103
Views
0
CrossRef citations to date
0
Altmetric
Reports

Multifractal Auditory Stimulation Promotes the Effect of Multifractal Torso Sway on Spatial Perception: Evidence from Distance Perception by Blindwalking

ORCID Icon, , &

References

  • Adamatzky, A. (2019). A brief history of liquid computers. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 374(1774), 20180372. https://doi.org/10.1098/rstb.2018.0372
  • Ashkenazy, Y. M., Hausdorff, J., Ivanov, P. C., & Stanley, H. E. (2002). A stochastic model of human gait dynamics. Physica A: Statistical Mechanics and Its Applications. 316(1–4), 662–670. https://doi.org/10.1016/S0378-4371(02)01453-X
  • Avelar, B. S., Mancini, M. C., Fonseca, S. T., Kelty-Stephen, D. G., Miranda, D. M., Araujo, P. A., Romano-Silva, M. A., & Silva, P. L. (2019). Fractal fluctuations in exploratory movements predict differences in dynamic touch capabilities between children with attention-deficit hyperactivity disorder and typical development. PLOS One, 14(5), e0217200. https://doi.org/10.1371/journal.pone.0217200
  • Balaban, V., Lim, S., Gupta, G., Boedicker, J., & Bogdan, P. (2018). Quantifying emergence and self-organisation of Enterobacter cloacae microbial communities. Scientific Reports, 8(1), 12416. https://doi.org/10.1038/s41598-018-30654-9
  • Barlow, H. B. (1963). Slippage of contact lenses and other artefacts in relation to fading and regeneration of supposedly stable retinal images. Quarterly Journal of Experimental Psychology, 15(1), 36–51. https://doi.org/10.1080/17470216308416550
  • Bates, M. L., & Whitworth, A. P. (2023). A statistical analysis of the structure of the interstellar medium in the disc of the Milky Way. Monthly Notices of the Royal Astronomical Society, 523(1), 233–250. https://doi.org/10.1093/mnras/stad1450
  • Bell, C., Carver, N., Zbaracki, J., & Kelty-Stephen, D. (2019). Nonlinear amplification of variability through interaction across scales supports greater accuracy in manual aiming: Evidence from a multifractal analysis with comparisons to linear surrogates in the Fitts task. Frontiers in Physiology, 10, 998. https://doi.org/10.3389/fphys.2019.00998
  • Bernstein, N. A. (1967). The coordination and regulation of movements. Pergamon.
  • Bernstein, N. A., Latash, M. L., & Turvey, M. T. (1996). Dexterity and its development. Lawrence Erlbaum.
  • Bloomfield, L., Lane, E., Mangalam, M., & Kelty-Stephen, D. G. (2021). Perceiving and remembering speech depend on multifractal nonlinearity in movements producing and exploring speech. Journal of the Royal Society, Interface, 18(181), 20210272. https://doi.org/10.1098/rsif.2021.0272
  • Booth, C. R., Brown, H. L., Eason, E. G., Wallot, S., & Kelty-Stephen, D. G. (2018). Expectations on hierarchical scales of discourse: Multifractality predicts both short- and long-range effects of violating gender expectations in text reading. Discourse Processes, 55(1), 12–30. https://doi.org/10.1080/0163853X.2016.1197811
  • Borda-de-Água, L., Hubbell, S. P., & McAllister, M. (2002). Species-area curves, diversity indices, and species abundance distributions: A multifractal analysis. The American Naturalist, 159(2), 138–155. https://doi.org/10.1086/324787
  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day.
  • Burton, G., & Turvey, M. T. (1990). Perceiving the lengths of rods that are held but not wielded. Ecological Psychology, 2(4), 295–324. https://doi.org/10.1207/s15326969eco0204_1
  • Brach, J. S., Berlin, J. E., VanSwearingen, J. M., Newman, A. B., & Studenski, S. A. (2005). Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. Journal of Neuroengineering and Rehabilitation, 2(1), 21. https://doi.org/10.1186/1743-0003-2-21
  • Calcagni, G. (2017). Lorentz violations in multifractal spacetimes. The European Physical Journal C, 77(5), 1–11. https://doi.org/10.1140/epjc/s10052-017-4841-6
  • Carvalho, T. D., Pastre, C. M., de Godoy, M. F., Fereira, C., Pitta, F. O., de Abreu, L. C., Ramos, E. M. C., Valenti, V. E., & Vanderlei, L. C. M. (2011). Fractal correlation property of heart rate variability in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 6, 23–28. https://doi.org/10.2147/COPD.S15099
  • Carver, N. S., & Kelty-Stephen, D. G. (2017). Multifractality in individual honeybee behavior hints at colony-specific social cascades: Reanalysis of RFID data from five different colonies. Physical Review. E, 95(2-1), 022402. https://doi.org/10.1103/PhysRevE.95.022402
  • Carver, N. S., Bojovic, D., & Kelty-Stephen, D. G. (2017). Multifractal foundations of visually-guided aiming and adaptation to prismatic perturbation. Human Movement Science, 55, 61–72. https://doi.org/10.1016/j.humov.2017.07.005
  • Chatterjee, S. (2020). Analysis of the human gait rhythm in neurodegenerative disease: A multifractal approach using multifractal detrended cross correlation analysis. Physica A: Statistical Mechanics and Its Applications. 540, 123154. https://doi.org/10.1016/j.physa.2019.123154
  • Chhabra, A., & Jensen, R. V. (1989). Direct determination of the f(α) singularity spectrum. Physical Review Letters, 62(12), 1327–1330. https://doi.org/10.1103/PhysRevLett.62.1327
  • Coppola, D., & Purves, D. (1996). The extraordinary rapid disappearance of entoptic images. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 8001–8004. https://doi.org/10.1073/pnas.93.15.8001
  • Das, N. K., Dey, R., Chakraborty, S., Panigrahi, P. K., Meglinski, I., & Ghosh, N. (2018). Submicron scale tissue multifractal anisotropy in polarized laser light scattering. Laser Physics Letters, 15(3), 035601. https://doi.org/10.1088/1612-202X/aa86f2
  • de Freitas, D. B., Nepomuceno, M. M., & De Medeiros, J. R. (2018). Multifractal signatures of gravitational waves detected by LIGO. Proceedings of the International Astronomical Union, 14(S346), 468–473. https://doi.org/10.1017/S1743921318008189
  • De Jonge-Hoekstra, L., Cox, R. F. A., Van der Steen, S., & Dixon, J. A. (2021). Easier said than done? Task difficulty’s influence on temporal alignment, semantic similarity, and complexity matching between gestures and speech. Cognitive Science, 45(6), e12989. https://doi.org/10.1111/cogs.12989
  • Den Hartigh, R. J., Cox, R. F., Gernigon, C., Van Yperen, N. W., & Van Geert, P. L. (2015). Pink noise in rowing ergometer performance and the role of skill level. Motor Control, 19(4), 355–369. https://doi.org/10.1123/mc.2014-0071
  • Ditchburn, R. W., & Ginsborg, B. L. (1952). Vision with a stabilized retinal image. Nature, 170(4314), 36–37. https://doi.org/10.1038/170036a0
  • Dixon, J. A., Holden, J. G., Mirman, D., & Stephen, D. G. (2012). Multifractal dynamics in the emergence of cognitive structure. Topics in Cognitive Science, 4(1), 51–62. https://doi.org/10.1111/j.1756-8765.2011.01162.x
  • dos Santos Lima, G. Z., Lobao-Soares, B., do Nascimento, G. C., Franca, A. S., Muratori, L., Ribeiro, S., & Corso, G. (2014). Mouse activity across time scales: Fractal scenarios. PLOS One, 9(9), e105092. https://doi.org/10.1371/journal.pone.0105092
  • Doyon, J. K., Hajnal, A., Surber, T., Clark, J. D., & Kelty-Stephen, D. G. (2019). Multifractality of posture modulates multisensory perception of stand-on-ability. PLOS One, 14(2), e0212220. https://doi.org/10.1371/journal.pone.0212220
  • Ducharme, S. W., & van Emmerik, R. E. A. (2019). Multifractality of unperturbed and asymmetric locomotion. Journal of Motor Behavior, 51(4), 394–405. https://doi.org/10.1080/00222895.2018.1490691
  • Ducharme, S. W., & van Emmerik, R. E. A. (2020). The interplay between physical activity and aging in locomotor fractal behavior. Chaos, Solitons & Fractals X, 5, 100045. https://doi.org/10.1016/j.csfx.2020.100045
  • Ducharme, S. W., Liddy, J. J., Haddad, J. M., Busa, M. A., Claxton, L. J., & van Emmerik, R. E. A. (2018). Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking. Human Movement Science, 58, 248–259. https://doi.org/10.1016/j.humov.2018.02.011
  • Dutta, S., Ghosh, D., & Chatterjee, S. (2013). Multifractal detrended fluctuation analysis of human gait diseases. Frontiers in Physiology, 4, 274. https://doi.org/10.3389/fphys.2013.00274
  • Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), R1–R38. https://doi.org/10.1088/0967-3334/23/1/201
  • Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14(2), 180–192. https://doi.org/10.1002/hipo.10173
  • Fitzmaurice, G. M., Laird, N. M., & Ware, G. H. (2012). Applied longitudinal analysis. Wiley.
