Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
48
Views
0
CrossRef citations to date
0
Altmetric
Articles

Entropy generation analysis on MHD flow of second-grade hybrid nanofluid over a porous channel with thermal radiation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 623-648 | Received 21 Apr 2023, Accepted 28 Jul 2023, Published online: 04 Sep 2023

References

  • G. B. Jeffery, “L. The two-dimensional steady motion of a viscous fluid,” London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 29, no. 172, pp. 455–465, 1915. DOI: 10.1080/14786440408635327.
  • P. R. S. L. A., “The steady two-dimensional radial flow of viscous fluid between two inclined plane walls,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 175, no. 963, pp. 436–467, 1940. DOI: 10.1098/rspa.1940.0068.
  • Z. Z. Ganji, D. D. Ganji and M. Esmaeilpour, “Study on nonlinear Jeffery-Hamel flow by He’s semi-analytical methods and comparison with numerical results,” Comput. Math. Appl., vol. 58, no. 11-12, pp. 2107–2116, 2009. DOI: 10.1016/j.camwa.2009.03.044.
  • L. E. Fraenkel, “Laminar Flow in Symmetrical Channels with Slightly Curved Walls. I. On the Jeffery-Hamel Solutions for Flow Between Plane Walls,” 1962. DOI: 10.1098/rspa.1962.0087.
  • I. R. Petroudi, D. D. Ganji, M. K. Nejad, J. Rahimi, E. Rahimi and A. Rahimifar, “Transverse magnetic field on Jeffery-Hamel problem with Cu-water nanofluid between two non parallel plane walls by using collocation method,” Case Stud. Therm. Eng., vol. 4, pp. 193–201, 2014. DOI: 10.1016/j.csite.2014.10.002.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 231, no. March, pp. 99–105, 1995.
  • F. Saba, N. Ahmed, U. Khan and S. T. Mohyud-Din, “International journal of heat and mass transfer a novel coupling of ð CNT À Fe 3 O 4 = H 2 O Þ hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls,” Int. J. Heat Mass Transf., vol. 136, pp. 186–195, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.097.
  • P. S. Reddy, P. Sreedevi and V. N. Reddy, “Entropy generation and heat transfer analysis of magnetic nanofluid flow inside a square cavity filled with carbon nanotubes,” Chem. Thermodyn. Therm. Anal., vol. 6, no. February, pp. 100045, 2022. DOI: 10.1016/j.ctta.2022.100045.
  • P. S. Reddy, P. Sreedevi and S. Venkateswarlu, “Impact of modified Fourier’s heat flux on the heat transfer of MgO/Fe3O4–Eg-based hybrid nanofluid flow inside a square chamber,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2058112.
  • A. Abbasi, et al., “Heat transport exploration for hybrid nanoparticle (Cu, Fe3O4)—based blood flow via tapered complex wavy curved channel with slip features,” Micromachines (Basel), vol. 13, no. 9, pp. 1415, 2022. DOI: 10.3390/mi13091415.
  • S. Jakeer, P. BalaAnki Reddy, A. M. Rashad and H. A. Nabwey, “Impact of heated obstacle position on magneto-hybrid nanofluid flow in a lid-driven porous cavity with Cattaneo-Christov heat flux pattern,” Alexandria Eng. J., vol. 60, no. 1, pp. 821–835, 2021. DOI: 10.1016/j.aej.2020.10.011.
  • U. Khan et al., “A novel hybrid model for Cu-Al2O3/H2O nanofluid flow and heat transfer in convergent/divergent channels,” Energies, vol. 13, no. 7, 1686, 2020, DOI: 10.3390/en13071686.
  • S. H. D. P. Lacerda, et al., “Interaction of gold nanoparticles with common human blood proteins,” ACS Nano, vol. 4, no. 1, pp. 365–379, 2010. DOI: 10.1021/nn9011187.
  • S. Kumar and K. Sharma, “Entropy optimized radiative heat transfer of hybrid nanofluid over vertical moving rotating disk with partial slip,” Chinese J. Phys., vol. 77, November 2021, pp. 861–873, 2022. DOI: 10.1016/j.cjph.2022.03.006.
  • F. Shahzad, et al., “MHD pulsatile flow of blood-based silver and gold nanoparticles between two concentric cylinders,” Symmetry (Basel), vol. 14, no. 11, pp. 2254, 2022. DOI: 10.3390/sym14112254.
