133
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Linking of cytochrome P450cam and putidaredoxin by a co-ordination bridge

, , , , , , , , , & , Ph.D show all
Pages 301-317 | Published online: 11 Jul 2009

References

  • Atkins WM, Sligar SG. Metabolic switching in cytochrome P450cam: deuterium isotope effects on regiospecificity and the monooxygenase/oxidase ratio. J Am Chem Soc 1987; 109: 3754–3760
  • Atkins WM, Sligar SG. Deuterium isotope effects in norcamphor metabolism by cytochrome P450cam: Kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate. Biochemistry 1988; 27: 1610–1616
  • Bell SG, Chen X, Swoden RJ, Xu F, Williams JN, Wong L-L, Rao ZH. Molecular recognition in (+)-(-pinene oxidation by cyctochrome P450cam. J Am Chem Soc 2003; 125: 705–708
  • Collman JP, Chien AS, Eberspacher TA, Brauman JI. An agostic alternative to the P-450 rebound mechanism. J Am Chem Soc 1998; 120: 425–426
  • Davies MD, Sligar SG. Genetic variants in the putidaredoxin-cytochrome P-450cam electron-transfer complex: Identification of the residue responsible for redox-state-dependent conformers. Biochemistry 1992; 31: 11383–11389
  • Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM. Hydroxylation of camphor by reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediated in native and mutant enzymes. J Am Chem Soc 2001; 123: 1403–1415
  • Deprez E, Gerber NC, Primo CD, Douzou P, Sligar SG, Hoa GHB. Electrostatic control of the substrate access channel in cytochrome P-450cam. Biochemistry 1994; 33: 14464–4468
  • Dunn AR, Dmochowski IJ, Winkler JR, Gray HB. Nanosecond photoreduction of cytochrome P450cam by channel-specific Ru-diimine electron tunneling wires. J Am Chem Soc 2003; 125: 12450–12456
  • England PA, Harford-Cross CF, Stevenson JA, Rouch DA, Wong L-L. The oxidation of naphthalene and pyrene by cytochrome P450cam. FEBS Lett 1998; 424: 271–274
  • Fisher MT, Sligar SG. Control of heme protein redox potential and reduction rate: Linear free energy relation between potential and ferric spin state equilibrium. J Am Chem Soc 1985; 107: 5018–5019
  • Furukawa Y, Morishima I. The role of water molecules in the association of cytochrome P450cam with putidaredoxin. J Biol Chem 2001; 276: 12983–12990
  • Gelb MH, Heimbrook DC, Malkonene P, Sligar SG. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monooxygenase system. Biochemistry 1982; 21: 370–377
  • Gould PV, Gelb MH, Sligar SG. Interaction of 5-bromocamphor with cytochrome P450cam. J Biol Chem 1981; 256: 6686–6691
  • Gunsalus IC, Wagner GC. Bacterial P-450cam methylene monooxygenase components: Cytochrome m, putidaredoxin, and putidaredoxin reductase. Methods Enzymol 1978; 52C: 166–188
  • Hildebrandt AG, Roots I. Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Arch Biochem Biophys 1975; 171: 385–397
  • Hlavica P, Schulze J, Lewis DFV. Functional interaction of cytochrome P450 with its redox partners: A critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 2003; 96: 279–297
  • Holden M, Mayhew M, Bunk D, Roitberg A, Vilker V. Probing the interactions of putidaredoxin with redox partners in camphor P450 5-monooxygenase by mutagenesis of surface residues. J Biol Chem 1997; 272: 21720–21725
  • Honeychurch MJ, Hill HAO, Wong L-L. The thermodynamics and kinetics of electron transfer in the cytochrome P450cam enzyme system. FEBS Lett 1999; 451: 351–353
  • Kadkhodayan S, Coulter ED, Maryniak DM, Bryson TA, Dawson JH. Uncoupling oxygen transfer and electron transfer in the oxygenation of camphor analogues by cytochrome P450-CAM. J Biol Chem 1995; 270: 28042–28048
  • Kamachi T, Yoshizawa K. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome P450. J Am Chem Soc 2003; 125: 4652–4661
  • Kumar D, de Visser SP, Shaik S. How does product isotope effect prove the operation of a two-state ‘rebound’ mechanism in C–H hydroxylation by cytochrome P450?. J Am Chem Soc 2003; 125: 13024–13025
  • Lipscomb JD, Sligar SG, Namtvedt MJ, Gunsalus IC. Autooxidation and hydroxylation reactions of oxygenated cytochrome P450cam. J Biol Chem 1976; 251: 1116–1124
  • Loida, PJ, Sligar, SG. 1994. Molecular recognition in cytochrome P450: control of uncoupling reactions via site-directed mutagenesis. In: MC Lechner, Cytochrome P450. Eighth International Conference. Paris: John Libbey Eurotext. p 463–466.
  • Manchester JI, Dinnocenzo JP, Higgins LH, Jones JP. A new mechanistic probe for cytochrome P450: An application of isotope effect profiles. J Am Chem Soc 1997; 119: 5069–5070