  • Galica, A. M., Kang, H. G., Priplata, A. A., D’Andrea, S. E., Starobinets, O. V., Sorond, F. A., Cupples, L. A., & Lipsitz, L. A. (2009). Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait & Posture, 30(3), 383–387. https://doi.org/10.1016/j.gaitpost.2009.07.005
  • Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.
  • Gibson, J. J. (1975). Events are perceivable but time is not. In The Study of Time II: Proceedings of the Second Conference of the International Society for the Study of Time Lake Yamanaka-Japan (pp. 295–301). Springer Berlin Heidelberg.
  • Gibson, J. J. (1979). The ecological approach to perception and action. Houghton Mifflin.
  • Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108(1), 33–56. https://doi.org/10.1037/0033-295x.108.1.33
  • Gilden, D. L. (2009). Global model analysis of cognitive variability. Cognitive Science, 33(8), 1441–1467. https://doi.org/10.1111/j.1551-6709.2009.01060.x
  • Gires, A., Tchiguirinskaia, I., & Schertzer, D. (2016). Multifractal comparison of the outputs of two optical disdrometers. Hydrological Sciences Journal, 61(9), 1641–1651. https://doi.org/10.1080/02626667.2015.1055270
  • Giuggioli, L., Viswanathan, G. M., Kenkre, V. M., Parmenter, R. R., & Yates, T. L. (2007). Effects of finite probing windows on the interpretation of the multifractal properties of random walks. Europhysics Letters, 77(4), 40004. https://doi.org/10.1209/0295-5075/77/40004
  • Glazier, J. A., Raghavachari, S., Berthelsen, C. L., & Skolnick, M. H. (1995). Reconstructing phylogeny from the multifractal spectrum of mitochondrial DNA. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 51(3), 2665–2668. https://doi.org/10.1103/PhysRevE.51.2665
  • Gorbushina, A. A., Krumbein, W. E., & Volkmann, M. (2002). Rock surfaces as life indicators: New ways to demonstrate life and traces of former life. Astrobiology, 2(2), 203–213. https://doi.org/10.1089/15311070260192273
  • Gottlieb, G. (2002). On the epigenetic evolution of species-specific perception: The developmental manifold concept. Cognitive Development, 17(3–4), 1287–1300. https://doi.org/10.1016/S0885-2014(02)00120-X
  • Gravelle, D. C., Laughton, C. A., Dhruv, N. T., Katdare, K. D., Niemi, J. B., Lipsitz, L. A., & Collins, J. J. (2002). Noise-enhanced balance control in older adults. Neuroreport, 13(15), 1853–1856. https://doi.org/10.1097/00001756-200210280-00004
  • Gunji, Y.-P., Murakami, H., Niizato, T., Nishiyama, Y., Enomoto, K., Adamatzky, A., Toda, M., Moriyama, T., & Kawai, T. (2020). Robust swarm of Soldier crabs, Mictyris guinotae, based on mutual anticipation. In A. Schumann (Ed.), Swarm intelligence (pp. 62–89). CRC Press.
  • Gutiérrez, E. D., & Cabrera, J. L. (2015). A neural coding scheme reproducing foraging trajectories. Scientific Reports, 5(1), 18009. https://doi.org/10.1038/srep18009
  • Hajnal, A., Clark, J. D., Doyon, J. K., & Kelty-Stephen, D. G. (2018). Fractality of body movements predicts perception of affordances: Evidence from stand-on-ability judgments about slopes. Journal of Experimental Psychology. Human Perception and Performance, 44(6), 836–841. https://doi.org/10.1037/xhp0000510
  • Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356. https://doi.org/10.1007/BF00336922
  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., & Shraiman, B. I. (1986). Fractal measures and their singularities: The characterization of strange sets. Physical Review. A, General Physics, 33(2), 1141–1151. https://doi.org/10.1103/PhysRevA.33.1141
  • Harrison, S. J. (2020). Human odometry with a two-legged hopping gait: A test of the gait symmetry theory. Ecological Psychology, 32(1), 58–78. https://doi.org/10.1080/10407413.2019.1708200
  • Harrison, S. J., & Turvey, M. T. (2009). Load affects human odometry for travelled distance but not straight-line distance. Neuroscience Letters, 462(2), 140–143. https://doi.org/10.1016/j.neulet.2009.07.001
  • Harrison, S. J., & Turvey, M. T. (2010). Place learning by mechanical contact. The Journal of Experimental Biology, 213(Pt 9), 1436–1442. https://doi.org/10.1242/jeb.039404
  • Harrison, S. J., Kuznetsov, N., & Breheim, S. (2013). Flexible kinesthetic distance perception: When do your arms tell you how far you have walked? Journal of Motor Behavior, 45(3), 239–247. https://doi.org/10.1080/00222895.2013.785925
  • Hausdorff, J. M., Rios, D. A., & Edelberg, H. K. (2001). Gait variability and fall risk in community-living older adults: A 1-year prospective study. Archives of Physical Medicine and Rehabilitation, 82(8), 1050–1056. https://doi.org/10.1053/apmr.2001.24893
  • Helmholtz, H. (1962). Treatise on physiological optics (J. P. C. Southall, Trans.). Dover. (Original work published in 1866).
