Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 8, 2005 - Issue 4
3,106
Views
174
CrossRef citations to date
0
Altmetric
Original

Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety

, , &
Pages 209-219 | Received 10 Oct 2005, Accepted 02 Dec 2005, Published online: 07 Jul 2009

References

  • Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA. Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 2005; 133: 983–997
  • Adamec RE. Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior. Study 1—role of NMDA receptors in efferent transmission from the cat amygdala. J Psychopharmacol 1998; 12: 122–128
  • Adamec RE. Partial kindling and behavioral pathologies. Int Rev Neurobiol 2001; 45: 409–434
  • Adolphs R. The human amygdala and emotion. The Neuroscientist 1999; 5: 125–137
  • Adolphs R, Sears L, Piven J. Abnormal processing of social information from faces in autism. J Cogn Neurosci 2001; 13: 232–240
  • Adolphs R, Baron-Cohen S, Tranel D. Impaired recognition of social emotions following amygdala damage. J Cogn Neurosci 2002; 14: 1264–1274
  • Akirav I, Richter-Levin G. Mechanisms of amygdala modulation of hippocampal plasticity. J Neurosci 2002; 22: 9912–9921
  • Amaral DG. The primate amygdala and the neurobiology of social behavior: Implications for understanding social anxiety. Biol Psychiatry 2002; 51: 11–17
  • Amaral DG PJ, Pitkanen A, Carmichael ST. Anatomical organization of the primate amygdaloid complex. Amygdala: Neurobiological aspects of emotion, memory and mental dysfunction, J Aggleton. Weily-Liss, New York 1992; 1–66
  • Anand A, Shekhar A. Brain imaging studies in mood and anxiety disorders: Special emphasis on the amygdala. Ann NY Acad Sci 2003; 985: 370–388
  • Anderson AK, Phelps EA. Is the human amygdala critical for the subjective experience of emotion? Evidence of intact dispositional affect in patients with amygdala lesions. J Cogn Neurosci 2002; 14: 709–720
  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB. The role of corticotropinreleasing factor in depression and anxiety disorders. J Endocrinol 1999; 160: 1–12
  • Asprodini EK, Rainnie DG, Shinnick-Gallagher P. Epileptogenesis reduces the sensitivity of presynaptic gamma-aminobutyric acidB receptors on glutamatergic afferents in the amygdala. J Pharmacol Exp Ther 1992; 262: 1011–1021
  • Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT. Role of the locus coeruleus in emotional activation. Prog Brain Res 1996; 107: 379–402
  • Bale TL, Vale WW. CRF and CRF receptors: Role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004; 44: 525–557
  • Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci 2002; 3: 563–573
  • Benes FM, Berretta S. GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25: 1–27
  • Blitzer RD, Iyengar R, Landau EM. Postsynaptic signaling networks: Cellular cogwheels underlying long-term plasticity. Biol Psychiatry 2005; 57: 113–119
  • Blundell P, Hall G, Killcross S. Preserved sensitivity to outcome value after lesions of the basolateral amygdala. The J Neurosci 2003; 23: 7702–7709
  • Blurton-Jones M, Tuszynski MH. Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. J Comp Neurol 2002; 452: 276–287
  • Boyer P. Do anxiety and depression have a common pathophysiological mechanism?. Acta Psychiatr Scand 2000; Supplementum: 24–29
  • Britton KT, Lee G, Vale W, Rivier J, Koob GF. Corticotropin releasing factor (CRF) receptor antagonist blocks activating and ‘anxiogenic’ actions of CRF in the rat. Brain Res 1986; 369: 303–306
  • Brown TH, Chapman PF, Kairiss EW, Keenan CL. Long-term synaptic potentiation. Science 1988; 242: 724–728
  • Callahan PM, Paris JM, Cunningham KA, Shinnick-Gallagher P. Decrease of GABA-immunoreactive neurons in the amygdala after electrical kindling in the rat. Brain Res 1991; 555: 335–339
