Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 11
403
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Is resveratrol a prospective therapeutic strategy in the co-association of glucose metabolism disorders and neurodegenerative diseases?

, , , ORCID Icon & ORCID Icon

References

  • Duthey B. Alzheimer disease and other dementias. Alzheimer disease and other dementias a public health approach to innovation. 2013: 1–14.
  • Sanabria-Castro A, Alvarado Echeverría I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease : an update. Ann Neurosci. 2017;24:46–54.
  • Gómez-Isla T, Hollister R, Wes H, Growdon JH, Petersen RC, Hyman BT. Neuronal loss correlates with neurofibrillary tangles in Alzheimer. Ann Neurol. 1997;41(1):17–24.
  • Standaert DG, Lee VM, Greenberg BD, Lowery DE, Trojanowskit JQ. Molecular features of hypothalamic plaques in Alzheimer ‘s disease. Am J Pathol. 1991;139(3):681–91.
  • German D, White C, Sparkman D. Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience. 1987;21(2):305–12.
  • Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33(6):403–8.
  • Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1):24–35. http://doi.org/10.1097/00019442-200201000-00004.
  • Mattson M, Barger S, Cheng B, Liederburg I, Smith-Swintosky V, Rydel R. Beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. TINS. 1993;16(10):260–3.
  • Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biol Med. 1997;23(1):134–47.
  • Su JH, Deng G, Cotman CW. Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of Tau hyperphosphorylation. Neurobiol Dis. 1997;4:365–75.
  • Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Jellinger K, Lassmann H. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol. 1999;155(5):1459–66.
  • De FF, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, et al. Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging. 2008;29:1334–47.
  • Forlenza O V, Diniz BS, Gattaz WF. Diagnosis and biomarkers of predementia in Alzheimer’s disease. BMC Med. 2010;8(89):1–14.
  • Michaud T, Dejun S, Siahpush M, Murman D. The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes. Dementia Cogn Dis. 2017;7:15–29.
  • Ward A, Tardiff S, Dye C, Arrighi HM. Rate of conversion from prodromal Alzheimer’s disease to Alzheimer’s dementia: a systematic review of the literature. Dement Geriatr Cogn Disord. 2013;3:320–32.
  • Kornhuber J, Wiltfang J, Vos SJB, Verhey F, Fro L, Nobili F, et al. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain. 2015;138:1327–38.
  • Huey ED, Manly JJ, Tang M, Brickman AM, Manoochehri M, Mez J, et al. Course and etiology of dysexecutive MCI in a community sample. Alzhemer’s & Dementia. 2013;9(6):632–9.
  • Janson J, Laedtke T, Parisi JE, Brien PO, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 2004;53:474–81.
  • De P-fE, Goldacre R, Pakpoor J, Bch BM, Noyce AJ. Association between diabetes and subsequent Parkinson disease. Neurology. 2018;91(2):e139–42.
  • Degen C, Toro P, Schönknecht P, Sattler C, Schröder J. Diabetes mellitus type II and cognitive capacity in healthy aging, mild cognitive impairment and Alzheimer’s disease. Psychiatry Res. 2016;240:42–6. http://doi.org/10.1016/j.psychres.2016.04.009.
  • DeFronzo R. The triumvirate: p-cell, muscle, liver A collusion responsible for NIDDM. Diabetes. 1988;37:667–87.
  • Butler A, Janson J, Bonner-Weir S, Ritzel R, Rizza R, Butler P. β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.
  • Ramos-rodriguez JJ, Ortiz O, Jimenez-palomares M, Kay KR, Berrocoso E, Murillo-carretero MI, et al. Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. Psychoneuroendocrinology. 2013;38(11):2462–75.
  • Liu Z, Patil IY, Jiang T, Sancheti H, Walsh JP. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS One. 2015;10(5):1–16.
  • Gao Y, Xiao Y, Miao R, Zhao J, Cui M, Huang G, et al. The prevalence of mild cognitive impairment with type 2 diabetes mellitus among elderly people in China: a cross-sectional study. Arch Gerontol Geriatr. 2016;62:138–42.
  • Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591–604.
  • Malik G, Robertson N. Treatments in Alzheimer’s disease. J Neurol. 2017;264(2):416–8.