  • K. Sakkaravarthi and P. B. A. Reddy, “Entropy generation on Casson hybrid nanofluid over a curved stretching sheet with convective boundary condition: semi-analytical and numerical simulations,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 237, no. 2, pp. 465–481, 2023. DOI: 10.1177/09544062221119055.
  • M. K. Murthy, “Effects of heat and mass flux conditions on magnetohydrodynamics flow of Casson fluid over a curved stretching surface,” DDF, vol. 392, pp. 29–41, 2019. DOI: 10.4028/www.scientific.net/DDF.392.29.
  • M. V. Krishna, N. A. Ahammad and A. J. Chamkha, “Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface,” Case Stud. Therm. Eng., vol. 27, no. July, pp. 101229, 2021. DOI: 10.1016/j.csite.2021.101229.
  • T. Hayat, S. A. Shehzad, M. Qasim and S. Obaidat, “Flow of a second grade fluid with convective boundary conditions,” Therm. Sci., vol. 15, no. SUPPL.2, pp. 253–261, 2011. DOI: 10.2298/TSCI101014058H.
  • T. Hayat, S. A. Khan and A. Alsaedi, “Simulation and modeling of entropy optimized MHD flow of second grade fluid with dissipation effect,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 11993–12006, 2020. DOI: 10.1016/j.jmrt.2020.07.067.
  • M. Veera Krishna, N. Ameer Ahamad and A. J. Chamkha, “Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid,” Alexandria Eng. J., vol. 60, no. 1, pp. 845–858, 2021. DOI: 10.1016/j.aej.2020.10.013.
  • Z. Raizah, A. Khan, S. H. Awan, A. Saeed, A. M. Galal and W. Weera, “Time-dependent fractional second-grade fluid flow through a channel influenced by unsteady motion of a bottom plate,” MATH, vol. 8, no. 1, pp. 423–446, 2023. DOI: 10.3934/math.2023020.
  • K. Sharma and S. Kumar, “Impacts of low oscillating magnetic field on ferrofluid flow over upward/downward moving rotating disk with effects of nanoparticle diameter and nanolayer,” J. Magn. Magn. Mater., vol. 575, no. April, pp. 170720, 2023. DOI: 10.1016/j.jmmm.2023.170720.
  • S. R. R. Reddy and P. B. Anki Reddy, “Thermal radiation effect on unsteady three-dimensional MHD flow of micropolar fluid over a horizontal surface of a parabola of revolution,” Propuls. Power Res., vol. 11, no. 1, pp. 129–142, 2022. DOI: 10.1016/j.jppr.2022.01.001.
  • S. Nadeem, R. U. Haq and Z. H. Khan, “Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 1, pp. 121–126, Jan. 2014. DOI: 10.1016/j.jtice.2013.04.006.
  • M. Hamid, M. Usman, R. Ul Haq and Z. Tian, “A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels,” Arch. Appl. Mech., vol. 91, no. 5, pp. 1907–1924, 2021. DOI: 10.1007/s00419-020-01861-6.
  • S. Suneetha, K. Subbarayudu and P. B. A. Reddy, “Hybrid nanofluids development and benefits : a comprehensive review,” vol. 8, no. 3, pp. 1–11, 2022. DOI: 10.14744/jten.2022.0000.
  • P. Valsamy, D. Sheela and N. P. Ratchagar, “MHD unsteady thermal radiation transfer of mass under the porous oscillatory stretching surface impact of source/sink,” Int. J. Mech. Engng., vol. 7, no. 2, pp. 782–789, 2022.
  • M. Mustafa, “MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model,” Int. J. Heat Mass Transf., vol. 108, pp. 1910–1916, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.064.
  • G. Palani and A. Arutchelvi, “Radiation and magnetohydrodynamic effects on convective nanofluid past an inclined plate in the presence of a chemical reaction,” Int. J. Appl. Mech. Eng., vol. 27, no. 3, pp. 115–126, 2022. DOI: 10.2478/ijame-2022-0039.
  • T. Hayat, S. Asad, M. Mustafa and A. Alsaedi, “MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet,” Comput. Fluid., vol. 108, pp. 179–185, 2015. DOI: 10.1016/j.compfluid.2014.11.016.
  • N. Vijay and K. Sharma, “Entropy generation analysis in MHD hybrid nanofluid flow: effect of thermal radiation and chemical reaction,” Numer. Heat Transf. Part B Fundam., vol. 84, no. 1, pp. 66–82, Jul. 2023. DOI: 10.1080/10407790.2023.2186989.
