Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 11
595
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Functional role of ascorbic acid in the central nervous system: a focus on neurogenic and synaptogenic processes

ORCID Icon & ORCID Icon

References

  • Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 2000;23:209–16.
  • Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J. 2003;2:7.
  • Arrigoni O, De Tullio MC. Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta. 2002;1569:1–9.
  • Pinnell SR. Regulation of collagen biosynthesis by ascorbic acid: a review. Yale J Biol Med. 1985;58:553–9.
  • Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2009;46:719–30.
  • Glembotski CC. The role of ascorbic acid in the biosynthesis of the neuroendocrine peptides alpha-MSH and TRH. Ann N Y Acad Sci. 1987;498:54–62.
  • Carey DJ, Todd MS. Schwann cell myelination in a chemically defined medium: demonstration of a requirement for additives that promote Schwann cell extracellular matrix formation. Brain Res. 1987;429:95–102.
  • Eldridge CF, Bunge MB, Bunge RP. Differentiation of axon-related Schwann cells in vitro: II. control of myelin formation by basal lamina. J Neurosci. 1989;9:625–38.
  • Goto K, Tanaka R. Ascorbic acid inhibition of Na,K-adenosine triphosphatase of rat forebrain without peroxidation of membrane lipids. Brain Res. 1981;207:239–44.
  • Ng Y-C, Akera T, Han C-S, Emmett Braselton W, Kennedy RH, Temma K, et al. Ascorbic acid: An endogenous inhibitor of isolated Na+, K+-ATPase. Biochem Pharmacol. 1985;34:2525–30.
  • Kuo C-H, Yoshida H. Ascorbic acid, an endogenous factor required for acetylcholine release from the synaptic vesicles. Jpn J Pharmacol. 1980;30:481–92.
  • Levine M, Asher A, Pollard H, Zinder O. Ascorbic acid and catecholamine secretion from cultured chromaffin cells. J Biol Chem. 1983;258:13111–5.
  • Majewska MD, Bell JA, London ED. Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate. Brain Res. 1990;537:328–32.
  • Moretti M, Freitas Ad, Budni J, Fernandes SCP, Balen GdO, Rodrigues ALS. Involvement of nitric oxide-cGMP pathway in the antidepressant-like effect of ascorbic acid in the tail suspension test. Behav Brain Res. 2011;225:328–33.
  • Wambebe C, Sokomba E. Some behavioural and EEG effects of ascorbic acid in rats. Psychopharmacology. 1986;89:167–70.
  • Binfaré RW, Rosa AO, Lobato KR, Santos ARS, Rodrigues ALS. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:530–40.
  • Dai F, Yang JY, Gu PF, Hou Y, Wu CF. Effect of drug-induced ascorbic acid release in the striatum and the nucleus accumbens in hippocampus-lesioned rats. Brain Res. 2006;1125:163–70.
  • Gu PF, Wu CF, Yang JY, Shang Y, Hou Y, Bi XL, et al. Differential effects of drug-induced ascorbic acid release in the striatum and nucleus accumbens of freely moving rats. Neurosci Lett. 2006;399:79–84.
  • Moretti M, Budni J, Ribeiro CM, Rodrigues ALS. Involvement of different types of potassium channels in the antidepressant-like effect of ascorbic acid in the mouse tail suspension test. Eur J Pharmacol. 2012;687:21–7.
  • Rosa PB, Neis VB, Ribeiro CM, Moretti M, Rodrigues ALS. Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. Pharmacol Rep. 2016;68:996–1001.
  • Ahmad F, Salahuddin M, Alsamman K, AlMulla AA, Salama KF. Developmental lead (Pb)-induced deficits in hippocampal protein translation at the synapses are ameliorated by ascorbate supplementation. Neuropsychiatr Dis Treat. 2018;14:3289–98.
  • Nam SM, Cho I-S, Seo JS, Go T-H, Kim J-H, Nahm S-S, et al. Ascorbic acid attenuates lead-induced alterations in the synapses in the developing Rat cerebellum. Biol Trace Elem Res. 2019;187:142–50.
  • Moretti M, Fraga DB, Rodrigues ALS. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS Neurosci Ther. 2017;23:921–9.
  • Moretti M, Fraga DB, Rodrigues ALS. Ascorbic acid to manage psychiatric disorders. CNS Drugs. 2017;31:571–83.
  • Plusa B, Hadjantonakis A-K. Embryonic stem cell identity grounded in the embryo. Nat Cell Biol. 2014;16:502–4.
  • De Filippis L, Binda E. Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Transl Med. 2012;1:298–308.
  • Romito A, Cobellis G. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016;2016:9451492.
  • Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. 2010;6:71–9.
  • Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell. 2011;9:575–87.
  • Kalir HH, Mytilineou C. Ascorbic acid in mesencephalic cultures: effects on dopaminergic neuron development. J Neurochem. 1991;57:458–64.
  • Kratzing CC, Kelly JD, Oelrichs BA. Ascorbic acid in neural tissues. J Neurochem. 1982;39:625–7.