  • Li J, Deng J, Sheng W, Zuo Z. Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav. 2012;101(4):564–74.
  • Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. 2017;69:351–63.
  • Ditacchio KA, Heinemann SF, Dziewczapolski G. Metformin treatment alters memory function in a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease. 2015;44:43–8.
  • Rocha-Ginzález HI, Ambriz-Tututi M, Granados-soto V. Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther. 2008;14:234–47.
  • Albani D, Polito L, Signorini A, Forloni G. Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors. 2010;36(5):370–6.
  • Sun AY, Wang Q, Simony A, Sun GY. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol. 2011;41(2–3):375–83.
  • Mecocci P, Tinarelli C, Schulz RJ, Polidori MC. Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front Pharmacol. 2014;5:1–11.
  • Krikorian R, Nash TA, Shidler MD, Shukitt-hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr. 2010;103:730–4.
  • Brasnyó P, Molnár G, Mohás M, Markó L, Laczy B, Cseh J, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. 2011;106:383–9.
  • Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflam. 2017;14(1):1–10.
  • Kim YA, Kim G-Y, Park K-Y, Chi YH. Resveratrol inhibits nitric oxide and prostaglandin E2 production by lipopolysaccharide-activated C6 microglia. J Med Food. 2007;10(2):218–24.
  • Spanier G, Xu H, Xia N, Deng S, Wojnowski L, Forstermann U, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol. 2009;60(Suppl 4):111–6.
  • Féry F. Role of hepatic glucose production and glucose uptake in the pathogenesis of fasting hyperglycemia in type 2 diabetes: normalization of glucose kinetics by short-term fasting. J Clin Endocrinol Metab. 1994;78(3):536–42.
  • Weyer C, Bogardus C, Mott D, Pratley R. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787–94.
  • Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, De La Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimer’s Dis. 2005;8(3):247–68.
  • de la Monte S, Wands J. Alzheimer’s disease Is type 3 diabetes—evidence reviewed. J Diabetes Sci Technol. 2008;6(2):1101–13.
  • Withers DJ, White M. The insulin signaling system – a common link in the pathogenesis of type 2 diabetes. Endocrinology. 2000;141(6):1917–21.
  • Geijselaers SLC, Sep SJS, Stehouwer CDA, Biessels GJ. Glucose regulation, cognition, and brain MRI in type 2 diabetes: a systematic review. The Lancet: Diabetes & Endocrinol. 2015;3(1):75–89.
  • Rawlings AM, Sharrett AR, Mosley TH, Ballew SH, Deal JA, Selvin E. Glucose peaks and the risk of dementia and 20-year cognitive decline. Diabetes Care. 2017;40(7):879–86.
  • Greenwood CE, Kaplan RJ, Hebblethwaite S, Jenkins DJA. Carbohydrate-induced memory impairment in adults with type 2 diabetes. Diabetes Care. 2003;26(7):1961–6.
  • Ke YD, Delerue F, Gladbach A, Götz J, Ittner LM. Experimental diabetes mellitus exacerbates Tau pathology in a transgenic mouse model of Alzheimer’s disease. PLoS One. 2009;4(11):1–7.
  • Macauley SL, Sutphen CL, David M, Invest JC, Macauley SL, Stanley M, et al. Hyperglycemia modulates extracellular amyloid- β concentrations and neuronal activity in vivo. J Clin Invest. 2015;125(6):2463–7.
  • Lee CC, Huang CC, Sen HK. Insulin promotes dendritic spine and synapse formation by the PI3 K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology. 2011;61(4):867–79.
  • Costello DA, Claret M, Al-Qassab H, Plattner F, Irvine EE, Choudhury AI, et al. Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One. 2012;7(2):30–4.
  • Li X, Du L, Cheng X, Jiang X, Zhang Y, Lv B, et al. Glycation exacerbates the neuronal toxicity of B-amyloid. Cell Death Dis. 2013;4(6):1–9.
  • Cole AR, Astell A, Green C, Sutherland C. Molecular connexions between dementia and diabetes. Neurosci Biobehav Rev. 2007;31(7):1046–63.
  • Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998;333(3):471–90.
  • Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR. Tissue-specific role of glycogen synthase kinase 3β in glucose homeostasis and insulin action. Mol Cell Biol. 2008;28(20):6314–28.
