31
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Role of Phe-114 in substrate specificity of Candida tenuis xylose reductase (AKR2B5)

, , &
Pages 194-201 | Published online: 11 Jul 2009

References

  • Angyal SJ. The composition of reducing sugars in solution: Current aspects. Adv Carbohydr Chem Biochem 1991; 49: 19–35
  • Broinenberg PM, de Bot PHM, van Dijken JP, Schetters WA. Ther role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 1983; 18: 287–292
  • De Winter HL, von Itzstein M. Aldose reductase as a target for drug design: Molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme. Biochemistry 1995; 34: 8299–8308
  • Grimshaw CE, Bohren KM, Lai C-J, Gabbay KH. Human aldose reductase: Rate constants for a mechanism including interconversion of ternary complexes by recombinant wild-type enzyme. Biochemistry 1995; 34: 14356–14365
  • Häcker B, Habenicht A, Kiess M, Mattes R. Xylose utilisation: Cloning and characterisation of the xylose reductase from Candida tenuis. J Biol Chem 1999; 380: 1395–1403
  • Hahn-Hägerdahl B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jönsson LJ. Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Engng Biotechnol 2001; 73: 53–84
  • Hemsley A, Arnheim N, Toney MD, Cortopassi G, Galas DJ. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res 1989; 17: 6545–6551
  • Hohman TC, El-Kabbani O, Malamas MS, Lai K, Putilina T, McGowan MH, Wane Y-Q, Carper DA. Probing the inhibitor-binding site of aldose reductase with site-directed mutagenesis. Eur J Biochem 1998; 256: 310–316
  • Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 2006; 17: 320–326
  • Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochemistry 2002; 41: 8785–8795
  • Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 2003; 373: 319–326
  • Klimacek M, Szekely M, Grießler R, Nidetzky B. Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types. FEBS Lett 2001; 500: 149–152
  • Kratzer R, Nidetzky B. Electrostatic stabilization in a pre-organized polar active site: The catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Biochem J 2005; 389: 507–515
  • Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Biochemistry 2004; 43: 4944–4954
  • Kratzer R, Wilson DK, Nidetzky B. Catalytic mechanism and substrate selectivity of aldo-keto reductases: Insights from structure–function studies of Candida tenuis xylose reductase. IUBMB Life 2006a; 58: 499–507
  • Kratzer R, Leitgeb S, Wilson DK, Nidetzky B. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis. Biochem J 2006b; 393: 51–58
  • Mayr P, Nidetzky B. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis. Biochem J 2002; 366: 889–899
  • Mayr P, Brüggler K, Kulbe KD, Nidetzky B. d-Xylose metabolism by Candida intermedia: Isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J Chromatogr B 2000; 737: 195–202
  • Muzet N, Guillot B, Jelsch C, Howard E, Lecomte C. Electrostatic complementarity in an aldose reductase complex from ultra-high-resolution crystallography and first-principles calculations. Proc Natl Acad Sci USA 2003; 100: 8742–8747
  • Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Biochem J 1997; 326: 683–692
  • Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B. Noncovalent enzyme substrate interactions in the catalytic mechanism of yeast aldose reductase. Biochemistry 1998; 37: 1116–1123
  • Nidetzky B, Neuhauser W, Haltrich D, Kulbe KD. Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 1996; 52: 387–396
  • Nidetzky B, Mayr P, Hadwiger P, Stütz AE. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Biochem J 1999; 344: 101–107
  • Nidetzky B, Mayr P, Neuhauser W, Puchberger M. Structural and functional properties of aldose xylose reductase form the d-xylose-metabolizing yeast Candida tenuis. Chemico-Biol Interact 2001a; 130–132: 583–595
  • Nidetzky B, Klimacek M, Mayr P. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Biochemistry 2001b; 40: 10371–10381
  • Nidetzky B, Brüggler K, Kratzer R, Mayr P. Multiple forms of xylose reductase in Candida intermedia: Comparison of their functional properties using quantitative structure–activity relationships, steady-state kinetic analysis, and pH studies. J Agric Food Chem 2003; 51: 7930–7935
  • Petschacher B, Nidetzky B. Engineering Candida tenuis xylose reductase for improved utilization of NADH: Antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 2005; 71: 6390–6393
  • Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 2005; 385: 75–83
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463–5467

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.