  • Campbell BM, Morrison JL, Walker EL, Merchant KM. Differential regulation of behavioral, genomic, and neuroendocrine responses by CRF infusions in rats. Pharmacol Biochem Behav 2004; 77: 447–455
  • Campeau S, Davis M. Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 1995; 15: 2301–2311
  • Carter RN, Pinnock SB, Herbert J. Does the amygdala modulate adaptation to repeated stress?. Neuroscience 2004; 126: 9–19
  • Chapman PF, Bellavance LL. Induction of long-term potentiation in the basolateral amygdala does not depend on NMDA receptor activation. Synapse 1992; 11: 310–318
  • Chapman PF, Kairiss EW, Keenan CL, Brown TH. Long-term synaptic potentiation in the amygdala. Synapse 1990; 6: 271–278
  • Charney DS. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr Scand 2003; Suppl: 38–50
  • Charney DS, Woods SW, Krystal JH, Nagy LM, Heninger GR. Noradrenergic neuronal dysregulation in panic disorder: The effects of intravenous yohimbine and clonidine in panic disorder patients. Acta Psychiatr Scand 1992; 86(273)282
  • Chen A, Hough CJ, Li H. Serotonin type II receptor activation facilitates synaptic plasticity via N-methyl-d-aspartate-mediated mechanism in the rat basolateral amygdala. Neuroscience 2003; 119: 53–63
  • Cheng LL, Wang SJ, Gean PW. Serotonin depresses excitatory synaptic transmission and depolarization-evoked Ca2+ influx in rat basolateral amygdala via 5-HT1A receptors. Eur J Neurosci 1998; 10: 2163–2172
  • Clugnet MC, LeDoux JE. Synaptic plasticity in fear conditioning circuits: Induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J Neurosci 1990; 10: 2818–2824
  • Collingridge GL, Bliss TV. Memories of NMDA receptors and LTP. Trends Neurosci 1995; 18: 54–56
  • Collingridge GL, Kehl SJ, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 1983; 334: 33–46
  • Cratty MS, Ward HE, Johnson EA, Azzaro AJ, Birkle DL. Prenatal stress increases corticotropin-releasing factor (CRF) content and release in rat amygdala minces. Brain Res 1995; 675: 297–302
  • Davis M. The role of the amygdala in fear-potentiated startle: Implications for animal models of anxiety. Trends Pharmacol Sci 1992; 13: 35–41
  • Davis M. Are different parts of the extended amygdala involved in fear versus anxiety?. Biol Psychiatry 1998; 44: 1239–1247
  • Davis M, Myers KM. The role of glutamate and gamma-aminobutyric acid in fear extinction: Clinical implications for exposure therapy. Biol Psychiatry 2002; 52: 998–1007
  • Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 1994; 17: 208–214
  • Davis M, Walker DL, Lee Y. Amygdala and bed nucleus of the stria terminalis: Differential roles in fear and anxiety measured with the acoustic startle reflex. Philos Trans R Soc Lond B Biol Sci 1997a; 352: 1675–1687
  • Davis M, Walker DL, Lee Y. Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann NY Acad Sci 1997b; 821: 305–331
  • Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotrophin releasing factor administration: Is CRF a mediator of anxiety or stress responses?. Brain Res Rev 1990; 15: 71–100
  • Dunn AJ, File SE. Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Hormone Behav 1987; 21: 193–202
  • Ellis ME, Kesner RP. The noradrenergic system of the amygdala and aversive information processing. Behav Neurosci 1983; 97: 399–415
  • Fallon JH, Koziell DA, Moore RY. Catecholamine innervation of the basal forebrain II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 1978; 180: 509–532
  • Ferry B, Roozendaal B, McGaugh JL. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: A critical involvement of the amygdala. Biol Psychiatry 1999; 46: 1140–1152