  • Holden, J. G., Van Orden, G. C., & Turvey, M. T. (2009). Dispersion of response times reveals cognitive dynamics. Psychological Review, 116(2), 318–342. https://doi.org/10.1037/a0014849
  • Hove, M. J., & Keller, P. E. (2015). Impaired movement timing in neurological disorders: Rehabilitation and treatment strategies. Annals of the New York Academy of Sciences, 1337(1), 111–117. https://doi.org/10.1111/nyas.12615
  • Hove, M. J., Suzuki, K., Uchitomi, H., Orimo, S., & Miyake, Y. (2012). Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLOS One, 7(3), e32600. https://doi.org/10.1371/journal.pone.0032600
  • Hu, X., Liu, H., Tan, X., Yi, C., Niu, Z., Li, J., & Li, J. (2022). Image recognition-based identification of multifractal features of faults. Frontiers in Earth Science, 10, 909166. https://doi.org/10.3389/feart.2022.909166
  • Ihlen, E. A. F., & Vereijken, B. (2010). Interaction-dominant dynamics in human cognition: Beyond 1/f fluctuation. Journal of Experimental Psychology. General, 139(3), 436–463. https://doi.org/10.1037/a0019098
  • Ikeda, Y., Jurica, P., Kimura, H., Takagi, H., Struzik, Z. R., Kiyono, K., Arata, Y., & Sako, Y. (2020). C. elegans episodic swimming is driven by multifractal kinetics. Scientific Reports, 10(1), 14775. https://doi.org/10.1038/s41598-020-70319-0
  • Iudin, D. I., & Gelashvily, D. B. (2003). Multifractality in ecological monitoring. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 502(2–3), 799–801. https://doi.org/10.1016/S0168-9002(03)00587-4
  • Ivanenko, Y. P., Grasso, R., Israel, I., & Berthoz, A. (1997). The contribution of otoliths and semicircular canals to the perception of two-dimensional passive whole-body motion in humans. The Journal of Physiology, 502(Pt 1), 223–233. https://doi.org/10.1111/j.1469-7793.1997.223bl.x
  • Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum, M. G., Stanley, H. E., & Struzik, Z. R. (2001). From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos, 11(3), 641–652. https://doi.org/10.1063/1.1395631
  • Jacobson, N., Berleman-Paul, Q., Mangalam, M., Kelty-Stephen, D. G., & Ralston, C. (2021). Multifractality in postural sway supports quiet eye training in aiming tasks: A study of golf putting. Human Movement Science, 76, 102752. https://doi.org/10.1016/j.humov.2020.102752
  • Ji, H., Chen, D., Su, X., Fu, Z., & Quan, D. (2022). Spatial multifractal and value characteristics of mine earthquakes under high tectonic stress. Geofluids, 2022, 1–9. https://doi.org/10.1155/2022/4610972
  • Ju, X., Jia, Y., Li, T., Gao, L., & Gan, M. (2021). Morphology and multifractal characteristics of soil pores and their functional implication. CATENA, 196, 104822. https://doi.org/10.1016/j.catena.2020.104822
  • Kafetzopoulos, E., Gouskos, S., & Evangelou, S. N. (1997). 1/f Noise and multifractal fluctuations in rat behavior. Nonlinear Analysis: Theory, Methods & Applications, 30(4), 2007–2013. https://doi.org/10.1016/S0362-546X(96)00233-7
  • Kardan, O., Stier, A. J., Layden, E. A., Choe, K. W., Lyu, M., Zhang, X., Beilock, S. L., Rosenberg, M. D., & Berman, M. G. (2023). Improvements in task performance after practice are associated with scale-free dynamics of brain activity. Network Neuroscience, 7(3), 1129–1152. https://doi.org/10.1162/netn_a_00319
  • Kaye, B. H. (1987). Fineparticle characterization aspects of predictions affecting the efficiency of microbiological mining techniques. Powder Technology, 50(3), 177–191. https://doi.org/10.1016/0032-5910(87)80063-3
  • Kello, C. T., Anderson, G. G., Holden, J. G., & Van Orden, G. C. (2008). The pervasiveness of 1/f scaling in speech reflects the metastable basis of cognition. Cognitive Science, 32(7), 1217–1231. https://doi.org/10.1080/03640210801944898
  • Kelty-Stephen, D. G. (2018). Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data. PLOS One, 13(8), e0202367. https://doi.org/10.1371/journal.pone.0202367
  • Kelty-Stephen, D. G., Palatinus, K., Saltzman, E., & Dixon, J. A. (2013). A tutorial on multifractality, cascades, and interactivity for empirical time series in ecological science. Ecological Psychology, 25(1), 1–62. https://doi.org/10.1080/10407413.2013.753804
  • Kelty-Stephen, D. G., & Dixon, J. A. (2013a). Notes on a journey from symbols to multifractals: A tribute to Guy Van Orden. Ecological Psychology, 25(3), 204–211. https://doi.org/10.1080/10407413.2013.810469
  • Kelty-Stephen, D. G., & Dixon, J. A. (2013b). Temporal correlations in postural sway moderate effects of stochastic resonance on postural stability. Human Movement Science, 32(1), 91–105. https://doi.org/10.1016/j.humov.2012.08.006
  • Kelty-Stephen, D. G., & Dixon, J. A. (2014). Interwoven fluctuations in intermodal perception: Fractality in head-sway supports the use of visual feedback in haptic perceptual judgments by manual wielding. Journal of Experimental Psychology. Human Perception and Performance, 40(6), 2289–2309. https://doi.org/10.1037/a0038159
  • Kelty-Stephen, D. G., & Mangalam, M. (2022). Turing’s cascade instability supports the coordination of the mind, brain, and behavior. Neuroscience and Biobehavioral Reviews, 141, 104810. https://doi.org/10.1016/j.neubiorev.2022.104810
  • Kelty-Stephen, D. G., & Wallot, S. (2017). Multifractality versus (mono)fractality evidence of nonlinear interactions across time scales: Disentangling the belief in nonlinearity from the diagnosis of nonlinearity in empirical data. Ecological Psychology, 29(4), 259–299. https://doi.org/10.1080/10407413.2017.1368355
  • Kelty-Stephen, D. G., Furmanek, M. P., & Mangalam, M. (2021). Multifractality distinguishes reactive from proactive cascades in postural control. Chaos, Solitons, & Fractals, 142, 110471. https://doi.org/10.1016/j.chaos.2020.110471
  • Kelty-Stephen, D. G., Lane, E., Bloomfield, L., & Mangalam, M. (2022). Multifractal test for nonlinearity of interactions across scales in time series. Behavior Research Methods, 55(5), 2249–2282. https://doi.org/10.3758/s13428-022-01866-9
  • Kelty-Stephen, D. G., Lee, I.-C., Carver, N. S., Newell, K., & Mangalam, M. (2021). Multifractal roots of suprapostural dexterity. Human Movement Science, 76, 102771. https://doi.org/10.1016/j.humov.2021.102771
  • Kelty-Stephen, D. G., Lee, J. H., Cole, K. R., Shields, R. K., & Mangalam, M. (2023). Multifractal nonlinearity moderates feedforward and feedback responses to suprapostural perturbations. Perceptual and Motor Skills, 130(2), 622–657. https://doi.org/10.1177/00315125221149147
  • Kelty-Stephen, D. G., Stirling, L. A., & Lipsitz, L. A. (2016). Multifractal temporal correlations in circle-tracing behaviors are associated with the executive function of rule-switching assessed by the Trail Making Test. Psychological Assessment, 28(2), 171–180. https://doi.org/10.1037/pas0000177
  • Kerman, B. R., & Dernier, L. (1994). Multifractal representation of breaking waves on the ocean surface. Journal of Geophysical Research: Oceans, 99(C8), 16179–16196. https://doi.org/10.1029/94JC00590
  • Kolahi-Azar, A. P., & Golriz, S. (2018). Multifractal topography: A tool to measure tectonic complexity in the Zagros Mountain range. Mathematical Geosciences, 50(4), 431–445. https://doi.org/10.1007/s11004-017-9720-z
  • Koorehdavoudi, H., Bogdan, P., Wei, G., Marculescu, R., Zhuang, J., Carlsen, R. W., & Sitti, M. (2017). Multi-fractal characterization of bacterial swimming dynamics: A case study on real and simulated Serratia marcescens. Proceedings of Mathematical, Physical, and Engineering Sciences, 473(2203), 20170154. https://doi.org/10.1098/rspa.2017.0154
  • Koslucher, F., Munafo, J., & Stoffregen, T. A. (2016). Postural sway in men and women during nauseogenic motion of the illuminated environment. Experimental Brain Research, 234(9), 2709–2720. https://doi.org/10.1007/s00221-016-4675-8
  • Kravchenko, A., Chun, H. C., Mazer, M., Wang, W., Rose, J. B., Smucker, A., & Rivers, M. (2013). Relationships between intra-aggregate pore structures and distributions of Escherichia coli within soil macro-aggregates. Applied Soil Ecology, 63, 134–142. https://doi.org/10.1016/j.apsoil.2012.10.001
  • Kugler, P. N., & Turvey, M. T. (1987). Information, natural law, and the self-assembly of rhythmic movement. Erlbaum.