  • De La Monte SM, Tong M, Schiano I, Didsbury J. Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic Alzheimer’s disease. J Alzheimer’s Dis. 2017;55(2):849–64.
  • Desai GS, Zheng C, Geetha T, Mathews ST, White BD, Huggins KW, et al. The pancreas-brain axis: insight into disrupted mechanisms associating type 2 diabetes and Alzheimer’s disease. J Alzheimer’s Dis. 2014;42(2):347–56.
  • Phiel CJ, Wilson CA, Lee VMY, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature. 2003;423(6938):435–9.
  • Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N. Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis. 2010;37(1):67–76.
  • Guo C, Zhang S, Li J, Ding C, Yang Z, Chai R, et al. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model. Sci Rep. 2016;6(1):1–14.
  • Umegaki H, Iimuro S, Shinozaki T, Araki A, Sakurai T, Iijima K, et al. Risk factors associated with cognitive decline in the elderly with type 2 diabetes: pooled logistic analysis of a 6-year observation in the Japanese elderly diabetes intervention trial. Geriat Gerontol Int. 2012;12(suppl.1):110–6.
  • Mushtaq G, Khan JA, Kumosani TA, Kamal MA. Alzheimer’s disease and type 2 diabetes via chronic inflammatory mechanisms. Saudi J Biol Sci. 2015;22(1):4–13.
  • Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Adiponectin LJ. Leptin and IL-1 β in elderly diabetic patients with mild cognitive impairment. Metab Brain Dis. 2016;31:257–66.
  • Tansey MG, Mccoy MK, Frank-cannon TC. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 2007;208:1–25.
  • Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, et al. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer’s disease. Drug Des Devel Ther. 2018;12:3999–4021.
  • Bassani TB, Turnes JM, Moura ELR, Bonato JM, Cóppola-segovia V, Zanata SM, et al. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav Brain Res. 2017;335:41–54.
  • Taepavarapruk P, Song C. Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1β administrations: effects of omega-3 fatty acid EPA treatment. J Neurochem. 2010;112(4):1054–64.
  • Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Loba J, Abete P. Serum levels of inflammatory markers in depressed elderly patients with diabetes and mild cognitive impairment. PLoS One. 2015;10(3):1–17.
  • Chaney MO, Stine WB, Kokjohn TA, Kuo Y, Esh C, Rahman A, et al. RAGE and amyloid beta interactions: atomic force microscopy and molecular modeling. Biochim Biophys Acta. 2005;1741:199–205.
  • Hsieh H, Chi P, Lin C, Yang C-C, Yang C-M. Up-regulation of ROS-dependent matrix metalloproteinase-9 from high-glucose-challenged astrocytes contributes to the neuronal apoptosis. Mol Neurobiol. 2014;50:520–33.
  • Hsieh C, Liu C, Lee C, Yu L, Wang J. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self- degradation. Sci Rep. 2019;9(1):1–16.
  • Jing Y, Chen K, Yang S, Kuo P, Chen J. Resveratrol ameliorates vasculopathy in STZ-induced diabetic rats: role of AGE – RAGE signalling. Diabetes Metab Res Rev. 2010;26(2):212–22.
  • Zhao H, Li N, Wang Q, Cheng X, Li X, Liu T. Resveratrol decreases the insoluble Aβ1–42 level in hippocampus and protects the integrity of the blood–brain barrier in AD rats. Neuroscience. 2015;310:641–9.
  • Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. 2005;11:973–84.
  • Deane R, Zlokovic B. Role of the blood-brain barrier in the pathogenesis of alzheimers disease. Curr Alzheimer Res. 2007;4(2):191–7.
  • Matrone C, Djelloul M, Taglialatela G, Perrone L. Inflammatory risk factors and pathologies promoting Alzheimer’s disease progression: Is RAGE the key? Histol Histopathol. 2015;30(2):125–39.
  • Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radical Biol Med. 2016;100:108–22.
  • Ma X, Sun Z, Han X, Li S, Jiang X, Chen S, et al. Neuroprotective effect of resveratrol via activation of Sirt1 signaling in a Rat model of combined diabetes and Alzheimer’s disease. Front Neurosci. 2020;13(1400):1–11.
