structure of asphaltenes: An unfolding story. Fuel 1992; 71: 1355–1363
  • Sundaramoorthy M, Terner J, Poulos TL. The crystal structure of chloroperoxidase: A heme peroxidase–cytochrome P450 functional hybrid. Structure 1995; 3: 1367–77
  • Svistunenko DA. Reaction of haem containing proteins and enzymes with hydroperoxides: The radical view. Biochim Biophys Acta 2005; 1707: 127–155
  • Takahashi K, Nishimura H, Yoshimoto T, Saito Y, Inada Y. A chemical modification to make horseradish peroxidase soluble and active in benzene. Biochem Biophys Res Commun 1984; 121: 261–265
  • Tanaka M, Ishimori K, Mukai M, Kitagawa T, Morishima I. Catalytic activities and structural properties of horseradish peroxidase distal His42 of Glu or Gln mutant. Biochemistry 1997; 36: 9889–9898
  • Thouand G, Bauda P, Oudot J, Kirsh G, Sutton C, Vidalie JF. Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 1999; 45: 106–115
  • Tinoco R, Vazquez-Duhalt R. Chemical modification of cytochrome c improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme Microb Technol 1998; 22: 8–12
  • Trevisan V, Signoretto M, Colonna S, Pironti V, Strukul G. Microencapsulated chloroperoxidase as a recyclable catalyst for the enantioselective oxidation of sulfides with hydrogen peroxide. Angew Chem Int Ed Engl 2004; 43: 4097–4099
  • Valderrama B, Vazquez-Duhalt R. Electron-balance during the oxidative self-inactivation of cytochrome c. J Mol Catal B Enzym 2005; 35: 41–44
  • Valderrama B, Ayala M, Vazquez-Duhalt R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem Biol 2002; 9: 555–565
  • Valderrama B, Garcia-Arellano H, Giansanti S, Baratto MC, Pogni R, Vazquez-Duhalt R. Oxidative stabilization of iso-1-cytochrome c by redox-inspired protein engineering. FASEB J 2006; 20: 1233–1235
  • van de Velde F, Bakker M, van Rantwijk F, Sheldon RA. Chloroperoxidase-catalyzed enantioselective oxidations in hydrophobic organic media. Biotechnol Bioeng 2001a; 72: 523–529
  • van de Velde F, van Rantwijk F, Sheldon RA. Improving the catalytic performance of peroxidases in organic synthesis. Trends Biotechnol 2001b; 19: 73–80
  • van Deurzen MPJ, van Rantwijk F, Sheldon RA. Selective oxidations catalyzed by peroxidases. Tetrahedron 1997; 53: 13183–13220
  • Vazquez-Duhalt R. Cytochrome c as a biocatalyst. J Mol Catal B Enzym 1999; 7: 241–249
  • Vazquez-Duhalt R, Westlake DWS, Fedorak PM. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol 1994; 60: 459–466
  • Vazquez-Duhalt, R, Bremauntz, MP, Barzana, E, Tinoco, R. 2002a. Enzymatic oxidation process for desulfurization of fossil fuels. US Patent 6,461,859.
  • Vazquez-Duhalt R, Torres E, Valderrama B, Le Borgne S. Will biochemical catalysis impact the petroleum refining industry?. Energy Fuels 2002b; 16: 1239–1250
  • Veitch NC. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 2004; 65: 249–259
  • Verdin J, Pogni R, Baeza A, Baratto MC, Basosi R, Vazquez-Duhalt R. Mechanism of versatile peroxidase inactivation by Ca2 +  depletion. Biophys Chem 2006; 121: 163–170
  • Villegas JA, Mauk AG, Vazquez-Duhalt R. A cytochrome c variant resistant to heme degradation by hydrogen peroxide. Chem Biol 2000; 7: 237–244
  • Wang Y, Vazquez-Duhalt R, Pickard MA. Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Curr Microbiol 2002; 45: 77–87
  • Wang Y, Vazquez-Duhalt R, Pickard MA. Manganese-lignin peroxidase hybrid from Bjerkandera adusta oxidizes polycyclic aromatic hydrocarbons more actively in the absence of manganese. Can J Microbiol 2003; 49: 675–682
  • Wariishi H, Gold MH. Lignin peroxidase compound III, mechanism of formation and decomposition. J Biol Chem 1990; 265: 2070–2077
  • Weinryb I. The behavior of horseradish peroxidase at high hydrogen peroxide concentrations. Biochemistry 1996; 5: 2003–2008
  • Welinder KG. Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 1992; 2: 388–393
  • Whitwam RE, Gazarian IG, Tien M. Expression of fungal Mn peroxidase in E. coli and refolding to yield active enzyme. Biochem Biophys Res Commun 1995; 216: 1013–1017
  • Wirstam M, Blomberg MRA, Siegbahn PEM. Reaction mechanism of compound I formation in heme peroxidases: A density functional theory study. J Am Chem Soc 1999; 121: 10178–10185
  • Wyndham RC, Costerton JW. In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl Environ Microbiol 1981; 41: 791–800
  • Yamada H, Makino R, Yamazaki I. Effects of 2,4-substituents of deutero-heme upon redox potentials of horseradish peroxidases. Arch Biochem Biophys 1975; 169: 344–353
  • Yang L, Dordick JS, Garde S. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J 2004; 87: 812–821

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.