Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
574
Views
0
CrossRef citations to date
0
Altmetric
Articles

A two-level machine learning approach for predicting thermal striping in T-junctions with upstream elbow

, ORCID Icon & ORCID Icon
Pages 662-682 | Received 28 Apr 2023, Accepted 22 Aug 2023, Published online: 06 Sep 2023

Reference

  • C. Betts, A. Judd and M. Lewis, “Avoiding thermal striping damage: experimentally-based design procedures for high-cycle thermal fatigue,” presented at the IWGFR-90, Vienna, Austria: IAEA, 1994.
  • O. Gelineau, M. Sperandio, P. Martin, J. B. Ricard, L. Martin and A. Bougault, “Thermal fluctuation problems encountered in LMFRs,” presented at the IWGFR-90, Vienna, Austria: IAEA, 1994.
  • V. Sobolev and N. Kuzavkov, “Identification of places with fluid temperatures in BN 600 reactor and reactor systems,” presented at the IWGFR-90, Vienna, Austria: IAEA, 1994.
  • H. Shulz, “Experience with thermal fatigue in LWR piping caused by mixing and stratification,” in Proc. Exp. Thermal Fatigue LWR Piping Caused Mix. Stratif. Stratif, Paris, France: OECD, 1998.
  • V. N. Shah, A. G. Ware, C. L. Atwood, M. B. Sattison, R. S. Hartley and C. Hsu, “Assessment of field experience related to pressurized water reactor primary system leaks,” Idaho Nat. Lab., Idaho Falls, ID, INEEL/CON9900037, 1999.
  • M. Dahlberg, et al., “Development of a European procedure for assessment of high cycle thermal fatigue in light water reactors: final report of the NESC-thermal fatigue project,” Eur. Comm., Petten, Netherlands, EUR 22763 EN, 2007.
  • M. Hirota, M. Kuroki, H. Nakayama, H. Asano and S. Hirayama, “Promotion of turbulent thermal mixing of hot and cold airflows in T-junction,” Flow Turbulence Combust., vol. 81, no. 1-2, pp. 321–336, Jul. 2008. DOI: 10.1007/s10494-007-9111-5.
  • M. Nuruzzaman, W. Pao, F. Ejaz and H. Ya, “A preliminary numerical investigation of thermal mixing efficiency in T-junctions with different flow configurations,” IJHT., vol. 39, no. 5, pp. 1590–1600, 2021. DOI: 10.18280/ijht.390522.
  • A. Sakowitz, M. Mihaescu and L. Fuchs, “Turbulent flow mechanisms in mixing T-junctions by Large Eddy Simulations,” Int. J. Heat Fluid Flow, vol. 45, pp. 135–146, Feb. 2014. DOI: 10.1016/j.ijheatfluidflow.2013.06.014.
  • V. Radu, E. Paffumi, N. Taylor and K.-F. Nilsson, “A study on fatigue crack growth in the high cycle domain assuming sinusoidal thermal loading,” Int. J. Press. Vessels Pip, vol. 86, no. 12, pp. 818–829, Dec. 2009. DOI: 10.1016/j.ijpvp.2009.10.007.
  • A. G. Miller, “Crack propagation due to random thermal fluctuations: effect of temporal incoherence,” Int. J. Press. Vessels Pip, vol. 8, no. 1, pp. 15–24, Jan. 1980. DOI: 10.1016/0308-0161(80)90015-0.
  • V. Radu and E. Paffumi, “A stochastic approach of thermal fatigue crack growth (LEFM) in mixing tees,” presented at the Press. Vessel Piping Conf, ASME, 2010, pp. 1031–1040. DOI: 10.1115/PVP2010-25888.
  • O. Costa Garrido, S. El Shawish and L. Cizelj, “Uncertainties in the thermal fatigue assessment of pipes under turbulent fluid mixing using an improved spectral loading approach,” Int. J. Fatigue, vol. 82, pp. 550–560, Jan. 2016. DOI: 10.1016/j.ijfatigue.2015.09.010.
  • A. Timperi, “Development of a spectrum method for modelling fatigue due to thermal mixing,” Nucl. Eng. Des, vol. 331, pp. 136–146, May 2018. DOI: 10.1016/j.nucengdes.2018.02.039.
  • A. Tokuhiro and N. Kimura, “An experimental investigation on thermal striping: mixing phenomena of a vertical non-buoyant jet with two adjacent buoyant jets as measured by ultrasound Doppler velocimetry,” Nucl. Eng. Des, vol. 188, no. 1, pp. 49–73, Apr. 1999. DOI: 10.1016/S0029-5493(99)00006-0.
  • H. Kamide, M. Igarashi, S. Kawashima, N. Kimura and K. Hayashi, “Study on mixing behavior in a tee piping and numerical analyses for evaluation of thermal striping,” Nucl. Eng. Des, vol. 239, no. 1, pp. 58–67, Jan. 2009. DOI: 10.1016/j.nucengdes.2008.09.005.
  • M. Tanaka and K. Nagasawa, “Benchmark analysis of thermal striping phenomena in planar triple parallel jets tests for fundamental validation of fluid-structure thermal interaction code for sodium-cooled fastreactor,” in 16th Int. Top. Meet. Nucl. React. Therm. Hydraul (NURETH-16, Chicago, USA, 2015.
  • G. Lenci, “A methodology based on local resolution of turbulent structures for effective modeling of unsteady flows,” Ph.D. dissertation, Dept. Nucl. Sci. Eng., Massachusetts Inst. Technol., 2016.