  • Hui Y, Chengyong T, Cheng L, Haixia H, Yuanda Z, Weihua Y. Resveratrol attenuates the cytotoxicity induced by amyloid-β1–42 in PC12 cells by upregulating heme oxygenase-1 via the PI3 K / Akt / Nrf2 pathway. Neurochem Res. 2018;43(2):297–305.
  • Patel MI, Gupta A, Dey CS. Potentiation of neuronal insulin signaling and glucose uptake by resveratrol: the involvement of AMPK. Pharmacol Rep. 2011;63(5):1162–8.
  • Liu M, Yuan C, He J, Tan T, Wu S, Fu H, et al. Resveratrol protects PC12 cells from high glucose-induced neurotoxicity Via PI3 K/Akt/FoxO3a pathway. Cell Mol Neurobiol. 2015;35:513–22.
  • Pallàs M, Casadesús G, Smith MA, Coto-montes A, Pelegri C, Vilaplana J, et al. Resveratrol and neurodegenerative diseases : activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res. 2009;6:70–81.
  • Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. PNAS. 2007;104(17):7217–22.
  • Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 2016;8(61):1–21.
  • Vassilopoulos A, Fritz KS, Petersen DR, Gius D. The human sirtuin family: evolutionary divergences and functions. Hum Genomics. 2011;5(5):485–96.
  • Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem. 2009;110:1445–56.
  • Pan Y, Zhang H, Yuan J, Yu Y, Wang J, Pan Y, et al. Resveratrol exerts entioxidant effects by activating Sirt2 to deacetylate Prx1. Biochemistry. 2017;56(48):6325–8.
  • Bagul PK, Katare PB, Bugga P, Dinda AK, Banerjee S. SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFMA. Cells. 2018;7(235):1–13.
  • Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catorite H, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37(4):349–51.
  • Braidy N, Guillemin G, Grant R. Resveratrol increases intracellular NAD+ levels through up regulation of the adenylyltransferase. Nature Precedings. 2014;1(1):2010.
  • Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340–51.
  • Um J, Park S, Kang H, Yang S, Foretz M, Mcburney MW, et al. AMP-activated protein kinase – deficient mice are resistant to the metabolic effects of resveratrol. Diabetes. 2010;59(3):554–63.
  • Hardie DG, Carling D. The AMP-activated protein kinase fuel gauge of the mammalian cell? Eur J Biochem. 1997;246(2):259–73.
  • Liang J, Shao SH, Xu Z, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1 – AMPK pathway regulates p27 kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007;9(2):218–24.
  • Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid- β peptide metabolism. J Biol Chem. 2010;285(12):9100–13.
  • Wu Y, Li X, Zhu J, Xie W, Le W, Fan Z, et al. Resveratrol- activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. NeuroSignals. 2011;19(3):163–74.
  • Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage : possible involvement of AMPK/ SIRT1/autophagy signaling pathway. Biol Chem. 2011;399(11):1339–50.
  • Gu X, Cai Z, Cai M, Liu K, Liu D, Zhang Q, et al. AMPK/SIRT1/p38 MAPK signaling pathway regulates alcohol − induced neurodegeneration by resveratrol. Mol Med Rep. 2018;17:5402–8.
  • Price NL, Gomes AP, Ling AJY, Duarte F V, Martin-montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.
  • Lan F, Weikel KA, Cacicedo JM, Ido Y. Resveratrol-induced AMP-activated protein kinase activation is cell-type dependent: lessons from basic research for clinical application. Nutrients. 2017;9(7):751.
  • Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three akts. Genes Dev. 1999;13(22):2905–27.
  • Sekulić A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000;60(13):3504–13.
  • Heras-sandoval D, Pérez-rojas JM, Hernández-damián J, Pedraza-chaverri J. The role of PI3 K / AKT / mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal. 2014;26:2694–701.
  • Shati AA, Alfaifi MY. Trans -resveratrol inhibits tau phosphorylation in the brains of control and cadmium chloride-treated rats by activating PP2A and PI3 K/Akt induced-inhibition of GSK3β. Neurochem Res. 2019;44(2):357–73.
  • Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3 K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018;5(3):245–55.