  • Kugler, P. N., Shaw, R. E., Vincente, K. J., & Kinsella-Shaw, J. (1990). Inquiry into intentional systems I: Issues in ecological physics. Psychological Research, 52(2–3), 98–121. https://doi.org/10.1007/BF00877518
  • Kusák, M. (2022). Application of fractal and multifractal analysis on Blue Nile drainage patterns in the morphostructural analysis of the Ethiopian highlands, Ethiopia. Progress in Physical Geography: Earth and Environment, 46(3), 357–370. https://doi.org/10.1177/03091333211059419
  • Kuznetsov, N. A., & Wallot, S. (2011). Effects of accuracy feedback on fractal characteristics of time estimation. Frontiers in Integrative Neuroscience, 5, 62. https://doi.org/10.3389/fnint.2011.00062
  • Landais, F., Schmidt, F., & Lovejoy, S. (2019). Multifractal topography of several planetary bodies in the solar system. Icarus, 319, 14–20. https://doi.org/10.1016/j.icarus.2018.07.005
  • Latash, M. L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217(1), 1–5. https://doi.org/10.1007/s00221-012-3000-4
  • Latash, M. L. (2020). On primitives in motor control. Motor Control, 24(2), 318–346. https://doi.org/10.1123/mc.2019-0099
  • Latash, M. L., Scholz, J. P., & Schöner, G. (2002). Motor control strategies revealed in the structure of motor variability. Exercise and Sport Sciences Reviews, 30(1), 26–31. https://doi.org/10.1097/00003677-200201000-00006
  • Lee, J. T., & Kelty-Stephen, D. G. (2017). Cascade-driven series with narrower multifractal spectra than their surrogates: Standard deviation of multipliers changes interactions across scales. Complexity, 2017, 1–8. https://doi.org/10.1155/2017/7015243
  • Li, B. L., Loehle, C., & Malon, D. (1996). Microbial transport through heterogeneous porous media: Random walk, fractal, and percolation approaches. Ecological Modelling, 85(2–3), 285–302. https://doi.org/10.1016/0304-3800(94)00198-7
  • Ligges, U., Krey, S., Mersmann, O., Schnackenberg, S. (2018). tuneR: Analysis of music and speech. Retrieved from https://CRAN.R-project.org/package=tuneR
  • Likens, A. D., Fine, J. M., Amazeen, E. L., & Amazeen, P. G. (2015). Experimental control of scaling behavior: What is not fractal? Experimental Brain Research, 233(10), 2813–2821. https://doi.org/10.1007/s00221-015-4351-4
  • Likens, A. D., Kent, J. A., Sloan, C. I., Wurdeman, S. R., & Stergiou, N. (2020). Stochastic resonance reduces sway and gait variability in individuals with unilateral transtibial amputation: A pilot study. Frontiers in Physiology, 11, 573700. https://doi.org/10.3389/fphys.2020.573700
  • Lin, J., Zhou, X., Lu, X., Xu, Y., Wei, Z., & Ruan, A. (2023). Grain size distribution drives microbial communities vertically assemble in nascent lake sediments. Environmental Research, 227, 115828. https://doi.org/10.1016/j.envres.2023.115828
  • Linkenkaer-Hansen, K., Nikulin, V. V., Palva, J. M., Kaila, K., & Ilmoniemi, R. J. (2004). Stimulus-induced change in long-range temporal correlations and scaling behaviour of sensorimotor oscillations. The European Journal of Neuroscience, 19(1), 203–211. https://doi.org/10.1111/j.1460-9568.2004.03116.x
  • Lipsitz, L. A. (2002). Dynamics of stability: The physiologic basis of functional health and frailty. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57(3), B115–B125. https://doi.org/10.1093/gerona/57.3.B115
  • Lipsitz, L. A., & Goldberger, A. L. (1992). Loss of “complexity” and aging: Potential applications of fractals and chaos theory to senescence. JAMA, 267(13), 1806–1809. https://doi.org/10.1001/jama.1992.03480130122036
  • Lipsitz, L. A., Lough, M., Niemi, J., Travison, T., Howlett, H., & Manor, B. (2015). A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Archives of Physical Medicine and Rehabilitation, 96(3), 432–439. https://doi.org/10.1016/j.apmr.2014.10.004
  • Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 906–921. https://doi.org/10.1037/0096-1523.18.4.906
  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology. General, 122(1), 73–91. https://doi.org/10.1037//0096-3445.122.1.73
  • Lovejoy, S., & Schertzer, D. (2018). The weather and climate: Emergent laws and multifractal cascades. Cambridge University Press.
  • Lovejoy, S., Watson, B. P., Grosdidier, Y., & Schertzer, D. (2009). Scattering in thick multifractal clouds, part II: Multiple scattering. Physica A: Statistical Mechanics and Its Applications, 388(18), 3711–3727. https://doi.org/10.1016/j.physa.2009.05.037
  • Lutkepohl, H. (2013). Introduction to multiple time series analysis. Springer.
  • Maki, B. E., Holliday, P. J., & Topper, A. K. (1994). A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. Journal of Gerontology, 49(2), M72–M84. https://doi.org/10.1093/geronj/49.2.M72
  • Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62(2), 331–358. https://doi.org/10.1017/S0022112074000711
  • Mandelbrot, B. B. (1999). Multifractals and 1/f noise. Springer-Verlag.