  • E. H. Aly and A. Ebaid, “MHD Marangoni boundary layer problem for hybrid nanofluids with thermal radiation,” HFF, vol. 31, no. 3, pp. 897–913, 2021. DOI: 10.1108/HFF-05-2020-0245.
  • K. Sharma, I. L. Animasaun and Q. M. Al-Mdallal, “Scrutinization of ferrohydrodynamic through pores on the surface of disk experiencing rotation: effects of FHD interaction, thermal radiation, and internal heat source,” Arab. J. Sci. Eng., 2023. DOI: 10.1007/s13369-023-07853-2.
  • A. J. Chamkha, A. S. Dogonchi and D. D. Ganji, “Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among t,” AIP Adv., vol. 9, no. 2, 2019. DOI: 10.1063/1.5086247.
  • N. A. Zainal, “MHD flow and heat transfer of hybrid nano fluid over a permeable moving surface in the presence of thermal radiation,” 2020. DOI: 10.1108/HFF-03-2020-0126.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transfer, vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • N. Feroz, Z. Shah, S. Islam, E. O. Alzahrani and W. Khan, “Entropy generation of carbon nanotubes flow in a rotating channel with hall and ion-slip effect using effective thermal conductivity model,” Entropy, vol. 21, no. 1, pp. 52, 2019. DOI: 10.3390/e21010052.
  • A. Shahsavar, P. Talebizadeh Sardari and D. Toghraie, “Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus,” HFF, vol. 29, no. 3, pp. 915–934, 2019. DOI: 10.1108/HFF-08-2018-0424.
  • Y. X. Li, et al., “Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with entropy generation: Applications to renewable energy,” Chinese J. Phys., vol. 73, no. June, pp. 275–287, 2021. DOI: 10.1016/j.cjph.2021.06.004.
  • J. Raza, F. Mebarek-Oudina, P. Ram and S. Sharma, “MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation,” DDF, vol. 401, pp. 92–106, 2020. DOI: 10.4028/www.scientific.net/DDF.401.92.
  • A. Saeed, N. Khan, T. Gul, W. Kumam, W. Alghamdi and P. Kumam, “The Flow of Blood-Based Hybrid Nanofluids with Couple Stresses by the Convergent and Divergent Channel for the,” pp. 1–23, 2021.
  • T. Hayat, M. Nawaz, S. Asghar and A. A. Hendi, “Series solution for flow of a second-grade fluid in a divergent-convergent channel,” Can. J. Phys., vol. 88, no. 12, pp. 911–917, 2010. DOI: 10.1139/p10-090.
  • Umar, Khan, Naveed, Ahmed, Syed Tauseef, Mohyud-Din,   Adnan, “Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between convergent/divergent channel with stretchable walls,” Results Phys., vol. 7, pp. 361–372, 2017, DOI: 10.1016/j.rinp.2016.12.020.
  • G. K. Ramesh, S. A. Shehzad and I. Tlili, “Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy-Forchheimer model,” Appl. Math. Mech.-Engl. Ed., vol. 41, no. 5, pp. 699–710, 2020. DOI: 10.1007/s10483-020-2605-7.
  • S. Jakeer and P. Bala Anki Reddy, “Entropy generation on EMHD stagnation point flow of hybrid nanofluid over a stretching sheet: homotopy perturbation solution,” Phys. Scr., vol. 95, no. 12, pp. 125203, 2020. DOI: 10.1088/1402-4896/abc03c.
  • M. Vijatha and P. B. A. Reddy, “Comparative analysis on magnetohydrodynamic flow of non-Newtonian hybrid nanofluid over a stretching cylinder: entropy generation,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., pp. 095440892210932, 2022. DOI: 10.1177/09544089221093296.
  • D. Lu, M. Ramzan, S. Ahmad, A. Shafee and M. Suleman, “Impact of nonlinear thermal radiation and entropy optimization coatings with hybrid nanoliquid flow past a curved stretched surface,” Coatings, vol. 8, no. 12, pp. 430, 2018. DOI: 10.3390/coatings8120430.
  • H. Hashim, “Entropy generation and heat transport in Carreau nano uids ow within a converging/diverging enclosure,” pp. 0–24, 2022.
  • X. Li, et al., “Thermal performance of iron oxide and copper (Fe3O4, Cu) in hybrid nanofluid flow of Casson material with Hall current via complex wavy channel,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 289, no. January, pp. 116250, 2023. DOI: 10.1016/j.mseb.2022.116250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.