  • G. Lenci, J. Feng and E. Baglietto, “A generally applicable hybrid unsteady Reynolds-averaged Navier–Stokes closure scaled by turbulent structures,” Phys. Fluids., vol. 33, no. 10, pp. 105117, 2021. DOI: 10.1063/5.0065203.
  • W. R. Dean and J. Hurst, “Note on the motion of fluid in a curved pipe,” Philos. Mag. Ser., vol. 4, no. 20, pp. 208–223, 1927. DOI: 10.1080/14786440708564324.
  • P. M. Ligrani and R. D. Niver, “Flow visualization of Dean vortices in a curved channel with 40 to 1 aspect ratio,” Phys. Fluids., vol. 31, no. 12, pp. 3605–3617, Dec. 1988. DOI: 10.1063/1.866877.
  • C. Brücker, “A time-recording DPIV-study of the swirl-switching effect in a 90° bend flow,” presented at the Proc. Eight Int. Symp. Flow Vis., Sorrento, Italy, Sep. 1998.
  • F. Rütten, W. Schröder and M. Meinke, “Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe bend flows,” Phys. Fluids., vol. 17, no. 3, pp. 035107, Mar. 2005. DOI: 10.1063/1.1852573.
  • R. Tunstall, D. Laurence, R. Prosser and A. Skillen, “Large eddy simulation of a T-Junction with upstream elbow: the role of Dean vortices in thermal fatigue,” Appl. Therm. Eng., vol. 107, pp. 672–680, 2016. DOI: 10.1016/j.applthermaleng.2016.07.011.
  • L. Xu, “A second generation URANS approach for application to aerodynamic design and optimization in the automotive industry,” Ph.D. dissertation, Dept. Nucl. Sci. Eng., Massachusetts Inst. Technol., 2020.
  • M. J. Acton, G. Lenci and E. Baglietto, “Structure-based resolution of turbulence for sodium fast reactor thermal striping applications,” presented at the 16th Int. Top. Meet. Nucl. React. Therm. Hydraul (NURETH-16), 2015.
  • J. Feng, T. Frahi and E. Baglietto, “STRUCTure-based URANS simulations of thermal mixing in T-junctions,” Nucl. Eng. Des., vol. 340, pp. 275–299, Dec. 2018. DOI: 10.1016/j.nucengdes.2018.10.002.
  • S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transf., vol. 15, no. 10, pp. 1787–1806, Oct. 1972. DOI: 10.1016/0017-9310(72)90054-3.
  • S. B. Pope, Turbulent Flows. Cambridge, United Kingdom: Cambridge University Press, 2000.
  • A. K. M. F. Hussain, “Coherent structures and turbulence,” J. Fluid Mech., vol. 173, pp. 303–356, Dec. 1986. DOI: 10.1017/S0022112086001192.
  • H. E. Fiedler, “Coherent structures in turbulent flows,” Prog. Aerosp. Sci., vol. 25, no. 3, pp. 231–269, Jan. 1988. DOI: 10.1016/0376-0421(88)90001-2.
  • J. L. Lumley, “The structure of inhomogeneous turbulent flows,” Atmos. Turbul. Radio. Wave Propag., vol. 7, no. 4, pp. 166-177, 1967.
  • S. V. Gordeyev and F. O. Thomas, “Coherent structure in the turbulent planar jet. Part 2. Structural topology via POD eigenmode projection,” J. Fluid Mech., vol. 460, pp. 349–380, Jun. 2002. DOI: 10.1017/S0022112002008364.
  • A. Kalpakli Vester, R. Örlü and P. H. Alfredsson, “POD analysis of the turbulent flow downstream a mild and sharp bend,” Exp Fluids, vol. 56, no. 3, pp. 57, Mar. 2015. DOI: 10.1007/s00348-015-1926-6.
  • Z. Wu, D. Laurence, S. Utyuzhnikov and I. Afgan, “Proper orthogonal decomposition and dynamic mode decomposition of jet in channel crossflow,” Nucl. Eng. Des., vol. 344, pp. 54–68, Apr. 2019. DOI: 10.1016/j.nucengdes.2019.01.015.
  • Y.-J. Wang, E. Baglietto and K. Shirvan, “Development of a two-level ML spatial-temporal framework for industrial thermal striping applications,” Jan, vol. 13, 105337, 2023. DOI: 10.48550/arXiv.2301.05667.
  • D. Xiao, F. Fang, A. G. Buchan, C. C. Pain, I. M. Navon and A. Muggeridge, “Non-intrusive reduced order modelling of the Navier–Stokes equations,” Comput. Methods Appl. Mech. Eng., vol. 293, pp. 522–541, Aug. 2015. DOI: 10.1016/j.cma.2015.05.015.
  • M. Guo and J. S. Hesthaven, “Data-driven reduced order modeling for time-dependent problems,” Comput. Methods Appl. Mech. Eng., vol. 345, pp. 75–99, Mar. 2019. DOI: 10.1016/j.cma.2018.10.029.
  • C. Wang, et al., “Greedy Non-Intrusive Reduced-Order Model’s application in dynamic blowing and suction flow control to suppress the flow separation,” Comput. Fluids., vol. 237, pp. 105337, Apr. 2022. DOI: 10.1016/j.compfluid.2022.105337.
  • H. Ogawa, M. Igarashi, N. Kimura and H. Kamide, “Experimental study on fluid mixing phenomena in T-pipe junction with upstream elbow,” presented at the 11th Int. Top. Meet. Nucl. React. Therm. Hydraul (NURETH-11), Avignon, France, 2005.
  • Y. Utanohara, K. Miyoshi and A. Nakamura, “Conjugate numerical simulation of wall temperature fluctuation at a T-junction pipe,” Mech. Eng. J., vol. 5, no. 3, pp. 18–00044–18-00044, 2018. DOI: 10.1299/mej.18-00044.