289
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanical properties of alluvium clay treated with cement and carbon fiber: relationships among strength, stiffness, and durability

ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2094928 | Received 31 Mar 2022, Accepted 22 Jun 2022, Published online: 20 Jul 2022

References

  • Al-Subari, L., Ekinci, A., and Aydın, E, 2021. The utilization of waste rubber tire powder to improve the mechanical properties of cement-clay composites. Construction and Building Materials, 300 (March), 1–16.
  • Alsharef, J., Taha, M.R., and Firoozi, A.A., 2016. Potential of using nanocarbons to stabilize weak soils. Applied and Environmental Soil Science, 2016, 1–9. doi: 10.1155/2016/5060531
  • Anagnostopoulos, C.A., Tzetzis, D., and Berketis, K., 2014. Shear strength behaviour of polypropylene fibre reinforced cohesive soils. Geomechanics and Geoengineering, 9 (3), 241–251. doi: 10.1080/17486025.2013.804213
  • ASTM C150/C150M-20, 2020. Standard specification for Portland cement. West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/C0150_C0150M-20
  • ASTM D2487-17e1, 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/D2487-17E01.
  • ASTM D2845-08, 2008. Standard test method for laboratory determination of pulse velocities and ultrasonic, elastic constants of rock (withdrawn 2017). West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/D2845-08.
  • ASTM D4318-17e1, 2017. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/D4318-17E01.
  • ASTM D5102-09, 2009. Standard test method for unconfined compressive strength of compacted soil-lime mixtures (withdrawn 2018). West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/D5102-09.
  • ASTM D559 / D559M-15, 2015. Standard test methods for wetting and drying compacted soil-cement mixtures. West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/D0559_D0559M-15.
  • ASTM D6913 / D6913M-17, 2017. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/D6913_D6913M-17.
  • ASTM D698 – 12, 2021. Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400ft-lbf/ft3 (600 kN-m/m3)). West Conshohocken, PA: ASTM International.
  • ASTM D854-14, 2014. Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken, PA: ASTM International. www.astm.org, doi:10.1520/D0854-14.
  • Brand, A.S., et al., 2020. Stabilization of a clayey soil with ladle metallurgy furnace slag fines. Materials, 13, 19. doi: 10.3390/ma13194251
  • Consoli, N.C., et al., 2007. Key parameters for strength control of artificially cemented soils. Journal of Geotechnical and Geoenvironmental Engineering, 133 (2), 197–205. doi: 10.1061/(ASCE)1090-0241(2007)133:2(197)
  • Consoli, N.C., et al., 2017. A general relationship to estimate strength of fibre-reinforced cemented fine-grained soils. Geosynthetics International, 24 (4), 435–441. doi: 10.1680/jgein.17.00006
  • Consoli, N.C., Arcari Bassani, M.A., and Festugato, L, 2010. Effect of fiber-reinforcement on the strength of cemented soils. Geotextiles and Geomembranes, 28 (4), 344–351. doi: 10.1016/j.geotexmem.2010.01.005
  • Consoli, N.C., and Leon, H.B., 2018. Improving freeze – thaw durability of recycled asphalt-waste pavements with sodium chloride.
