Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 11
428
Views
6
CrossRef citations to date
0
Altmetric
Articles

Neuroprotective effects of rutin on ASH neurons in Caenorhabditis elegans model of Huntington’s disease

, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol ExpNeurol. 1998;57:369–84.
  • Douglas PM, Dillin A. Protein homeostasis and aging in neurodegeneration. J.CellBiol. 2010;190:719–29.
  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsatell JP, Aronin N. Aggregation of huntingtin in neuronal intranuclearinclusions and dystrophic neurites in brain. Science. 1997;277:1990–3.
  • Tasset I, Sánchez F, Túnez I. The molecular bases of Huntington’s disease: the role played by oxidative stress. Rev Neurol. 2019;49:424–9.
  • Ayas M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci. 2019.
  • Ganeshpurkar A, Saluja A. The pharmacological potential of rutin. Saudi Pharmaceutical. 2017;25:149–64.
  • Cordeiro LM, Machado MP, Silva AF, Baptista FBO, Silveira TL, Soares FAA, et al. Rutin protects Huntington's disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: study in Caenorhabditis elegans model. Food Chem Toxicol. 2020;141:111323.
  • Suganya S, Sumathi T. Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntington’s disease model in rats. Metab Brain Dis. 2017;32:471–81.
  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organization Journal. 2012;5:9–19.
  • Lévy E, Banna ND, Baille D, Heneman-Masurel A, Truchet S, Rezaei H, et al. Causative links between protein aggregation and oxidative stress: a review. Int J Mol Sci. 2019;20(16):3896.
  • Li J, Le W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol. 2013;250:94–103.
  • Faber PW, et al. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci U S A. 1999;96:179–84.
  • Alexander A, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet. 2014.
  • Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2002;99:10417–22.
  • Brignull HR, Moore FE, Tang SJ, Morimoto RI. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J. Neurosci. 2006;26:7597–606.
  • Zamberlan CD, Amaral GP, Arantes LP, Machado ML, Mizdal CR, Campos MMA. Rosmarinus officinalis L. increases Caenorhabditis elegans stress resistance and longevity in a DAF-16, HSF-1 and SKN-1-dependent manner. Biomedical Sciences. 2016.
  • Huang C, Xiong C, Kornfeld K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2004;101(21):8084–9.
  • Ju J, Ruan Q, Li X, Liu R, Li Y, Pu Y, et al. Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans. Environ Sci Pollut Res. 2013;20(3):1823–30.
  • Kaplan JM, Horvitz HR. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993;90:2227–31.
  • Hart AC, Kass J, Shapiro JE, Kaplan JM. Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. J Neurosci. 1999;19:1952–8.
  • Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci U S A. 2004;101:15512–7.
  • Kumsta C, Chang JT, Schmalz J, Hansen M. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nature Comun. 2017.
  • Jia K, Hart AC, Levine B. Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy. 2007;3(1):21–5.
  • Chaudhuri J, Bose N, Gong J, Hall D, Rifkind A, Bhaumik D, et al. A Caenorhabditis elegans model elucidates a conserved role for TRPA1-Nrf signaling in reactivea-dicarbonyl detoxification. Curr Biol. 2016;26(22):3014–25.
  • Lansbury PT, Lashuel HA. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature. 2006;443(7113):774.
  • Ezak MJ, Ferkey DM. The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One. 2010;5:e9487.
  • Takalo L, Salminen A, Soinimen H, Hiltunen M, Haapasalo A. Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis. 2013;2(1):1–14.
  • Habtemariam S. Rutin as a natural therapy for Alzheimer’s disease: insights into its mechanisms of action. Curr Med Chem. 2016;23(9):860–73.
  • Finkbeiner S. Huntington’s disease. Cold Spring Harbor Perspect Biol. 2011;3:a007476–a007476.
  • Landon G, Wilkins W, Rana P, Farris M. Glucose effects on polyglutamine-induced proteotoxic stress in Caenorhabditis elegans. Biochem Biophys Res Commun. 2019;522(3):709–15.
  • Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, et al. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum Mol Genet. 2006;15:2743–51.
  • Bonanomi M, Natalello A, Visentin C, Pastori V, Penco A, Cornelli G, et al. Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model. Hum Mol Genet. 2014;23:6542–52.
  • Frautschy SA, Greg MC. Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol. 2010;41(2-3):392–409.
  • David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem. 2005;280(25):23802–14.
  • Ono K, Hasegawa K, Naiki H, Yamanda M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res. 2004;75(6):742–50.
  • Perkins LA, Hedgecock EM, Thomson JN, Culotti JG. Mutant sensory cilia in the nematode Caenorhabditis elegan. Dev Biol. 1986;117:456–87.
  • Starich TA, Herman RK, Kari CK, Wh Y, Schackwitz WS, Schuyler MW, et al. Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics. 1995;139:171–88.
  • Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995;38:357–66.
  • MatÉs JM, Pérez-Gómez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603.
  • Price DL, Sisodia SS, Borchelt DR. Genetic neurodegenerative diseases: the human illness and transgenic models. Science. 1998;282(5391):1079–83.
  • Candas D, Li JJ. MnSOD in oxidative stress response potential regulation via mitochondrial protein influx. Antioxid Redox Signaling. 2014;20(10):1599–617.
  • Bruce-Keller AJ, Geddes JW, Knapp PE, McFall RW, Keller JN, Holtsberg FW, et al. Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD. J. Neuroimmunol. 1999;93(1–2):53–71.
  • Xiao-Lin Y, Li YN, Zhang H, Su YJ, Zhou WW, Zhang ZP, et al. Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Funct. 2015;6:3296–306.
  • Bicca Obetine Baptista F, Arantes LP, Machado ML, Da Silva AF, Cordeiro LM, Da Silveira TL, et al. Diphenyl diselenide protects a Caenorhabditis elegans model for Huntington's disease by activation of the antioxidant pathway and a decrease in protein aggregation. Metallomics. 2020;12(7):1142–58.
  • Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475:324–32.
  • Takeuchi T, Nagai Y. Protein misfolding and aggregation as a therapeutic target for polyglutamine diseases. Brain Sci. 2017;7(10):128.
  • Suganya SN, Sumathi T. Rutin attenuates 3-nitropropionic acid induced behavioural alterations and mitochondrial dysfunction in the striatum of rat brain. World J Pharm Pharmaceut Sci. 2014;4:1080–92.
  • Karagöz GE, Rüdiger SGD. Hsp90 interaction with clients. Trends Biochem Sci. 2015;40:117–25.
  • Zečić A, Braeckman BP. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells. 2020;9(1):109.
  • Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allerg Drug Targets. 2010;9(4):263–85.
  • Kim DK, Kim TH, Lee SJ. Mechanisms of agingrelated proteinopathies in Caenorhabditis elegans. Exp Mol Med. 2016;48(10):e263.
  • Tambara AL, de Los Santos Moraes L, Dal Forno AH, Boldori JR, Gonçalves Soares AT, de Freitas Rodrigues C, et al. Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Chem Toxicol. 2018;120:639–50.
  • Nollen EA, Morimoto RI. Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins. J. Cell Sci. 2002;115(14):2809–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.