  • File SE, Johnston AL, Baldwin HA. Anxiolytic and anxiogenic drugs: Changes in behavioural and endocrine responses. Stress Med 1988; 4: 221–230
  • Floresco SB, Blaha CD, Yang CR, Phillips AG. Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 2001; 21: 6370–6376
  • Gean PW, Chang FC. Bursting discharges in disinhibited amygdala slices: The role of excitatory amino acid receptors. Neuropharmacology 1991; 30: 797–802
  • Gehlert DR, Shekhar A, Morin SM, Hipskind PA, Zink C, Gackenheimer SL, Shaw J, Fitz SD, Sajdyk TJ. Stress and central urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor. Eur J Pharmacol 2005; 509: 145–153
  • Gewirtz JC, Davis M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 1997; 388: 471–474
  • Goosens KA, Maren S. Long-term potentiation as a substrate for memory: Evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Hippocampus 2002; 12: 592–599
  • Goosens KA, Maren S. Pretraining NMDA receptor blockade in the basolateral complex, but not the central nucleus, of the amygdala prevents savings of conditional fear. Behav Neurosci 2003; 117: 738–750
  • Gray J. The neuropsychology of anxiety: An inquiry into the function of the septohippocampal system. Oxford University Press, Oxford 1982; 10: 155–168
  • Gray TS, Bingaman EW. The amygdala: Corticotropin-releasing factor, steroids, and stress. Crit Rev Neurobiol 1996; 10: 155–168
  • Hall J, Thomas KL, Everitt BJ. Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur J Neurosci 2001; 13: 1453–1458
  • Heilig M, Koob GF, Ekman R, Britton KT. Corticotropin-releasing factor and neuropeptide Y: Role in emotional integration. Trends Neurosci 1994; 17: 80–85
  • Herringa RJ, Nanda SA, Hsu DT, Roseboom PH, Kalin NH. The effects of acute stress on the regulation of central and basolateral amygdala CRF-binding protein gene expression. Brain Res Mol Brain Res 2004; 131: 17–25
  • Hilton SMZA. Amygdaloid region for defence reactions and its efferent pathway to the brainstem. J Physiol 1963; 160–173
  • Holland PC, Gallagher M. Amygdala-frontal interactions and reward expectancy. Curr Opin Neurobiol 2004; 14: 148–155
  • Huang YY, Kandel ER. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 1998; 21: 169–178
  • Huang YY, Martin KC, Kandel ER. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesisdependent late phase of long-term potentiation. J Neurosci 2000; 20(6317)6325
  • Josselyn SA, Shi C, Carlezon WA, Jr, Neve RL, Nestler EJ, Davis M. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 2001; 21: 2404–2412
  • Kaada B. Stimulation and regional ablation of the amygdaloid complex with reference to functional representation. The neurobiology of the amygdala, B Eleftheriou. Plenum Press, New York 1972; 205–281
  • Kalin NH, Shelton SE, Davidson RJ. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 2004; 24: 5506–5515
  • Kapp BS WP, Supple WF, Pascoe JP. Amygdaloid contribution to conditioned arousal and sensory information processing. The amygdala: Neurobiological aspects of emotion, memory and mental dysfunction, J Aggleton. Weily-Liss, New York 1992; 229–254
  • Keck ME, Sartori SB, Welt T, Muller MB, Ohl F, Holsboer F, Landgraf R, Singewald N. Differences in serotonergic neurotransmission between rats displaying high or low anxiety/ depression-like behaviour: Effects of chronic paroxetine treatment. J Neurochem 2005; 92: 1170–1179
  • Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 1999; 46: 1167–1180
  • Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999; 848: 141–152
  • LaLumiere RT, Buen TV, McGaugh JL. Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. J Neurosci 2003; 23: 6754–6758
  • Lamprecht R, Hazvi S, Dudai Y. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J Neurosci 1997; 17: 8443–8450