  • Mangalam, M., Carver, N. S., & Kelty-Stephen, D. G. (2020a). Global broadcasting of local fractal fluctuations in a bodywide distributed system supports perception via effortful touch. Chaos, Solitons & Fractals, 135, 109740. https://doi.org/10.1016/j.chaos.2020.109740
  • Mangalam, M., Carver, N. S., & Kelty-Stephen, D. G. (2020b). Multifractal signatures of perceptual processing on anatomical sleeves of the human body. Journal of the Royal Society, Interface, 17(168), 20200328. https://doi.org/10.1098/rsif.2020.0328
  • Mangalam, M., Chen, R., McHugh, T. R., Singh, T., & Kelty-Stephen, D. G. (2020). Bodywide fluctuations support manual exploration: Fractal fluctuations in posture predict perception of heaviness and length via effortful touch by the hand. Human Movement Science, 69, 102543. https://doi.org/10.1016/j.humov.2019.102543
  • Mangalam, M., Kelty-Stephen, D. G., Sommerfeld, J., Stergiou, N., & Likens, A. (2023). Temporal organization of stride-to-stride variations contradicts predictive models for sensorimotor control of footfalls during walking. PLOS One, 18(8), e0290324. https://doi.org/10.1371/journal.pone.0290324
  • Mangalam, M., Metzler, R., & Kelty-Stephen, D. G. (2023). Ergodic characterization of non-ergodic anomalous diffusion processes. Physical Review Research, 5(2), 023144. https://doi.org/10.1103/PhysRevResearch.5.023144
  • Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology. Human Perception and Performance, 13(3), 361–370. https://doi.org/10.1037/0096-1523.13.3.361
  • Mark, L. S., Balliett, J. A., Craver, K. D., Douglas, S. D., & Fox, T. (1990). What an actor must do in order to perceive the affordance for sitting. Ecological Psychology, 2(4), 325–366. https://doi.org/10.1207/s15326969eco0204_2
  • Márquez-Rámirez, V. H., Nava Pichardo, F. A., & Reyes-Dávila, G. (2012). Multifractality in seismicity spatial distributions: Significance and possible precursory applications as found for two cases in different tectonic environments. Pure and Applied Geophysics, 169(12), 2091–2105. https://doi.org/10.1007/s00024-012-0473-9
  • Martín, M. Á., & Montero, E. (2002). Laser diffraction and multifractal analysis for the characterization of dry soil volume-size distributions. Soil and Tillage Research, 64(1–2), 113–123. https://doi.org/10.1016/S0167-1987(01)00249-5
  • Martinez-Conde, S., Otero-Millan, J., & Macknik, S. (2013). The impact of microsaccades on vision: Towards a unified theory of saccadic function. Nature Reviews. Neuroscience, 14(2), 83–96. https://doi.org/10.1038/nrn3405
  • Martinez-Garcia, R., Tarnita, C. E., & Bonachela, J. A. (2022). Spatial patterns in ecological systems: From microbial colonies to landscapes. Emerging Topics in Life Sciences, 6(3), 245–258. https://doi.org/10.1042/ETLS20210282
  • McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M. B. (2006). Path integration and the neural basis of the “cognitive map”. Nature Reviews. Neuroscience, 7(8), 663–678. https://doi.org/10.1038/nrn1932
  • Meade, Z. S., Likens, A. D., Kent, J. A., Takahashi, K. Z., Wurdeman, S. R., Jacobsen, A. L., Hernandez, M. E., & Stergiou, N. (2022). Subthreshold vibration influences standing balance but has unclear impact on somatosensation in persons with transtibial amputations. Frontiers in Physiology, 13, 810079. https://doi.org/10.3389/fphys.2022.810079
  • Melia, F. (2023). The scale of homogeneity in the R h = ct universe. Monthly Notices of the Royal Astronomical Society, 525(3), 3248–3253. https://doi.org/10.1093/mnras/stad2496
  • Michaels, C. F., & Carello, C. (1981). Direct perception. Prentice Hall.
  • Miranda, D. L., Hsu, W. H., Gravelle, D. C., Petersen, K., Ryzman, R., Niemi, J., & Lesniewski-Laas, N. (2016). Sensory enhancing insoles improve athletic performance during a hexagonal agility task. Journal of Biomechanics, 49(7), 1058–1063. https://doi.org/10.1016/j.jbiomech.2016.02.022
  • Morales, C. J., & Kolaczyk, E. D. (2002). Wavelet-based multifractal analysis of human balance. Annals of Biomedical Engineering, 30(4), 588–597. https://doi.org/10.1114/1.1478082
  • Munafo, J., Curry, C., Wade, M. G., & Stoffregen, T. A. (2016). The distance of visual targets affects the spatial magnitude and multifractal scaling of standing body sway in younger and older adults. Experimental Brain Research, 234(9), 2721–2730. https://doi.org/10.1007/s00221-016-4676-7
  • Munafo, J., Wade, M. G., Stergiou, N., & Stoffregen, T. A. (2016). The rim and the ancient mariner: The nautical horizon affects postural sway in older adults. PLOS One, 11(12), e0166900. https://doi.org/10.1371/journal.pone.0166900
  • Muñoz-Diosdado, A. (2005). A nonlinear analysis of human gait time series based on multifractal analysis and cross correlations. Journal of Physics: Conference Series, 23, 87–95. https://doi.org/10.1088/1742-6596/23/1/010
  • Munoz-Diosdado, A., del Rio Correa, J. L., & Brown, A. F. (2003). Multifractality in time series of human gait. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 2, pp. 1792–1795). https://doi.org/10.1109/IEMBS.2003.1279763
  • Nouri, R., Jafari, M. R., Arian, M., Feizi, F., & Afzal, P. (2013). Correlation between Cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran). Geologica Carpathica, 64(5), 409–416. https://doi.org/10.2478/geoca-2013-0028
  • Nozaki, D., Collins, J. J., & Yamamoto, Y. (1999). Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60(4 Pt B), 4637–4644. https://doi.org/10.1103/PhysRevE.60.4637
  • O’Brien, B. A., & Wallot, S. (2016). Silent reading fluency and comprehension in bilingual children. Frontiers in Psychology, 7, 1265. https://doi.org/10.3389/fpsyg.2016.01265
  • Olthof, M., Hasselman, F., & Lichtwarck-Aschoff, A. (2020). Complexity in psychological self-ratings: Implications for research and practice. BMC Medicine, 18(1), 317. https://doi.org/10.1186/s12916-020-01727-2
  • Olthof, M., Hasselman, F., Wijnants, M., & Lichtwarck-Aschoff, A. (2020). Psychological dynamics are complex: A comparison of scaling, variance, and dynamic complexity in simulated and observed data. In K. Viol, H. Schöller, & W. Aichhorn (Eds.), Selbstorganisation – ein Paradigma für die Humanwissenschaften (pp. 303–316). Springer. https://doi.org/10.1007/978-3-658-29906-4_17
  • Otsuka, K., Cornélissen, G., & Halberg, F. (1997). Circadian rhythmic fractal scaling of heart rate variability in health and coronary artery disease. Clinical Cardiology, 20(7), 631–638. https://doi.org/10.1002/clc.4960200710
  • Owings, T. M., & Grabiner, M. D. (2004). Variability of step kinematics in young and older adults. Gait & Posture, 20(1), 26–29. https://doi.org/10.1016/S0966-6362(03)00088-2
  • Palatinus, Z., Dixon, J. A., & Kelty-Stephen, D. G. (2013). Fractal fluctuations in quiet standing predict the use of mechanical information for haptic perception. Annals of Biomedical Engineering, 41(8), 1625–1634. https://doi.org/10.1007/s10439-012-0706-1
