1,346
Views
31
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil

, Ph.D, , &
Pages 341-349 | Published online: 11 Jul 2009

References

  • Alcalde M, Bulter T, Arnold F. Colorimetric assay for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases. J Biomol Screen 2002; 7: 547–553
  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A. Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends Biotechnol 2006; 24: 281–287
  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. Available from: http://www.ncbi.nlm.nih.gov/BLAST/
  • April TM, Abbott SP, Currah RS. Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can J Bot 1998; 44: 270–278
  • Bogan BW, Lamar RT. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laveis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 1996; 62: 1597–1603
  • Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal–bacterial cocultures. Appl Environ Microbiol 2000; 66: 1007–1019
  • Bovaird JH, Ngo TT, Lenhoff HM. Optimizing the o-phenylenediamine assay for horseradish peroxidase: Effects of phosphate and pH, substrate and enzyme concentrations, and stopping reagents. Clin Chem 1982; 28: 2423–2426
  • Chaillan F, Le Flèche A, Bury E, Phantavong Y, Grimont P, Saliot A, Oudot J. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 2004; 144: 587–595
  • Conesa A, Punt PJ, Van den Hondel CA. Fungal peroxidases: Molecular aspects and applications. J Biotechnol 2002; 193: 143–158
  • Davies JS, Westlake DW. Crude oil utilization by fungi. Can J Microbiol 1979; 25: 146–156
  • Domsch K, Gams W, Anderson T. 1980. Compendium of soil fungi, Vol I and II London: Academic Press. Vol I: 858 pp; Vol II: 450 pp.
  • Foght JM. Whole-cell bio-processing of aromatic compounds in crude oil and fuels. Petroleum biotechnology: Developments and perspectives, R Vázquez-Duhalt, R Quintero-Ramirez. Elsevier Science, Amsterdam 2004; 145–175
  • Gianfreda L, Rao MA. Potential of extra cellular enzymes in remediation of polluted soils: A review. Enzyme Microb Technol 2004; 35: 339–354
  • Hammel KE, Gai WZ, Green B, Moen MK. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 1992; 58: 1832–1838
  • Hao JJ, Tian XJ, Song FQ, He XB, Zhang ZJ, Zhang P. Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. J Eukaryot Microbiol 2006; 53: 193–198
  • Kamaya Y, Nakatsubo F, Higuchi T, Iwahara S. Degradation of D,L-syringaresinol, a β-β′-linked lignin model compound, by Fusariun solani M-13-1. Arch Microbiol 1981; 129: 305–309
  • Kapoor KK, Jain MK, Mishra MM, Sing CP. 1978. Cellulase activity, degradation of cellulose and lignin and humus formation by cellulolytic fungi. Ann Microbiol (Paris) B(4):613–620.
  • Kirkwood KM, Foght JM, Gray MR. Prospects for biological upgrading of heavy oils and asphaltenes. Petroleum biotechnology: Developments and perspectives, R Vazquez-Duhalt, R Quintero-Ramirez. Elsevier Science, Amsterdam 2004; 113–143
  • Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M. Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Environ Microbiol 2003; 61: 374–379
  • Leahy JG, Colwell RT. Microbial degradation of hydrocarbons in the environment. Microbiol Rev 1990; 54: 305–315
  • León V. Nuevos enfoques sobre la visión molecular de un crudo pesado. Visión Tecnol 1998; 5: 131–138
  • León V, Kumar M. Biological upgrading of heavy crude oil. Biotechnol Bioprocess Eng 2005; 10: 471–481
  • Luykx DMAM, Prenafeta-Boldú FX, de Bont JAM. Toluene monooxygenase from the fungus Cladosporium sphaerospermum. Biochem Biophys Res Commun 2003; 312: 373–379
  • Martín C, González A, Blanco MJ. Tratamientos biológicos de suelos contaminados: Contaminación por hidrocarburos. Aplicaciones de hongos en tratamientos de biorrecuperación. Rev Iberoam Micol 2004; 21: 103–120
  • Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT. Purification and catalytic properties of two manganeso-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 1996; 237: 424–432
  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 2005; 8: 195–204
  • Mishra MM, Singh CP, Kapoor KK, Jain MK. 1979. Degradation of lignocellulosic material and humus formation by fungi. Ann Microbiol (Paris) A(4):481–486.
  • Montenegro E, Fierro F, Fernández FJ, Gutiérrez S, Martín JF. Resolution of chromosomes III and VI of Aspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genes pcbAB, pcbC, and penDE are clustered on chromosome VI (3.0 megabases). J Bacteriol 1992; 174: 7063–7067
  • Naranjo L, Martín de Valmaseda E, Bañuelos O, López P, Riaño J, Casqueiro J, Martín JF. Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 2001; 183: 7165–7172