  • LeDoux JE. Emotion and the amygdala. The amygdala: Neurobiological aspects of emotion, memory and mental dysfunction, J Aggleton. Weily-Liss, New York 1992; 339–351
  • LeDoux JE. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 2003; 23: 727–738
  • LeDoux JE, Iwata J, Cicchetti P, Reis DJ. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 1988; 8: 2517–2529
  • Lee Y, Davis M. Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 1997; 17: 6434–6446
  • Lee Y, Schulkin J, Davis M. Effect of corticosterone on the enhancement of the acoustic startle reflex by corticotropin releasing factor (CRF). Brain Res 1994; 666: 93–98
  • Lee Y, Lopez DE, Meloni EG, Davis M. A primary acoustic startle pathway: Obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci 1996; 16: 3775–3789
  • Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 2005; 6: 108–118
  • Lin C-H, Yeh S-H, Lu H-Y, Gean P-W. The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. The J Neurosci 2003a; 23: 8310–8317
  • Lin CH, Lee CC, Gean PW. Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 2003b; 63: 44–52
  • Linthorst AC, Penalva RG, Flachskamm C, Holsboer F, Reul JM. Forced swim stress activates rat hippocampal serotonergic neurotransmission involving a corticotropin-releasing hormone receptor-dependent mechanism. Eur J Neurosci 2002; 16: 2441–2452
  • Louilot A, Besson C. Specificity of amygdalostriatal interactions in the involvement of mesencephalic dopaminergic neurons in affective perception. Neuroscience 2000; 96: 73–82
  • Lowry CA. Functional subsets of serotonergic neurones: Implications for control of the hypothalamic–pituitary–adrenal axis. J Neuroendocrinol 2002; 14: 911–923
  • Mahanty NK, Sah P. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 1998; 394: 683–687
  • Maren S. Long-term potentiation in the amygdala: A mechanism for emotional learning and memory. Trends Neurosci 1999; 22: 561–567
  • Maroun M, Richter-Levin G. Exposure to acute stress blocks the induction of longterm potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci 2003; 23: 4406–4409
  • Mascagni F, McDonald AJ. Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala. Brain Res 2003; 976: 171–184
  • McDonald AJ. Neurons of the lateral and basolateral amygdaloid nuclei: A golgi study in the rat. J Comp Neurol 1982; 212: 293–312
  • McDonald AJ. Cell types and intrinsic connections of the amygdala. Amygdala: Neurobiological aspects of emotion, memory and mental dysfunction, J Aggleton. Weily-Liss, New York 1992a; 67–96
  • McDonald AJ. Projection neurons of the basolateral amygdala: A correlative golgi and retrograde tract tracing study. Brain Res Bull 1992b; 28: 179–185
  • McDonald AJ. Neuronal localization of glutamate receptor subunits in the basolateral amygdala. NeuroReport 1994; 6: 13–16
  • McDonald AJ. Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala: Colocalization of excitatory amino acids and projections to the limbic circuit. J Comp Neurol 1996; 365: 367–379
  • McDonald AJ. Cortical pathways to the mammalian amygdala. Prog Neurobiol 1998; 55: 257–332
  • McDonald AJ, Betette RL. Parvalbumin-containing neurons in the rat basolateral amygdala: Morphology and co-localization of Calbindin-D (28 k). Neuroscience 2001; 102: 413–425
  • McDonald AJ, Mascagni F. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 2001a; 105: 681–693
  • McDonald AJ, Mascagni F. Localization of the CB1 type cannabinoid receptor in the rat basolateral amygdala: High concentrations in a subpopulation of cholecystokinin-containing interneurons. Neuroscience 2001b; 107: 641–652
  • McDonald AJ, Mascagni F. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 2001c; 105: 681–693