  • Palatinus, Z., Kelty-Stephen, D. G., Kinsella-Shaw, J., Carello, C., & Turvey, M. T. (2014). Haptic perceptual intent in quiet standing affects multifractal scaling of postural fluctuations. Journal of Experimental Psychology. Human Perception and Performance, 40(5), 1808–1818. https://doi.org/10.1037/a0037247
  • Pattee, H. H. (1979). The complementarity principle and the origin of macromolecular information. Bio Systems, 11(2–3), 217–226. https://doi.org/10.1016/0303-2647(79)90013-3
  • Pattee, H. H. (2013). Epistemic, evolutionary, and physical conditions for biological information. Biosemiotics, 6(1), 9–31. https://doi.org/10.1007/s12304-012-9150-8
  • Pavlov, A. N., Semyachkina-Glushkovskaya, O. V., Lychagov, V. V., Abdurashitov, A. S., Pavlova, O. N., Sindeeva, O. A., & Sindeev, S. S. (2015). Multifractal characterization of cerebrovascular dynamics in newborn rats. Chaos, Solitons & Fractals, 77, 6–10. https://doi.org/10.1016/j.chaos.2015.04.011
  • Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 49(2), 1685–1689. https://doi.org/10.1103/PhysRevE.49.1685
  • Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5(1), 82–87. https://doi.org/10.1063/1.166141
  • Perakakis, P., Taylor, M., Martinez-Nieto, E., Revithi, I., & Vila, J. (2009). Breathing frequency bias in fractal analysis of heart rate variability. Biological Psychology, 82(1), 82–88. https://doi.org/10.1016/j.biopsycho.2009.06.004
  • Pinel-Alloul, B., & Ghadouani, A. (2007). Spatial heterogeneity of planktonic microorganisms In aquatic systems. In R. B. Franklin & A. L. Mills (Eds), The spatial distribution of microbes in the environment (pp. 203–310). Springer. https://doi.org/10.1007/978-1-4020-6216-2_8
  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. Springer. https://doi.org/10.1007/b98882
  • Pinheiro, J., Bates, D., & R Core Team (2022). nlme: Linear and nonlinear mixed effects models. R package version 3.1-160. Retrieved from https://CRAN.R-project.org/package=nlme
  • Pittman-Polletta, B. R., Scheer, F. A., Butler, M. P., Shea, S. A., & Hu, K. (2013). The role of the circadian system in fractal neurophysiological control. Biological Reviews of the Cambridge Philosophical Society, 88(4), 873–894. https://doi.org/10.1111/brv.12032
  • Plotnick, R. E., & Sepkoski, J. J. (2001). A multiplicative multifractal model for originations and extinctions. Paleobiology, 27(1), 126–139. https://doi.org/10.1666/0094-8373(2001)0272.0.CO;2
  • Priplata, A. A., Niemi, J. B., Harry, J. D., Lipsitz, L. A., & Collins, J. J. (2003). Vibrating insoles and balance control in elderly people. Lancet, 362(9390), 1123–1124. https://doi.org/10.1016/S0140-6736(03)14470-4
  • Priplata, A. A., Patritti, B. L., Niemi, J. B., Hughes, R., Gravelle, D. C., Lipsitz, L. A., Veves, A., Stein, J., Bonato, P., & Collins, J. J. (2006). Noise enhanced balance control in patients with diabetes and patients with stroke. Annals of Neurology, 59(1), 4–12. https://doi.org/10.1002/ana.20670
  • Priplata, A., Niemi, J., Salen, M., Harry, J., Lipsitz, L. A., & Collins, J. J. (2002). Noise-enhanced human balance control. Physical Review Letters, 89(23), 238101. https://doi.org/10.1103/PhysRevLett.89.238101
  • Pritchard, R. M., Heron, W., & Hebb, D. O. (1960). Visual perception approached by the method of stabilized images. Canadian Journal of Psychology, 14(2), 67–77. https://doi.org/10.1037/h0083168
  • Profeta, V. L., & Turvey, M. T. (2018). Bernstein’s levels of movement construction: A contemporary perspective. Human Movement Science, 57, 111–133. https://doi.org/10.1016/j.humov.2017.11.013
  • Qiu, H., & Xiong, S. (2015). Center-of-pressure based postural sway measures: Reliability and ability to distinguish between age, fear of falling and fall history. International Journal of Industrial Ergonomics, 47, 37–44. https://doi.org/10.1016/j.ergon.2015.02.004
  • R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  • Raffalt, P. C., Sommerfeld, J. H., Stergiou, N., & Likens, A. D. (2022). Stride-to-stride time intervals are independently affected by the temporal pattern and probability distribution of visual cues. Neuroscience Letters, 792, 136909. https://doi.org/10.1016/j.neulet.2022.136909
  • Raffalt, P. C., Stergiou, N., Sommerfeld, J. H., & Likens, A. D. (2021). The temporal pattern and the probability distribution of visual cueing can alter the structure of stride-to-stride variability. Neuroscience Letters, 763, 136193. https://doi.org/10.1016/j.neulet.2021.136193
  • Rhea, C. K., Kiefer, A. W., D’Andrea, S. E., Warren, W. H., & Aaron, R. K. (2014). Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics. Human Movement Science, 36, 20–34. https://doi.org/10.1016/j.humov.2014.04.006
  • Rhea, C. K., Kiefer, A. W., Wittstein, M. W., Leonard, K. B., MacPherson, R. P., Wright, W. G., & Haran, F. J. (2014). Fractal gait patterns are retained after entrainment to a fractal stimulus. PLOS One, 9(9), e106755. https://doi.org/10.1371/journal.pone.0106755
  • Riggs, L. A., & Ratliff, F. (1952). The effects of counteracting the normal movements of the eye. Journal of the Optical Society of America, 42, 872–873.
  • Riggs, L. A., Ratliff, F., Cornsweet, J. C., & Cornsweet, T. N. (1953). The disappearance of steadily fixated visual test objects. Journal of the Optical Society of America, 43(6), 495–501. https://doi.org/10.1364/JOSA.43.000495
  • Rodger, M. W. M., & Craig, C. M. (2016). Beyond the metronome: Auditory events and music may afford more than just interval durations as gait cues in Parkinson’s disease. Frontiers in Neuroscience, 10, 272. https://doi.org/10.3389/fnins.2016.00272
  • Roeske, T. C., Kelty-Stephen, D., & Wallot, S. (2018). Multifractal analysis reveals music-like dynamic structure in songbird rhythms. Scientific Reports, 8(1), 4570. https://doi.org/10.1038/s41598-018-22933-2
  • Roy, P. N. S., & Mondal, S. K. (2012). Multifractal analysis of earthquakes in Kumaun Himalaya and its surrounding region. Journal of Earth System Science, 121(4), 1033–1047. https://doi.org/10.1007/s12040-012-0208-4
  • Saltzman, E. L., & Munhall, K. G. (1992). Skill acquisition and development: The roles of state-, parameter-, and graph-dynamics. Journal of Motor Behavior, 24(1), 49–57. https://doi.org/10.1080/00222895.1992.9941600
  • Scafetta, N., Griffin, L., & West, B. J. (2003). Hölder exponent spectra for human gait. Physica A: Statistical Mechanics and Its Applications. 328(3–4), 561–583. https://doi.org/10.1016/S0378-4371(03)00527-2
  • Scafetta, N., Marchi, D., & West, B. J. (2009). Understanding the complexity of human gait dynamics. Chaos, 19(2), 026108. https://doi.org/10.1063/1.3143035
  • Scafetta, N., Moon, R. E., & West, B. J. (2007). Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases. Complexity, 12(5), 12–17. https://doi.org/10.1002/cplx.20183
  • Schertzer, D., & Lovejoy, S. (1985). Generalised scale invariance in turbulent phenomena. PhysicoChemical Hydrodynamics, 6(5–6), 623–635.