  • Coop, M.R., and Atkinson, J.H., 1993. The mechanics of cemented carbonate sands. Géotechnique, 43 (1), 53–67. doi: 10.1680/geot.1993.43.1.53
  • Cristelo, N., et al., 2015. Influence of discrete fibre reinforcement on the uniaxial compression response and seismic wave velocity of a cement-stabilised sandy-clay. Geotextiles and Geomembranes, 43 (1), 1–13. doi: 10.1016/j.geotexmem.2014.11.007
  • Cuccovillo, T., and Coop, M.R, 1999. On the mechanics of structured sands. Géotechnique, 49 (6), 741–760. doi: 10.1680/geot.1999.49.6.741
  • Cui, H., et al., 2018. Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, 189, 286–295. doi: 10.1016/j.conbuildmat.2018.08.181
  • de Jesús Arrieta Baldovino, J., dos Santos Izzo, R.L., and Rose, J.L., 2021. Effects of freeze–thaw cycles and porosity/cement index on durability, strength and capillary rise of a stabilized silty soil under optimal compaction conditions. Geotechnical and Geological Engineering, 39 (1), 481–498. doi: 10.1007/s10706-020-01507-y
  • dos Santos, A.P.S., Consoli, N.C., and Baudet, B.A., 2010. The mechanics of fibre-reinforced sand. Géotechnique, 60 (10), 791–799. doi: 10.1680/geot.8.P.159
  • Ekinci, A., Abki, A., and Mirzababaei, M., 2022a. Parameters controlling strength, stiffness and durability of a fibre-reinforced clay. International Journal of Geosynthetics and Ground Engineering, 8, 1. doi: 10.1007/s40891-022-00352-8
  • Ekinci, A., Vaz Ferreira, P.M., and Rezaeian, M, 2022b. The mechanical behaviour of compacted Lambeth-group clays with and without fibre reinforcement. Geotextiles and Geomembranes, 50 (1), 1–19. doi: 10.1016/j.geotexmem.2021.08.003
  • Filho, S.H. C., et al., 2021. The effect of key parameters on the strength of a dispersive soil stabilized with sustainable binders. Geotechnical and Geological Engineering, 39 (7), 5395–5404. doi: 10.1007/s10706-021-01833-9
  • Firoozi, A.A., et al., 2017. Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8, 1. doi: 10.1186/s40703-017-0064-9
  • Gowthaman, S., Nakashima, K., and Kawasaki, S., 2018. A state-of-the-art review on soil reinforcement technology using natural plant fiber materials: past findings, present trends and future directions. Materials, 11 (4), 553. doi: 10.3390/ma11040553
  • Guihéneuf, S., et al., 2020. Effect of bio-stabilizers on capillary absorption and water vapour transfer into raw earth. Materials and Structures/Materiaux et Constructions, 53, 6.
  • Hanafi, M., Ekinci, A., and Aydin, E., 2020. Triple-binder-stabilized marine deposit clay for better sustainability. Sustainability (Switzerland), 12 (11), 1–16.
  • Hoy, M., et al., 2017. Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement – fly ash geopolymer. Construction and Building Materials, 144, 624–634. doi: 10.1016/j.conbuildmat.2017.03.243
  • Kang, G.O., et al., 2019. Strength monitoring of dredged marine clay stabilized with basic oxygen furnace steel slag using non-destructive method. In: Proceedings of the International Offshore and Polar Engineering Conference.
  • Khattak, M.J., and Alrashidi, M., 2006. Durability and mechanistic characteristics of fiber reinforced soil–cement mixtures. The International Journal of Pavement Engineering, 7 (1), 53–62. doi: 10.1080/10298430500489207
  • Kim, Y.S., et al., 2019. Stabilization of a residual granitic soil using various new green binders. Construction and Building Materials, 223, 724–735. doi: 10.1016/j.conbuildmat.2019.07.019
  • Ladd, R.S, 1978. Preparing test specimens using undercompaction. Geotechnical Testing Journal, 1 (1), 16–23. doi: 10.1520/GTJ10364J
  • Lade, P. V., and Overton, D.D., 1989. Cementation effects in frictional materials. Journal of Geotechnical Engineering, 115, 10. doi: 10.1061/(ASCE)0733-9410(1989)115:10(1373)
  • Lade, P. V., and Trads, N., 2014. The role of cementation in the behaviour of cemented soils. Geotechnical Research, 1, 4. doi: 10.1680/gr.14.00011
  • Le, T.T., et al., 2021. Strength characteristics of spent coffee grounds and oyster shells cemented with GGBS-based alkaline-activated materials. Construction and Building Materials, 267, 1–16. doi: 10.1016/j.conbuildmat.2020.120986
  • Leroueil, S., and Vaughan, P.R, 1990. The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40, 3. doi: 10.1680/geot.1990.40.3.467
  • Li, J., et al., 2014. Effect of discrete fibre reinforcement on soil tensile strength. Journal of Rock Mechanics and Geotechnical Engineering, 6 (2), 133–137. doi: 10.1016/j.jrmge.2014.01.003
  • Maher, M., and Ho, Y., 1995. Mechanical properties of kaolinite/fiber soil composite. American Society of Civil Engineers, 120 (8), 1381–1393.