  • McDonald AJ, Mascagni F. Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala. Brain Res 2002; 943: 237–244
  • McDonald AJ, Pearson JC. Coexistence of GABA and peptide immunoreactivity in non-pyramidal neurons of the basolateral amygdala. Neurosci Lett 1989; 100: 53–58
  • McDonald AJ, Muller JF, Mascagni F. GABAergic innervation of alpha type II calcium/calmodulin-dependent protein kinase immunoreactive pyramidal neurons in the rat basolateral amygdala. J Comp Neurol 2002; 446: 199–218
  • McGaugh JL. Memory consolidation and the amygdala: A systems perspective. Trends Neurosci 2002; 25: 456
  • McGaugh JL, Roozendaal B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 2002; 12: 205–210
  • McGaugh JL, McIntyre CK, Power AE. Amygdala modulation of memory consolidation: Interaction with other brain systems. Neurobiol Learn Mem 2002; 78: 539–552
  • McKernan MG, Shinnick-Gallagher P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 1997; 390: 607–611
  • Merali Z, McIntosch J, Kent P, Michaud D, Anisman H. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci 1998; 18: 4758–4788
  • Merlo Pich E, Lorang M, Yeganeh M, Rodriguez de Fonseca F, Raber J, Koob GF, Weiss F. Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 1995; 15: 5439–5447
  • Miserendino MJ, Sananes CB, Melia KR, Davis M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 1990; 345: 716–718
  • Morales M, Bloom FE. The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 1997; 17: 3157–3167
  • Morilak DA, Cecchi M, Khoshbouei H. Interactions of norepinephrine and galanin in the central amygdala and lateral bed nucleus of the stria terminalis modulate the behavioral response to acute stress. Life Sci 2003; 73: 715–726
  • Muller JF, Mascagni F, McDonald AJ. Synaptic connections of distinct interneuronal subpopulations in the rat basolateral amygdalar nucleus. J Comp Neurol 2003a; 456: 217–236
  • Muller JF, Mascagni F, McDonald AJ. Synaptic output of somatostatin—immunoreactive interneurons in the basolateral amygdala. AbstractViewer/Itinerary Planner. ScholarOne, New Orleans, LA 2003b, Program No. 679.676.: 2003. Society for Neuroscience. Online.
  • Palkovits M, Brownstein MJ, Vale W. Corticotropin releasing factor (CRF) immunoreactivity in hypothalamic and extrahypothalamic nuclei of sheep brain. Neuroendocrinology 1983; 37: 302–305
  • Petersen EN, Braestrup C, Scheel-Kruger J. Evidence that the anticonflict effect of midazolam in amygdala is mediated by the specific benzodiazepine receptors. Neurosci Lett 1985; 53: 285–288
  • Pitkanen A, Savander V, LeDoux JE. Organization of intra-amygdaloid circuitries in the rat: An emerging framework for understanding functions of the amygdala. Trends Neurosci 1997; 20: 517–523
  • Pitkanen A, Jolkkonen E, Kemppainen S. Anatomic heterogeneity of the rat amygdaloid complex. Folia Morphol (Warsz) 2000; 59: 1–23
  • Post RM. Do the epilepsies, pain syndromes, and affective disorders share common kindling-like mechanisms?. Epilepsy Res 2002; 50: 203–219
  • Price JL, Amaral DG. The limbic region II: The amygdaloid complex. Handbook of chemical neruoanatomy, A Bjorklund, TH Hokfelt, LW Swanson. Elsevier, Amsterdam 1987; 279–388
  • Price LH, Barr LC, Goodman WK. Pharmacological challenges in anxiety disorder. Psychopharmacology: The fourthe generation of progression, FE Bloom, DJ Kupfer. Raven Press, New York 1995; 1311–1323
  • Rainnie DG. Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 1999; 82: 69–85
  • Rainnie DG, Asprodini EK, Shinnick-Gallagher P. Inhibitory transmission in the basolateral amygdala. J Neurophysiol 1991a; 66: 999–1009
  • Rainnie DG, Asprodini EK, Shinnick-Gallagher P. Excitatory transmission in the basolateral amygdala. J Neurophysiol 1991b; 66: 986–998