  • Schmitt, F. G., & Seuront, L. (2001). Multifractal random walk in copepod behavior. Physica A: Statistical Mechanics and Its Applications, 301(1–4), 375–396. https://doi.org/10.1016/S0378-4371(01)00429-0
  • Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical Review Letters, 77(4), 635–638. https://doi.org/10.1103/PhysRevLett.77.635
  • Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena. 142(3–4), 346–382. https://doi.org/10.1016/S0167-2789(00)00043-9
  • Seaton, F. M., George, P. B., Lebron, I., Jones, D. L., Creer, S., & Robinson, D. A. (2020). Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144, 107766. https://doi.org/10.1016/j.soilbio.2020.107766
  • Seuront, L. (2015). When complexity rimes with sanity: Loss of fractal and multifractal behavioural complexity as an indicator of sublethal contaminations in zooplankton. In Marine Productivity: Perturbations and Resilience of Socio-ecosystems: Proceedings of the 15th French-Japanese Oceanography Symposium (pp. 129–137). Springer International Publishing. https://doi.org/10.1007/978-3-319-13878-7_14
  • Seuront, L., & Stanley, H. E. (2014). Anomalous diffusion and multifractality enhance mating encounters in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2206–2211. https://doi.org/10.1073/pnas.1322363111
  • Seuront, L., Schmitt, F. G., Brewer, M. C., Strickler, J. R., & Souissi, S. (2004). From random walk to multifractal random walk in zooplankton swimming behavior. Zoological Studies, 43, 498–510.
  • Sgrignuoli, F., Chen, Y., Gorsky, S., Britton, W. A., & Dal Negro, L. (2021). Optical rogue waves in multifractal photonic arrays. Physical Review B, 103(19), 195403. https://doi.org/10.1103/PhysRevB.103.195403
  • Shayeganfar, F., Jabbari-Farouji, S., Movahed, M. S., Jafari, G. R., & Tabar, M. R. R. (2009). Multifractal analysis of light scattering-intensity fluctuations. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 80(6 Pt 1), 061126. https://doi.org/10.1103/PhysRevE.80.06112
  • Simon, H. A. (1969). The sciences of the artificial. The MIT Press.
  • Singer, J. D., & Willett, J. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. Oxford University Press.
  • Slifkin, A. B., & Eder, J. R. (2023). Visual feedback modulates the 1/f structure of movement amplitude time series. PLOS One, 18(10), e0287571. https://doi.org/10.1371/journal.pone.0287571
  • Smucker, A. J., Wang, W., Kravchenko, A. N., & Dick, W. A. (2010). Forms and functions of meso and micro-niches of carbon within soil aggregates. Journal of Nematology, 42(1), 84–86.
  • Sotirakis, H., Patikas, D., Stergiou, N., & Hatzitaki, V. (2020). Swaying to the complex motion of a visual target affects postural sway variability. Gait & Posture, 77, 125–131. https://doi.org/10.1016/j.gaitpost.2020.01.026
  • Spiridonov, A., & Lovejoy, S. (2023). Scaling in the evolution of biodiversity. Biological Theory, 18(1), 1–6. https://doi.org/10.1007/s13752-022-00427-9
  • Stephen, D. G., & Hajnal, A. (2011). Transfer of calibration between hand and foot: Functional equivalence and fractal fluctuations. Attention, Perception & Psychophysics, 73(5), 1302–1328. https://doi.org/10.3758/s13414-011-0142-6
  • Stephen, D. G., Arzamarski, R., & Michaels, C. F. (2010). The role of fractality in perceptual learning: Exploration in dynamic touch. Journal of Experimental Psychology. Human Perception and Performance, 36(5), 1161–1173. https://doi.org/10.1037/a0019219
  • Stephen, D. G., & Dixon, J. A. (2011). Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos, Solitons & Fractals, 44(1–3), 160–168. https://doi.org/10.1016/j.chaos.2011.01.005
  • Stephen, D. G., Hsu, W.-H., Young, D., Saltzman, E., Holt, K. G., Newman, D. J., Weinberg, M., Wood, R. J., Nagpal, R., & Goldfield, E. C. (2012). Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination. Chaos, Solitons, & Fractals, 45(9–10), 1201–1219. https://doi.org/10.1016/j.chaos.2012.06.005
  • Stepp, N., & Turvey, M. T. (2015). The muddle of anticipation. Ecological Psychology, 27(2), 103–126. https://doi.org/10.1080/10407413.2015.1027123
  • Stoffregen, T. A., Giveans, M. R., Villard, S. J., & Shockley, K. (2013). Effects of visual tasks and conversational partner on personal and interpersonal postural activity. Ecological Psychology, 25(2), 103–130. https://doi.org/10.1080/10407413.2013.753806
  • Stoffregen, T. A., Mantel, B., & Bardy, B. G. (2017). The senses considered as one perceptual system. Ecological Psychology, 29(3), 165–197. https://doi.org/10.1080/10407413.2017.1331116
  • Telesca, L., Haro-Pérez, C., Moreno-Torres, L. R., & Ramirez-Rojas, A. (2018). Multifractal detrended fluctuation analysis of intensity time series of photons scattered by tracer particles within a polymeric gel. Physica A: Statistical Mechanics and Its Applications, 490, 994–1003. https://doi.org/10.1016/j.physa.2017.08.080
  • Telesca, L., Lapenna, V., Vallianatos, F., Makris, J., & Saltas, V. (2004). Multifractal features in short-term time dynamics of ULF geomagnetic field measured in Crete, Greece. Chaos, Solitons & Fractals, 21(2), 273–282. https://doi.org/10.1016/j.chaos.2003.10.020
  • Teng, D. W., Eddy, C. L., & Kelty-Stephen, D. G. (2016). Non-visually-guided distance perception depends on matching torso fluctuations between training and test. Attention, Perception & Psychophysics, 78(8), 2320–2328. https://doi.org/10.3758/s13414-016-1213-5
  • Togo, F., & Yamamoto, Y. (2001). Decreased fractal component of human heart rate variability during non-REM sleep. American Journal of Physiology. Heart and Circulatory Physiology, 280(1), H17–H21. https://doi.org/10.1152/ajpheart.2001.280.1.H17
  • Trevino, J., Liew, S. F., Noh, H., Cao, H., & Dal Negro, L. (2012). Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals. Optics Express, 20(3), 3015–3033. https://doi.org/10.1364/OE.20.003015
  • Turvey, M. T., & Fonseca, S. T. (2014). The medium of haptic perception: A tensegrity hypothesis. Journal of Motor Behavior, 46(3), 143–187. https://doi.org/10.1080/00222895.2013.798252
  • Turvey, M. T., & Shaw, R. E. (1999). Ecological foundations of cognition. I: Symmetry and specificity of animal-environment systems. Journal of Consciousness Studies, 6(11–12), 95–110.