  • Mayer, JM. 2000. Thermodynamic influences on C–H bond oxidation. In: B Maerrnier. Biomimetic ox. catalyzed by TM complexes. London: Imperial College Press. p 1–37.
  • Meer BW, Coker G III, Chen S-YS. Resonance energy transfer, theory and data. VCH, Weinheim 1994
  • Newcomb M, Tadic-Biadatti M-HL, Chestney DL, Roberts ES, Hollenberg PF. A nonsynchronous concerted mechanism for cytochrome P-450 catalyzed hydroxylation. J Am Chem Soc 1995; 117: 12085–12091
  • Nickerson DP, Harford-Cross CF, Fulcher SR, Wong L-L. The catalytic activity of cytochrome P450cam towards styrene oxidation is increased by site-specific mutagenesis. FEBS Lett 1997; 405: 153–156
  • O'Keeffe DH, Ebel RE, Peterson JA. Purification of bacterial cytochrome P-450. Methods Enzymol 1978; 52C: 151–156
  • Ogliaro F, Cohen S, de Visser SP, Shaik S. Medium polarization and hydrogen bonding effects on compound I of cytochrome P450: What kind of a radical is it really?. J Am Chem Soc 2000; 122: 12892–12893
  • P Ortiz de Montellano(1995) Cytochrome P450. Structure, mechanism and biochemistry (second ed.), New York: Plenum Press.
  • Peterson JA. Camphor binding by Pseudomonas putida cytochrome P-450. Arch Biochem Biophys 1971; 144: 678–693
  • Plettner E, DeSantis G, Stabile M, Jones JB. Modulation of esterase and amidase activity of subtilisin Bacillus lentus by chemical modification of cysteine mutants. J Am Chem Soc 1999; 121: 4977–4981
  • Pochapsky TC, Ratnaswamy G, Patera A. Redox-dependent 1H NMR spectral features and tertiary structural constraints on the C-terminal region of putidaredoxin. Biochemistry 1994; 33: 6433–6441
  • Pochapsky SS, Pochapsky TC, Wei JW. A model for effector activity in a highly specific biological electron transfer complex: The cytochrome P450cam–putidaredoxin couple. Biochemistry 2003; 42: 5649–5656
  • Poulos TL, Finzel BC, Howard AJ. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 1986; 25: 5314–5322
  • Poulos TL, Finzel BC, Howard AJ. High-resolution crystal structure of cytochrome P450cam. J Mol Biol 1987; 195: 687–700
  • Reipa V, Mayhew MP, Vilker VL. A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci USA 1997; 94: 13554–13558
  • Roitberg AE, Holden MJ, Mayhew MP, Kurnikov IV, Beratan DN, Vilker VL. Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments. J Am Chem Soc 1998; 120: 8927–8932
  • Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 2000; 287: 1615–1622
  • Shimada H, Nagano S, Ariga Y, Unno M, Egawa T, Hishiki T, Ishimura Y. Putidaredoxin–cytochrome P450cam interaction. Spin state of the heme iron modulates putidaredoxin structure. J Biol Chem 1999; 274: 9363–9369
  • Sibbesen O, DeVoss JJ, Ortiz de Montellano PR. Putidaredoxin reductase–putidaredoxin–cytochrome P450cam triple fusion protein. J Biol Chem 1996; 271: 22462–22469
  • Sibbesen O, Zhang ZP, Montellano PROd. Cytochrome P450cam substrate specificity: Relationship between structure and catalytic oxidation of alkylbenzenes. Arch Biochem Biophys 1998; 353: 285–296
  • Sligar SG. Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 1976; 15: 5399–5406
  • Sligar SG, Gunsalus IC. A thermodynamic model of regulation: Modulation of redox equilibria in camphor monoxygenase. Proc Natl Acad Sci USA 1976; 73: 1078–1082
  • Sligar SG, Debrunner PG, Lipscomb JD, Namtvedt MJ, Gunsalus IC. A role of the putidaredoxin COOH-terminus in P-450cam (cytochrome m*) hydroxylations. Proc Natl Acad Sci USA 1974; 71: 3906–3910
  • Sono M, Roach MP, Coulter ED, Dawson JH. Heme-containing oxygenases. Chem Rev 1996; 96: 2841–2887
  • Taraphder S, Hummer G. Protein side-chain motion and hydration in proton-transfer pathways. Results for cytochrome P450cam. J Am Chem Soc 2003; 125: 3931–3940
  • Tosha T, Yoshioka S, Hori H, Takahashi S, Ishimori K, Morishima I. Molecular mechanism of the electron transfer reaction in cytochrome P450cam-putidaredoxin: Roles of glutamine 360 at the heme proximal site. Biochemistry 2002; 41: 13883–13893
  • Toy PH, Newcomb M, Hollenberg PF. Hypersensitive mechanistic probe studies of cytochrome P450-catalyzed hydroxylation reactions. Implications for the cationic pathway. J Am Chem Soc 1998; 120: 7719–7729
  • Wilker JJ, Dmochowski IJ, Dawson JH, Winkler JR, Gray HB. Substrates for rapid delivery of electrons and holes to buried active sites in proteins. Agnew Chem Int Ed 1999; 38: 89–92
  • Woggon W-D. Topics in current chemistry. Springer-Werlag Berlin Heidelberg, Berlin 1996; 40–93
  • Wong L-L. Cytochrome P450 monooxygenases. Curr Opin Chem Biol 1998; 2: 263–268

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.