  • Rainnie DG, Asprodini EK, Shinnick-Gallagher P. Kindling-induced long-lasting changes in synaptic transmission in the basolateral amygdala. J Neurophysiol 1992a; 67: 443–454
  • Rainnie DG, Fernhout BJ, Shinnick-Gallagher P. Differential actions of corticotropin releasing factor on basolateral and central amygdaloid neurones, in vitro. J Pharmacol Exp Therap 1992b; 263: 846–858
  • Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A. Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 2004; 24: 3471–3479
  • Rattiner LM, Davis M, Ressler KJ. Brain-derived neurotrophic factor in amygdaladependent learning. Neuroscientist 2005; 11: 323–333
  • Reul JM, Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002; 2: 23–33
  • Richter-Levin G, Akirav I. Amygdala-hippocampus dynamic interaction in relation to memory. Mol Neurobiol 2000; 22: 11–20
  • Rivier CL, Plotsky PM. Mediation by corticotropin releasing factor (CRF) of adenohypophysial hormone secretion. Ann Rev Physiol 1986; 48: 475–494
  • Roberts. Neuropeptides: Cellular morphology, major pathways, and functional considerations. The amygdala: Neurobiological aspects of emotion, memory and mental dysfunction, J Aggleton. Weily-Liss, New York 1992; 115–142
  • Roesler R, Schroder N, Vianna MR, Quevedo J, Bromberg E, Kapczinski F, Ferreira MB. Differential involvement of hippocampal and amygdalar NMDA receptors in contextual and aversive aspects of inhibitory avoidance memory in rats. Brain Res 2003; 975: 207–213
  • Rogan MT, Staubli UV, LeDoux JE. Fear conditioning induces associative longterm potentiation in the amygdala. Nature 1997; 390: 604–607
  • Roozendaal B, de Quervain DJ, Ferry B, Setlow B, McGaugh JL. Basolateral amygdala-nucleus accumbens interactions in mediating glucocorticoid enhancement of memory consolidation. J Neurosci 2001; 21: 2518–2525
  • Roozendaal B, Brunson KL, Holloway BL, McGaugh JL, Baram TZ. Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc Natl Acad Sci USA 2002; 99: 13908–13913
  • Roozendaal B, Griffith QK, Buranday J, De Quervain DJ, McGaugh JL. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: Dependence on the basolateral amygdala. Proc Natl Acad Sci USA 2003; 100: 1328–1333
  • Rosenkranz JA, Grace AA. Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 2001; 21: 4090–4103
  • Rosenkranz JA, Grace AA. Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 2002; 22: 324–337
  • Royer S, Pare D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 2002; 115: 455–462
  • Sajdyk TJ, Shekhar A. Excitatory amino acid receptors in the basolateral amygdala regulate anxiety responses in the social interaction test. Brain Res 1997a; 764: 262–264
  • Sajdyk TJ, Shekhar A. Excitatory amino acid receptor antagonists block the cardiovascular and anxiety responses elicited by gamma-aminobutyric acidA receptor blockade in the basolateral amygdala of rats. J Pharmacol Exp Therap 1997b; 283: 969–977
  • Sajdyk TJ, Gehlert DR. Astressin, a corticotropin releasing factor antagonist, reverses the anxiogenic effects of urocortin when administered into the basolateral amygdala. Brain Res 2000; 877: 226–234
  • Sajdyk TJ, Shekhar A. Sodium lactate elicits anxiety in rats after repeated GABA receptor blockade in the basolateral amygdala. Eur J Pharmacol 2000; 394: 265–273
  • Sajdyk TJ, Schober DA, Gehlert DR, Shekhar A. Role of corticotropin-releasing factor and urocortin within the basolateral amygdala of rats in anxiety and panic responses. Behav Brain Res 1999; 100: 207–215
  • Sanchez MM, Young LJ, Plotsky PM, Insel TR. Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. J Comp Neurol 1999; 408: 365–377