  • Turvey, M. T., Romaniak-Gross, C., Isenhower, R. W., Arzamarski, R., Harrison, S., & Carello, C. (2009). Human odometer is gait-symmetry specific. Proceedings. Biological Sciences, 276(1677), 4309–4314. https://doi.org/10.1098/rspb.2009.1134
  • Turvey, M. T., Shaw, R. E., Reed, E. S., & Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9(3), 237–304. https://doi.org/10.1016/0010-0277(81)90002-0
  • Uchitomi, H., Ota, L., Ogawa, K., Orimo, S., & Miyake, Y. (2013). Interactive rhythmic cue facilitates gait relearning in patients with Parkinson’s disease. PLOS One, 8(9), e72176. https://doi.org/10.1371/journal.pone.0072176
  • Urgilez-Clavijo, A., de la Riva, J., Rivas‐Tabares, D. A., & Tarquis, A. M. (2021). Linking deforestation patterns to soil types: A multifractal approach. European Journal of Soil Science, 72(2), 635–655. https://doi.org/10.1111/ejss.13032
  • Valdez, A. B., & Amazeen, E. L. (2008). Using 1/f noise to examine planning and control in a discrete aiming task. Experimental Brain Research, 187(2), 303–319. https://doi.org/10.1007/s00221-008-1305-0
  • Van Orden, G. (2010). Voluntary performance. Medicina, 46(9), 581. https://doi.org/10.3390/medicina46090083
  • Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology. General, 132(3), 331–350. https://doi.org/10.1037/0096-3445.132.3.331
  • Vantuch, T., Zelinka, I., Adamatzky, A., & Marwan, N. (2019). Perturbations and phase transitions in swarm optimization algorithms. Natural Computing, 18(3), 579–591. https://doi.org/10.1007/s11047-019-09741-x
  • Vaz, D. V. (2015). Direct perception requires an animal-dependent concept of specificity and of information. Ecological Psychology, 27(2), 144–174. https://doi.org/10.1080/10407413.2015.1027128
  • Vaz, J. R., Knarr, B. A., & Stergiou, N. (2020). Gait complexity is acutely restored in older adults when walking to a fractal-like visual stimulus. Human Movement Science, 74, 102677. https://doi.org/10.1016/j.humov.2020.102677
  • Vaz, J. R., Rand, T., Fujan-Hansen, J., Mukherjee, M., & Stergiou, N. (2020). Auditory and visual external cues have different effects on spatial but similar effects on temporal measures of gait variability. Frontiers in Physiology, 11, 67. https://doi.org/10.3389/fphys.2020.00067
  • Veneziano, D., Moglen, G. E., & Bras, R. L. (1995). Multifractal analysis: Pitfalls of standard procedures and alternatives. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 52(2), 1387–1398. https://doi.org/10.1103/PhysRevE.52.1387
  • Wallot, S., & Van Orden, G. (2011). Toward a lifespan metric of reading fluency. International Journal of Bifurcation and Chaos, 21(4), 1173–1192. https://doi.org/10.1142/S0218127411028982
  • Wallot, S., O’Brien, B., Coey, C. A., & Kelty-Stephen, D. G. (2015). Power-law fluctuations in eye movements predict text comprehension during connected text reading. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (pp. 2583–2588). Cognitive Science Society.
  • Ward, R. M., & Kelty-Stephen, D. G. (2018). Bringing the nonlinearity of the movement system to gestural theories of language use: Multifractal structure of spoken English supports the compensation for coarticulation in human speech perception. Frontiers in Physiology, 9, 1152. https://doi.org/10.3389/fphys.2018.01152
  • Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology. Human Perception and Performance, 10(5), 683–703. https://doi.org/10.1037/0096-1523.10.5.683
  • Warren, W. H.Jr., Young, D. S., & Lee, D. N. (1986). Visual control of step length during running over irregular terrain. Journal of Experimental Psychology. Human Perception and Performance, 12(3), 259–266. https://doi.org/10.1037/0096-1523.12.3.259
  • Warren, W. H., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology. Human Perception and Performance, 13(3), 371–383. https://doi.org/10.1037/0096-1523.13.3.371
  • Watson, B. P., Lovejoy, S., Grosdidier, Y., & Schertzer, D. (2009). Scattering in thick multifractal clouds, part I: Overview and single scattering. Physica A: Statistical Mechanics and Its Applications, 388(18), 3695–3710. https://doi.org/10.1016/j.physa.2009.05.038
  • Wei, K., Zhang, Y., & Luo, Y. (2018). Variance-mediated multifractal analysis of group participation in chasing a single dangerous prey. Physica A: Statistical Mechanics and Its Applications, 503, 1275–1287. https://doi.org/10.1016/j.physa.2018.08.071
  • West, B. J. (2010). Fractal physiology and the fractional calculus: A perspective. Frontiers in Physiology, 1, 12. https://doi.org/10.3389/fphys.2010.00012
  • West, B. J., & Scafetta, N. (2003). Nonlinear dynamical model of human gait. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 67(5 Pt 1), 051917. https://doi.org/10.1103/PhysRevE.67.051917
  • Wiersig, J., & Main, J. (2008). Fractal Weyl law for chaotic microcavities: Fresnel’s laws imply multifractal scattering. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 77(3 Pt 2), 036205. https://doi.org/10.1103/PhysRevE.77.036205
  • Xue, C., Liu, Z., & Goldenfeld, N. (2020). Scale-invariant topology and bursty branching of evolutionary trees emerge from niche construction. Proceedings of the National Academy of Sciences of the United States of America, 117(14), 7879–7887. https://doi.org/10.1073/pnas.1915088117
  • Yakimov, B. N., Iudin, D. I., Solntsev, L. A., & Gelashvili, D. B. (2014). Multifractal analysis of neutral community spatial structure. Journal of Theoretical Biology, 343, 44–53. https://doi.org/10.1016/j.jtbi.2013.10.011
  • Zaitseva, N. V., Zemlyanova, M. A., Ignatova, A. M., Naimark, O. B., & Stepankov, M. S. (2023). Potential of multifractal analysis for characterizing movements of biological objects. Biology Bulletin Reviews, 13(5), 495–505. https://doi.org/10.1134/S2079086423050134
  • Zamora, T., Alcántara, E., Artacho, M. Á., & Valero, M. (2011). Existence of an optimum dynamic coefficient of friction and the influence on human gait variability. International Journal of Industrial Ergonomics, 41(5), 410–417. https://doi.org/10.1016/j.ergon.2011.05.004
  • Zhang, D., Wang, C., Li, C., & Dai, W. (2019). Multi‐fractal detrended fluctuation half‐spectrum analysis of HRV. The Journal of Engineering, 2019(22), 8315–8318. https://doi.org/10.1049/joe.2019.1067
  • Zhu, C.-P., Zhou, T., Yang, H.-J., Xiong, S.-J., Gu, Z.-M., Shi, D.-N., He, D.-R., & Wang, B.-H. (2008). The process of coevolutionary competitive exclusion: Speciation, multifractality and power-laws in correlations. New Journal of Physics, 10(2), 023006. https://doi.org/10.1088/1367-2630/10/2/023006
  • Ziukelis, E. T., Mak, E., Dounavi, M. E., Su, L., & T O’Brien, J. (2022). Fractal dimension of the brain in neurodegenerative disease and dementia: A systematic review. Ageing Research Reviews, 79, 101651. https://doi.org/10.1016/j.arr.2022.101651

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.