  • Naranjo L, Martín de Valmaseda E, Casqueiro J, Ullán RV, Lamas M, Bañuelos O, Martín JF. Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from α-aminoadipic acid. Appl Environ Microbiol 2004; 70: 1031–1039
  • Naranjo L, Lamas-Maceiras M, Ullán RV, Campoy S, Teijeira F, Casqueiro J, Martín JF. Characterization and expression studies of the oat1 gene of Penicillium chrysogenum encoding an ω-aminotransferase: Induction by L-lysine, L-ornithine and L-arginine and repression by ammonium. Mol Genet Genomics 2005; 28: 1–11
  • Norris DM. Degradation of 14C-labeled lignins and 14C-labeled aromatic acid by Fusarium solani. Appl Environ Microbiol 1980; 40: 376–380
  • Ohta M, Higuchi T, Iwahara S. Microbial degradation of dehydrodiconiferyl alcohol, a lignin substructure model. Arch Microbiol 1979; 121: 23–28
  • PDVSA. 2002. ‘Non-conventional oil. Venezuelan extra heavy crude oil’. Conference on Non-Conventional Oil, Calgary, 25 November 2002. Available from: http://www.iea.org/Textbase/work/2002/calgary/Vielmap.pdf. Accessed 30 May 2002.
  • Pearson W, Lipman D. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 1988; 85: 2444–2448
  • Peláez F, Martínez MJ, Martínez AT. Screening of 68 species of basidiomycetes for enzymes evolved in lignin degradation. Mycol Res 1995; 99: 37–42
  • Plaza G, Ulfig K, Brigmon RL. Relationship between soil microbial diversity and bioremediation process at an oil refinery. Acta Microbiol Pol 2003; 52: 173–182
  • Prenafeta-Boldú FX, Kuhn A, Luykx MAM, Anke H, Van Groenestijn JW, de Bont JAM. Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 2001; 105: 477–484
  • Prenafeta-Boldú FX, Vervoort J, Grotenhuism JTC, Van Groenestijn JW. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl Environ Microbiol 2002; 68: 2660–2665
  • Prenafeta-Boldú FX, Ballerstedt H, Gerritse J, Grotenhuis JTC. Bioremediation of BTEX hydrocarbons: Effect of soil inoculation with the toluene-growing fungus Cladophialophora sp. strain T1. Biodegradation 2004; 15: 59–65
  • Prenafeta-Boldú FX, Summerbell R, de Hoog GS. Fungi growing on aromatic hydrocarbons: Biotechnology's unexpected encounter with biohazard?. FEMS Microbiol Rev 2006; 30: 109–130
  • Regalado V, Rodríguez A, Perestelo F, Carnicero A, De La Fuente G, Falcón MA. Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 1997; 63: 3716–3718
  • Romaro M, Baralle FR, Patriarca P. Expression and characterization of recombinant human eosinophil peroxidase. Impact of the R286H substitution on the biosynthesis and activity of the enzyme. Eur J Biochem 2000; 267: 3704–3711
  • Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. Molecular characterization of a novel peroxidase isolated from the lignolytic fungus Pleurotus eryngii. Mol Microbiol 1999; 31: 223–235
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1989
  • Saparrat MCN, Hammer E. Decolorization of synthetic dyes by the deuteromycete Pestalotiopsis guepinii CLPS no. 786 strain. J Basic Microbiol 2006; 46: 28–33
  • Saparrat MCN, Margarita AM, Tournier HA, Cabello MN, Arambarri AM. Extracellular ABTS-oxidizing activity of autochthonous fungal strains from Argentina in solid medium. Rev Iberoam Micol 2000; 17: 64–68
  • Saparrat MCN, Guillén F, Arambarri AM, Martínez AT, Martínez MJ. Induction, isolation, and characterization of two laccases from the with rot basidiomycete Coriolopsis rigida. Appl Environ Microbiol 2002; 68: 1534–1540
  • Singh P, Thakur IS. Colour removal of anaerobically treated pulp and paper mill effluent by microorganisms in two steps bioreactor. Bioresour Technol 2006; 97: 218–223
  • Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 2003a; 67: 503–549
  • Van Hamme JD, Wong ET, Dettman H, Gray MR, Pickard MA. Dibenzyl sulfide metabolism by white rot fungi. Appl Environ Microbiol 2003b; 69: 1320–1324
  • Vazquez-Duhalt R, Westlake DWS, Fedorak M. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol 1994; 60: 459–466
  • Veignie E, Rafin C, Woisel P, Cazier F. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environ Pollut 2004; 129: 1–4
  • Verdin A, Lounes-Hadj A, Newsam R, Robinson G, Durand R. Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicle. Environ Pollut 2005; 133: 283–291
  • Verdin A, Lounes-Hadj A, Laruelle F, Grandmougin-Ferjani A, Durand R. Effect of the high polycyclic aromatic hydrocarbon, benzo [a]pyrene, on the lipid content of Fusarium solani. Mycol Res 2006; 110: 479–484
  • Wolters G, Kuijpers L, Kačaki J, Schuurs A. Solid-phase enzyme-immunoassay for detection of hepatitis B surface antigen. J Clin Pathol 1976; 29: 873–879