  • Sanders SK, Shekhar A. Blockade of GABAA receptors in the region of the anterior basolateral amygdala of rats elicits increases in heart rate and blood pressure. Brain Res 1991; 567: 101–110
  • Sanders SK, Shekhar A. GABAA receptors in the basolateral amygdala of rats regulate “anxiety”. Pharmacol Biochem Behav 1995a; 701–706
  • Sanders SK, Shekhar A. Anxiolytic effects of chlordiazepoxide blocked by injection of GABAA and benzodiazepine receptor antagonists in the region of the anterior basolateral amygdala of rats. Biol Psychiatry 1995b; 37: 473–476
  • Sanders SK, Morzorati SL, Shekhar A. Priming of experimental anxiety by repeated subthreshold GABA blockade in the rat amygdala. Brain Res 1995; 699(250)259
  • Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 2000; 20: 8177–8187
  • Schoenbaum G, Chiba AA, Gallagher M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nat Neurosci 1998; 1: 155–159
  • Schoenbaum GSB, Saddoris PM, Gallagher M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 2003; 39: 855–867
  • See RE, Fuchs RA, Ledford CC, McLaughlin J. Drug addiction, relapse, and the amygdala. Ann NY Acad Sci 2003; 985: 294–307
  • Shekhar A, Ball S, Sajdyk TJ, Goddard AW. Neurobiology of panic disorder. Trends Econ Neurobiol 2002; 36–41
  • Shekhar A, Sajdyk TJ, Gehlert DR, Rainnie DG. The amygdala, panic disorder, and cardiovascular responses. Ann NY Acad Sci 2003a; 985: 308–325
  • Shekhar A, Sajdyk T, Gehlert DR, Rainnie DG. The amygdala, panic disorder, and cardiovascular responses. Ann NY Acad Sci 2003b; 985: 308–325
  • Smith BN, Dudek FE. Amino acid-mediated regulation of spontaneous synaptic activity patterns in the rat basolateral amygdala. J Neurophysiol 1996; 76: 1958–1967
  • Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: A genetic model of anxiogenic behavior. J Neurosci 1994; 2579–2584
  • Stevens JR. Epilepsy, schizophrenia, and the extended amygdala. Ann NY Acad Sci 1999; 877: 548–561
  • Swanson LW, Sawchenko PE, Rivier J, Vale WW. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology 1983; 36: 165–186
  • Swerdlow NR, Geyer MA, Vale WW, Koob GF. Corticotropin-releasing factor potentiates acoustic startle in rats: Blockade by chlordiazepoxide. Psychopharmacology 1986; 88: 147–152
  • Treit D, Aujla H, Menard J. Does the bed nucleus of the stria terminalis mediate fear behaviors?. Behav Neurosci 1998; 112: 379–386
  • Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and betaendorphin. Science 1981; 213: 1394–1397
  • Valentino RJ, Rudoy C, Saunders A, Liu XB, Van Bockstaele EJ. Corticotropinreleasing factor is preferentially colocalized with excitatory rather than inhibitory amino acids in axon terminals in the peri-locus coeruleus region. Neuroscience 2001; 106: 375–384
  • Van Bockstaele EJ, Peoples J, Valentino RJ. A.E. Bennett Research Award. Anatomic basis for differential regulation of the rostrolateral peri-locus coeruleus region by limbic afferents. Biol Psychiatry 1999; 46: 1352–1363
  • Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 2000; 428(191)212
  • Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002; 22: 6810–6818
  • Wei F, Qiu CS, Liauw J, Robinson DA, Ho N, Chatila T, Zhuo M. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci 2002; 5: 573–579
  • Wig GS, Barnes SJ, Pinel JP. Conditioning of a flavor aversion in rats by amygdala kindling. Behav Neurosci 2002; 116: 347–350
  • Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 2005; 6: 267–276
  • Yilmazer-Hanke DM, Faber-Zuschratter H, Linke R, Schwegler H. Contribution of amygdala neurons containing peptides and calcium-binding proteins to fear-potentiated startle and exploration-related anxiety in inbred Roman high- and low-avoidance rats. Eur J Neurosci 2002; 15: 1206–1218

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.