  • Mandal, M., Roy, N., and Bag, R., 2021. Effect of plastic waste on strength of clayey soil and clay mixed with fly ash. In: Latha Gali and Raghuveer Rao, eds. Problematic soils and geoenvironmental concerns. Singapore: Springer, 549–564.
  • Marçal, R., et al., 2020. Reinforcing effect of polypropylene waste strips on compacted lateritic soils. Sustainability (Switzerland), 12 (22), 1–16.
  • Mirzababaei, M., et al., 2013. Unconfined compression strength of reinforced clays with carpet waste fibers. Journal of Geotechnical and Geoenvironmental Engineering, 139 (3), 483–493. doi: 10.1061/(ASCE)GT.1943-5606.0000792
  • Mirzababaei, M., et al., 2018. Practical approach to predict the shear strength of fibre-reinforced clay. Geosynthetics International, 25 (1), 50–66. doi: 10.1680/jgein.17.00033
  • Moumin, G., et al., 2020. CO2 emission reduction in the cement industry by using a solar calciner. Renewable Energy, 145, 1578–1596. doi: 10.1016/j.renene.2019.07.045
  • Muntohar, A.S, 2009. Influence of plastic waste fibers on the strength of lime-rice husk ash stabilized clay soil. Civil Engineering Dimension, 11 (1), 32–40.
  • Norozi, A.G., Kouravand, S., and Boveiri, M, 2015. A review of using the waste in soil stabilization. International Journal of Engineering Trends and Technology, 21 (1), 33–37. doi: 10.14445/22315381/IJETT-V21P206
  • Olgun, M., 2013. Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20 (4), 263–275. doi: 10.1680/gein.13.00016
  • Olofin, I., and Liu, R, 2015. The application of carbon fibre reinforced polymer (CFRP) cables in civil engineering structures. SSRG International Journal of Civil Engineering, 2, 1–5. doi: 10.14445/23488352/IJCE-V2I7P101
  • Rout, S.S., and Sahoo, R.R., 2021. Enhancing strength properties of soft soil using carbon fiber. In: Proceedings of the Indian Geotechnical Conference, 333–344.
  • Roy, A., 2014. Soil stabilization using rice husk ash and cement. International Journal of Civil Engineering Research, 5 (1), 49–54.
  • Schnaid, F., Prietto, P.D.M., and Consoli, N.C., 2001. Characterization of cemented sand in triaxial compression. Journal of Geotechnical and Geoenvironmental Engineering, 127, 10. doi: 10.1061/(ASCE)1090-0241(2001)127:10(857)
  • Soleimani-Fard, H., König, D., and Goudarzy, M., 2022. Plane strain shear strength of unsaturated fiber-reinforced fine-grained soils. Acta Geotechnica, 17 (1), 105–118. doi: 10.1007/s11440-021-01197-7
  • Tabatabaei, Z.S., et al., 2013. Development of long carbon fiber-reinforced concrete for dynamic strengthening. Journal of Materials in Civil Engineering, 25 (10), 1446–1455. doi: 10.1061/(ASCE)MT.1943-5533.0000692
  • Tran, T.Q., et al., 2019. Feasibility of reusing marine dredged clay stabilized by a combination of by-products in coastal road construction. Transportation Research Record, 2673 (12), 519–528. doi: 10.1177/0361198119868196
  • UN Organisation, 2015. Transforming our world: the 2030 agenda for sustainable development united nations united nations transforming our world: the 2030 agenda for sustainable development.
  • US Army Corps of Engineers, 1994. Soil stabilization for pavements. USACE Technical Manual No. TM5-822-14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.