  • Kratzing CC, Kelly JD, Kratzing JE. Ascorbic acid in fetal rat brain. J Neurochem. 1985;44:1623–4.
  • Wilson JX. Regulation of ascorbic acid concentration in embryonic chick brain. Dev Biol. 1990;139:292–8.
  • Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol. 2000;18:675–9.
  • Qiu S, Li L, Weeber EJ, May JM. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res. 2007;85:1046–56.
  • Bagga V, Dunnett SB, Fricker-Gates RA. Ascorbic acid increases the number of dopamine neurons in vitro and in transplants to the 6-OHDA-lesioned rat brain. Cell Transplant. 2008;17:763–73.
  • Chen L, He D-M, Zhang Y. The differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro. Cell Mol Biol Lett. 2009;14:528–36.
  • Horschitz S, Meyer-Lindenberg A, Schloss P. Generation of neuronal cells from human peripheral blood mononuclear cells. Neuroreport. 2010;21:185–90.
  • Yang J, Wang X, Wang Y, Guo Z-X, Luo D-Z, Jia J, et al. Dopaminergic neuronal conversion from adult rat skeletal muscle-derived stem cells in vitro. Neurochem Res. 2012;37:1982–92.
  • Yan J, Studer L, McKay RD. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem. 2001;76:307–11.
  • Yu D-H, Lee K-H, Lee J-Y, Kim S, Shin D-M, Kim J-H, et al. Changes of gene expression profiles during neuronal differentiation of central nervous system precursors treated with ascorbic acid. J Neurosci Res. 2004;78:29–37.
  • Rharass T, Lantow M, Gbankoto A, Weiss DG, Panáková D, Lucas S. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner. J Biomed Sci. 2017;24:78–93.
  • Wu T-M, Liu S-T, Chen S-Y, Chen G-S, Wu C-C, Huang S-M. Mechanisms and applications of the anti-cancer effect of pharmacological ascorbic acid in cervical cancer cells. Front Oncol. 2020;10:1483.
  • He X-B, Kim M, Kim S-Y, Yi S-H, Rhee Y-H, Kim T, et al. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner. Stem Cells. 2015;33:1320–32.
  • Wulansari N, Kim E-H, Sulistio YA, Rhee Y-H, Song J-J, Lee S-H. Vitamin C-induced epigenetic modifications in donor NSCs establish midbrain marker expressions critical for cell-based therapy in Parkinson’s disease. Stem Cell Rep. 2017;9:1192–206.
  • Nam SM, Seo M, Seo J-S, Rhim H, Nahm S-S, Cho I-H, et al. Ascorbic acid mitigates D-galactose-induced brain aging by Increasing hippocampal neurogenesis and improving memory function. Nutrients. 2019;11:176–192.
  • Tveden-Nyborg P, Johansen LK, Raida Z, Villumsen CK, Larsen JO, Lykkesfeldt J. Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in Guinea pigs. Am J Clin Nutr. 2009;90:540–6.
  • Raeis-Abdollahi E, Nabavizadeh F, Tajik L, Sadeghipour HR. Effects of prenatal exposure to chrysotile asbestos on hippocampal neurogenesis and long-term behavioral changes in adult male rat offspring. Behav Brain Res. 2019;371:111962.
  • Basambombo LL, Carmichael P-H, Côté S, Laurin D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother. 2017;51:118–24.
  • Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JCM, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA. 2002;287:3223–9.
  • Mansvelder HD, Verhoog MB, Goriounova NA. Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain? Curr Opin Neurobiol. 2019;54:186–93.
  • Di Benedetto B, Rupprecht R, Czéh B. Talking to the synapse: how antidepressants can target glial cells to reshape brain circuits. Curr Drug Targets. 2013;14:1329–35.
  • Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, et al. Synaptopathies: synaptic dysfunction in neurological disorders – A review from students to students. J Neurochem. 2016;138:785–805.
  • Cansev M, Turkyilmaz M, Sijben JWC, Sevinc C, Broersen LM, van Wijk N. Synaptic membrane synthesis in rats depends on dietary sufficiency of vitamin C, vitamin E, and selenium: relevance for Alzheimer’s disease. J Alzheimers Dis JAD. 2017;59:301–11.
  • An L, Zhang T. Vitamins C and E reverse melamine-induced deficits in spatial cognition and hippocampal synaptic plasticity in rats. Neurotoxicology. 2014;44:132–9.
  • Green CR, Kobus SM, Ji Y, Bennett BM, Reynolds JN, Brien JF. Chronic prenatal ethanol exposure increases apoptosis in the hippocampus of the term fetal Guinea pig. Neurotoxicol Teratol. 2005;27:871–81.
  • Green CR, Watts LT, Kobus SM, Henderson GI, Reynolds JN, Brien JF. Effects of chronic prenatal ethanol exposure on mitochondrial glutathione and 8-iso-prostaglandin F2alpha concentrations in the hippocampus of the perinatal Guinea pig. Reprod Fertil Dev. 2006;18:517–24.
  • McGoey TN, Reynolds JN, Brien JF. Chronic prenatal ethanol exposure-induced decrease of Guinea pig hippocampal CA1 pyramidal cell and cerebellar Purkinje cell density. Can J Physiol Pharmacol. 2003;81:476–84.
