400
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Aging degradation of anhydride-cured epoxy asphalt binder subjected to ultraviolet exposure

, , ORCID Icon, &
Article: 2171037 | Received 03 Sep 2022, Accepted 17 Jan 2023, Published online: 02 Feb 2023

References

  • Apostolidis, P., et al., 2019. Evaluation of epoxy modification in bitumen. Construction and Building Materials, 208, 361–368. doi:10.1016/j.conbuildmat.2019.03.013.
  • Apostolidis, P., et al., 2020. Oxidative aging of epoxy asphalt. International Journal of Pavement Engineering, 23 (5), 1471–1481. doi:10.1080/10298436.2020.1806278.
  • Asib, M.A., et al., 2021. Physicochemical characterization of short and long-term aged asphalt mixtures for low-temperature performance. Construction and Building Materials, 319, 126038. doi:10.1016/j.conbuildmat.2021.126038.
  • Asmatulu, R., et al., 2011. Effects of UV degradation on surface hydrophobicity, crack, and thickness of MWCNT-based nanocomposite coatings. Progress in Organic Coatings, 72, 553–561. doi:10.1016/j.porgcoat.2011.06.015.
  • Chen, L., et al., 2020. Chemical, rheological and aging characteristic properties of Xinjiang rock asphalt-modified bitumen. Construction and Building Materials, 240, 117908. doi:10.1016/j.conbuildmat.2019.117908.
  • Cong, P., et al., 2013. Investigation on properties of polymer modified asphalt containing various antiaging agents. Polymer Degradation and Stability, 98, 2627–2634. doi:10.1016/j.polymdegradstab.2013.09.024.
  • Dan, R., and Visakh, P.M., 2016. Photochemical behavior of multicomponent polymeric-based materials. Vol. 26. Cham: Springer International Publishing. doi:10.1007/978-3-319-25196-7.
  • Ding, H., et al., 2021. Effects of crystalline wax and asphaltene on thermoreversible aging of asphalt binder. International Journal of Pavement Engineering, 1–11. doi:10.1080/10298436.2021.1931199.
  • Dupuis, A., et al., 2017. Photo-oxidative degradation behavior of linseed oil based epoxy resin. Polymer Degradation and Stability, 135, 73–84. doi:10.1016/j.polymdegradstab.2016.11.021.
  • Firas, A., and Paul, J., 2009. Surface molecular characterisation of different epoxy resin composites subjected to UV accelerated degradation using XPS and ToF-SIMS. Polymer Degradation and Stability, 94, 651–658. doi:10.1016/j.polymdegradstab.2009.01.001.
  • Hamad, A., 2013. Surface morphology and chemistry of epoxy-based coatings after exposure to ultraviolet radiation. Progress in Organic Coating, 76, 677–681. doi:10.1016/j.porgcoat.2012.12.010.
  • Huang, W., et al., 2019. Thermal effect on rheological properties of epoxy asphalt mixture and stress prediction for bridge deck paving. Journal of Materials in Civil Engineering, 31 (10), 04019222. doi:10.1061/(ASCE)MT.1943-5533.0002861.
  • Jamshidi, A.G., and Kurumisawa, K., 2021. Rheological characteristics of epoxy asphalt binders and engineering properties of epoxy asphalt mixtures-state-of-the-art. Road Materials and Pavement Design, 23 (9), 1957–1980. doi:10.1080/14680629.2021.1963814.
  • Kang, Y., et al., 2016. Anhydrides-cured bimodal rubber-like epoxy asphalt composites: from thermosetting to quasi-thermosetting. Polymer, 8 (4), 1042011. doi:10.3390/polym8040104.
  • Korkmaz, Y., and Gültekin, K., 2022. Effect of UV irradiation on epoxy adhesives and adhesively bonded joints reinforced with BN and B4C nanoparticles. Polymer Degradation and Stability, 202, 110004. doi:10.1016/j.polymdegradstab.2022.110004.
  • Li, Y., et al., 2019. Aging degradation of asphalt binder by narrow-band UV radiations with a range of dominant wavelengths. Construction and Building Materials, 220, 637–650. doi:10.1016/j.conbuildmat.2019.06.035.
  • Li, R., et al., 2022b. Effects of aging on rheological, chemical, and micromechanical properties of waterborne epoxy resin modified bitumen emulsion. Journal of Pavement Engineering, 1–13. doi:10.1080/10298436.2022.2077943.
  • Li, Y., et al., 2022c. Review of ultraviolet ageing mechanisms and anti-ageing methods for asphalt binders. Journal of Road Engineering, 2, 137–155. doi:10.1016/j.jreng.2022.04.002.
  • Li, F., Wang, Y., and Zhao, K., 2022a. Connections between asphaltene microstructures in aged asphalt binders and performance-related engineering properties. Construction and Building Materials, 329, 127173. doi:10.1016/j.conbuildmat.2022.127173.
  • Luo, S., Qian, Z., and Wang, H., 2011. Condition survey and analysis of epoxy asphalt concrete pavement on second Nanjing Yangtze River Bridge: a ten-year review. Journal of Southeast University (English Edition), 27 (4), 417–422. Available from: http://dx.chinadoi.cn/10.3969j.issn.1003-7985.2011.04.014.