  • Lofrumento DD, Saponaro C, Cianciulli A, DeNuccio F, Mitolo V, Nicolardi G, et al. MPTP-Induced Neuroinflammation increases the expression of Pro-inflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation. 2011;18:79–88.
  • Lofrumento DD, Nicolardi G, Cianciulli A, De NF, La PV, Carofiglio V, et al. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 2011;18(2):1–12.
  • Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Marambaud P, et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem. 2013;120(3):461–72.
  • Imler TJ, Petro TM. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17 + IL-10 + T cells, CD4− IFN- γ + cells, and decreased macrophage IL-6 expression. Int Immunopharmacol. 2009;9(1):134–43.
  • Das S, Das DK. Anti-Inflammatory responses of resveratrol. Inflamm Allergy-Drug Targets. 2007;6:168–73.
  • Wiedemann J, Rashid K, Langmann T. Biochemical and Biophysical Research Communications resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia- mediated photoreceptor apoptosis. Biochem Biophys Res Commun. 2018;501(1):239–45.
  • Jin F, Wu Q, Lu Y, Gong Q, Shi J. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol. 2008;600(1–3):78–82.
  • Zhao H, Wang Q, Cheng X, Li X, Li N, Liu T, et al. Inhibitive effect of resveratrol on the inflammation in cultured astrocytes and microglia induced by Aβ1-42. Neuroscience. 2018;379:390–404.
  • Coutinho DDS, Pacheco MT, Frozza RL, Bernardi A. Anti-Inflammatory effects of resveratrol: mechanistic insights. Int J Mol Sci. 2018;19(1812):1–25.
  • Shi L, Zhang Z, Li L, Hölscher C. A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behav Brain Res. 2017;327:65–74.
  • Yu Y, Li X, Blanchard J, Li Y, Iqbal K, Liu F, et al. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg-AD mice. J Neural Transm. 2015;122(4):593–606.
  • Adzovic L, Lynn AE, Angelo HMD, Crockett AM, Kaercher RM, Royer SE, et al. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J Neuroinflammation. 2015;12(63):1–10.
  • Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism : randomized, clinical trial. Front Aging Neurosci. 2016;8:1–10.
  • Weinstein G, Davis-plourde KL, Conner S, Himali JJ, Beiser AS, Lee A, et al. Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer’s disease: Pooled analysis from 5 cohorts. PLoS One. 2019;14(2):1–18.
  • Khazaei M, Karimi J, Sheikh N, Goodarzi MT. Effects of resveratrol on receptor for advanced glycation End products (RAGE) expression and oxidative stress in the liver of rats with type 2 diabetes. Phytother Res. 2016;30:66–71.
  • Tian Z, Wang J, Xu M, Wang Y, Zhang M, Zhou Y. Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats. Cell Physiol Biochem. 2016;40(6):1670–7.
  • Jing Y, Chen K, Kuo P, Pao C, Chen J-K. Neurodegeneration in streptozotocin- induced diabetic rats is attenuated by treatment with resveratrol. Neuroendocrinology. 2013;98(2):116–27.
  • Tian X, Liu Y, Ren G, Yin L, Liang X, Geng T, et al. Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res. 2016;1650:1–9.
  • Bernier M, Wahl D, Ali A, Allard J, Faulkner S, Sanghvi M, et al. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high - fat/sucrose diet. Aging. 2016;8(5):899–914.
  • Kodali M, Parihar VK, Hattiangady B, Mishra V, Shuai B, Shetty AK. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep. 2015;5:8075.
  • Porquet D, Casadesús G, Bayod S, Vicente A, Canudas AM, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Omaha). 2013;35:1851–65.
  • Gocmez SS, Gacar N, Utkan T, Gacar G, Scarpace PJ, Tumer N. Protective effects of resveratrol on aging-induced cognitive impairment in rats. Neurobiol Learn Mem. 2016;131:131–6.
  • Rege SD, Geetha T, Broderick TL, Babu JR. Resveratrol Protects β amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr Alzheimer Res. 2015;12:147–56.
  • Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res. 2012;32(7):537–41.
  • Crandall JP, Oram V, Trandafirescu G, Reid M, Kishore P, Hawkins M, et al. Pilot study of resveratrol in older adults With impaired glucose tolerance. J Gerontol: Series A. 2012 Dec;67(12):1307–12.