  • Karamian R, Komaki A, Salehi I, Tahmasebi L, Komaki H, Shahidi S, et al. Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats. Brain Res Bull. 2015;116:7–15.
  • Sepehri H, Ganji F. The protective role of ascorbic acid on hippocampal CA1 pyramidal neurons in a rat model of maternal lead exposure. J Chem Neuroanat. 2016;74:5–10.
  • Saito S, Kobayashi S, Ohashi Y, Igarashi M, Komiya Y, Ando S. Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin contents. J Neurosci Res. 1994;39:57–62.
  • Valtorta F, Pennuto M, Bonanomi D, Benfenati F. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? BioEssays News Rev Mol Cell Dev Biol. 2004;26:445–53.
  • Sheng M. The postsynaptic NMDA-receptor–PSD-95 signaling complex in excitatory synapses of the brain. J Cell Sci. 2001;114:1251.
  • Moretti M, Budni J, Santos D, Antunes A, Daufenbach J, Manosso L, et al. Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci. 2013;49:68–79.
  • Moretti M, Colla A, de Oliveira Balen G, dos Santos DB, Budni J, de Freitas AE, et al. Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res. 2012;46:331–40.
  • Moretti M, Budni J, Freitas AE, Neis VB, Ribeiro CM, de Oliveira Balen G, et al. TNF-α-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol. 2015;25:902–12.
  • Ohgi Y, Futamura T, Hashimoto K. Glutamate signaling in synaptogenesis and NMDA receptors as potential therapeutic targets for psychiatric disorders. Curr Mol Med. 2015;15:206–21.
  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.
  • Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.
  • Deyama S, Duman RS. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav. 2020;188:172837.
  • Moretti M, Budni J, Freitas AE, Rosa PB, Rodrigues ALS. Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J Psychiatr Res. 2014;48:16–24.
  • Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.
  • Fraga DB, Costa AP, Olescowicz G, Camargo A, Pazini FL, E Freitas A, et al. Ascorbic acid presents rapid behavioral and hippocampal synaptic plasticity effects. Prog Neuropsychopharmacol Biol Psychiatry. 2020;96:109757.
  • Pazini FL, Rosa JM, Camargo A, Fraga DB, Moretti M, Siteneski A, et al. mTORC1-dependent signaling pathway underlies the rapid effect of creatine and ketamine in the novelty-suppressed feeding test. Chem Biol Interact. 2020;332:109281.
  • Moretti M, Werle I, da Rosa PB, Neis VB, Platt N, Souza SVS, et al. A single coadministration of subeffective doses of ascorbic acid and ketamine reverses the depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacol Biochem Behav. 2019;187:172800.
  • Fraga DB, Camargo A, Olescowicz G, Azevedo D, Mina F, Budni J, et al. A single administration of ascorbic acid rapidly reverses depressive-like behavior and hippocampal synaptic dysfunction induced by corticosterone in mice. Chem Biol Interact. 2021;342:109476.
  • Chang C-W, Chen M-J, Wang T-E, Chang W-H, Lin C-C, Liu C-Y. Scurvy in a patient with depression. Dig Dis Sci. 2007;52:1259–61.
  • Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep. 2003;8:365–70.
  • DeSantis J. Scurvy and psychiatric symptoms. Perspect Psychiatr Care. 1993;29:18–22.
  • Gariballa S. Poor vitamin C status is associated with increased depression symptoms following acute illness in older people. Int J Vitam Nutr Res. 2014;84:12–7.
  • Oishi J, Doi H, Kawakami N. Nutrition and depressive symptoms in community-dwelling elderly persons in Japan. Acta Med Okayama. 2009;63:9–17.
  • Payne ME, Steck SE, George RR, Steffens DC. Fruit, vegetable and antioxidant intakes are lower in older adults with depression. J Acad Nutr Diet. 2012;112:2022–7.
  • Prohan M, Amani R, Nematpour S, Jomehzadeh N, Haghighizadeh MH. Total antioxidant capacity of diet and serum, dietary antioxidant vitamins intake, and serum hs-CRP levels in relation to depression scales in university male students. Redox Rep. 2014;19:133–9.
  • Brody S. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry. 2002;52:371–4.
  • Cocchi P, Silenzi M, Calabri G, Salvi G. Antidepressant effect of vitamin C. Pediatrics. 1980;65:862–3.
  • Amr M, El-Mogy A, Shams T, Vieira K, Lakhan SE. Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Nutr J. 2013;12:31.
  • Mazloom Z, Ekramzadeh M, Hejazi N. Efficacy of supplementary vitamins C and E on anxiety, depression and stress in type 2 diabetic patients: a randomized, single-blind, placebo-controlled trial. Pak J Biol Sci. 2013;16:1597–600.
  • Sahraian A, Ghanizadeh A, Kazemeini F. Vitamin C as an adjuvant for treating major depressive disorder and suicidal behavior, a randomized placebo-controlled clinical trial. Trials. 2015;16:94–101.
  • Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281:1415–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.