  • Min, Z., Yu, Z., and Wang, Q., 2021. Behaviours of incorporating ceramsite into epoxy asphalt mixture as thermal resistance aggregates. International Journal of Pavement Engineering, 23 (9), 2954–2968. doi:10.1080/10298436.2021.1875224.
  • Nguyen, T., et al., 2012. Effects of ultraviolet radiation and associated elevated temperature on mechanical performance of steel/CFRP double strap joints. Composite Structures, 94, 3563–3573. doi:10.1016/j.compstruct.2012.05.036.
  • Nuo, S., et al., 2019. Ground-based measurements of global solar radiation and UV radition in Tibet. Spectroscopy and Spectral Analysis, 39 (6), 1683–1688. doi:10.3964/j.issn.1000-0593(2019)06-1683-06.
  • Ollier, D.V., and Gosse, B., 1998. Photooxidation of anhydride-cured epoxies: FTIR study of the modifications of the chemical structure. Journal of Applied Polymer Science, 70 (6), 1221–1237. doi:10.1002/(SICI)1097-4628(19981107)70:6<1221::AID-APP19>3.0.CO;2-1.
  • Qin, Q., et al., 2014. Field aging effect on chemistry and rheology of asphalt binders and rheological predictions for field aging. Fuel, 121, 86–94. doi:10.1016/j.fuel.2013.12.040.
  • Rabek, J.F., 1995. Polymer photodegradation mechanisms and experimental methods (1st ed.). London: Chapman & Hall. doi:10.1007/978-94-011-1274-1.
  • Si, J., et al., 2022. Influence of thermal-oxidative aging on the mechanical performance and structure of cold-mixed epoxy asphalt. Journal of Cleaner Production, 337, 130482. doi:10.1016/j.jclepro.2022.130482.
  • Tan, X., et al., 2020. Preparation, characterization and repeated repair ability evaluation of asphalt-based crack sealant containing microencapsulated epoxy resin and curing agent. Construction and Building Materials, 256, 119433. doi:10.1016/j.conbuildmat.2020.119433.
  • Tauste, R., et al., 2018. Understanding the bitumen ageing phenomenon: a review. Construction and Building Materials, 192, 593–609. doi:10.1016/j.conbuildmat.2018.10.169.
  • Tian, J.H., et al., 2022. Effects of epoxy resin content on properties of hot mixing epoxy asphalt binders. Journal of Materials in Civil Engineering, 34 (7), 04022145. doi:10.1061/(ASCE)MT.1943-5533.0004259.
  • Wang, Q., et al., 2022. Mechanical behavior and thermal oxidative aging of anhydride-cured epoxy asphalt with different asphalt contents. Journal of Materials in Civil Engineering, 34 (10), 04022245. doi:10.1061/(ASCE)MT.1943-5533.0004408.
  • Xiao, M., and Fan, L., 2022. Ultraviolet aging mechanism of asphalt molecular based on microscopic simulation ultraviolet aging mechanism. Construction and Building Materials, 319, 126157. doi:10.1016/j.conbuildmat.2021.126157.
  • Xie, H., Li, C., and Wang, Q., 2022. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Construction and Building Materials, 326, 126792. doi:10.1016/j.conbuildmat.2022.126792.
  • Xu, O., Han, S., and Li, H., 2007. Impact of ultraviolet radiation on changes of typical functional groups and vitrification temperature for asphalts. Journal of Chang’an University (Natural Science Edition), 27 (02), 16–20 (in Chinese). doi:10.19721/j.cnki.1671-8879.2007.02.004.
  • Yang, Y., et al., 2015. Thermal aging of an anhydride-cured epoxy resin. Polymer Degradation and Stability, 118, 111–119. doi:10.1016/j.polymdegradstab.2015.04.017.
  • Youtcheff, J., et al., 2006. The evaluation of epoxy asphalt and epoxy asphalt mixtures. In: Proceeding of 51st annual conference of the Canadian Technical Asphalt Association, Charlottetown, Prince Edward Island, Canada, 351–368.
  • Yu, H., et al., 2019. Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders. Polymers, 111 (11), 1–13. doi:10.3390/polym11071111.
  • Yu, H., et al., 2021. Research on time-temperature-ultraviolet ageing degree superposition of asphalt mortar based on DMA test. International Journal of Pavement Engineering, 1–12. doi:10.1080/10298436.2021.1971227.
  • Zhang, H., et al., 2020. Experimental study on service performance of epoxy asphalt steel deck pavement of cable stayed bridge. Case Studies in Construction Materials, 13, e00392. doi:10.1016/j.cscm.2020.e00392.
  • Zhang, S., Cui, Y., and Wei, W, 2021. Low-temperature characteristics and microstructure of asphalt under complex aging conditions. Construction and Building Materials, 303, 124408. doi:10.1016/j.conbuildmat.2021.124408.
  • Zou, L., et al., 2021a. Study on prevention and treatment strategy of asphalt ultraviolet (UV) aging based on UV climate zoning in China. Applied Sciences, 6665 (11), 1–20. doi:10.3390/app11146665.
  • Zou, L., Zhang, Y., and Liu, B., 2021b. Aging characteristics of asphalt binder under strong ultraviolet irradiation in northwest China. Sustainability, 13, 10753. doi:10.3390/su131910753.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.