  • Movahed A, Nabipour I, Lieben Louis X, Thandapilly SJ, Yu L, Kalantarhormozi M, et al. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evidence-Based Complemen Altern Med. 2013;2013:1–11.
  • Turner RS, Thomas RG, Craft S, Van DC, Mintzer J, Reynolds BA, et al. A randomized double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383–91.
  • Köbe T, Witte AV, Schnelle A, Tesky VA, Pantel J, Schuchardt J, et al. Impact of resveratrol on glucose control, hippocampal structure and connectivity, and memory performance in patients with mild cognitive impairment. Front Neurosci. 2017;11:1–11.
  • Wong RHX, Nealon RS, Scholey A, Howe PRC. Low dose resveratrol improves cerebrovascular function in type 2 diabetes mellitus. nutrition. Metabol Cardiovas Dis. 2016;26:393–9.
  • Soleas GJ, Diamandis EP, Goldberg DM. Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal. 1997;11:287–313.
  • Subramanian L, Youssef S, Bhattacharya S, Kenealey J, Polans AS, Ginkel Pv. Resveratrol: challenges in translation to the clinic – a critical discussion. Clin Cancer Res. 2010;16(24):5942–8.
  • Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87.
  • Park EJ, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochimica et Biophysica Acta - Molecular Basis of Disease. 2015;1852(6):1071–113.
  • Walle T. Bioavailability of resveratrol. Ann N Y Acad Sci. 2011 Jan;1215(1):9–15.
  • Rotches-Ribalta M, Andres-Lacueva C, Estruch R, Escribano E, Urpi-Sarda M. Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets. Pharmacol Res. 2012 Nov;66(5):375–82.
  • Amri A, Chaumeil JC, Sfar S, Charrueau C. Administration of resveratrol: what formulation solutions to bioavailability limitations? J Controlled Release. 2012 Mar;158(2):182–93.
  • Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, et al. Potential adverse effects of resveratrol: a literature review. Int J Mol Sci. 2020;21(6):1–26.
  • Murata M, Takahashi A, Saito I, Kawanishi S. Site-specific DNA methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol. 1999;57(8):881–7.
  • Wang YW, Sun GD, Sun J, Liu SJ, Wang J, Xu XH, et al. Spontaneous type 2 diabetic rodent models. J Diabetes Res. 2013;2013, Article ID 401723. https://doi.org/10.1155/2013/401723.
  • Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig. 2014;5(4):349–58.
  • Harada N, Zhao J, Kurihara H, Nakagata N, Okajima K. Resveratrol improves cognitive function in mice by increasing production of insulin-like growth factor-I in the hippocampus. J Nutr Biochem. 2011;22(12):1150–9.
  • Chi T-C, Chen W-P, Chi T-L, Kuo T-F, Lee S-S, Cheng J-T, et al. Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats. Life Sci. 2007 Apr;80(18):1713–20.
  • Chang C-C, Chang C-Y, Wu Y-T, Huang J-P, Yen T-H, Hung L-M. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase. J Biomed Sci. 2011;18(1):47.
  • Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, et al. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2009;610(1–3):42–8.
  • Zhao H, Niu Q, Li X, Liu T, Xu Y, Han H, et al. Long-term resveratrol consumption protects ovariectomized rats chronically treated with d-galactose from developing memory decline without effects on the uterus. Brain Res. 2012 Jul;1467:67–80.
  • Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, et al. Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res. 2009;15(1):3–14.
  • Sharma M, Gupta Y. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci. 2002 Oct;71(21):2489–98.
  • Jeon BT, Jeong EA, Shin HJ, Lee Y, Lee DH, Kim HJ, et al. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice Fed a high-Fat diet. Diabetes. 2012 Jun 1;61(6):1444–54.
  • Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, et al. Moderate consumption of Cabernet sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer’s disease. FASEB J. 2006 Nov;20(13):2313–20.
  • Oomen CA, Farkas E, Roman V, van der Beek EM, Luiten PGM, Meerlo P. Resveratrol preserves cerebrovascular density and cognitive function in aging mice. Front Aging Neurosci. 2009;1:1–9.
  • Kumar A, Naidu PS, Seghal N, Padi SSV. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology. 2007;79(1):17–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.