Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
67
Views
1
CrossRef citations to date
0
Altmetric
Articles

Thermal optimisation through the stratified bioconvective jetflow of nanofluid

, , ORCID Icon, , &
Pages 791-804 | Received 29 Jun 2023, Accepted 01 Sep 2023, Published online: 12 Sep 2023

References

  • X. Xin, A. M. Saeed, F. A. M. Al-Yarimi, V. Puneeth and S. S. Narayan, “The flow analysis of Williamson nanofluid considering the Thompson and Troian slip conditions at the boundary,” Numer. Heat Transfer, Part A, pp. 1–17, May 2023. DOI: 10.1080/10407782.2023.2212922.
  • K. Jabeen, M. Mushtaq, T. Mushtaq and R. M. A. Muntazir, “A numerical study of boundary layer flow of Williamson nanofluid in the presence of viscous dissipation, bioconvection, and activation energy,” Numer. Heat Transfer, A, pp. 1–22, Mar. 2023. DOI: 10.1080/10407782.2023.2187494.
  • N. Abbas, W. Shatanawi, K. U. Rehman and T. A. M. Shatnawi, “Velocity and thermal slips impact on boundary layer flow of micropolar nanofluid over a vertical nonlinear stretched Riga sheet," Proc,” Inst. Mech. Eng., N, 2023. Mar DOI: 10.1177/23977914231156685.
  • M. R. Khan et al., “Numerical simulation and mathematical modeling for heat and mass transfer in MHD stagnation point flow of nanofluid consisting of entropy generation,” Sci Rep., vol. 13, no. 1, pp. 6423, Apr. 2023. DOI: 10.1038/s41598-023-33412-8.
  • M. S. Arif, W. Shatanawi and Y. Nawaz, “Modified finite element study for heat and mass transfer of electrical MHD non-Newtonian boundary layer nanofluid flow,” Mathematics, vol. 11, no. 4, pp. 1064, Feb. 2023. DOI: 10.3390/math11041064.
  • A. Ali, S. Sarkar, S. Das and R. N. Jana, “A report on entropy generation and Arrhenius kinetics in magneto-bioconvective flow of cross nanofluid over a cylinder with wall slip,” Int. J. Ambient Energy, pp. 1–16, Feb. 2022. DOI: 10.1080/01430750.2022.2031292.
  • S. Sarkar and S. Das, “Gyrotactic microbes’ movement in a magneto-nano-polymer induced by a stretchable cylindrical surface set in a DF porous medium subject to non-linear radiation and Arrhenius kinetics,” Int. J. Modelling Simul, pp. 1–18, May 2023. DOI: 10.1080/02286203.2023.2205987.
  • S. Sarkar, T. K. Pal, A. Ali and S. Das, “Themo-bioconvection of gyrotactic microorganisms in a polymer solution near a perforated Riga plate immersed in a DF medium involving heat radiation, and Arrhenius kinetics,” Chem. Phys. Lett, vol. 797, pp. 139557, Jun. 2022. DOI: 10.1016/j.cplett.2022.139557.
  • F. Wang et al., “Heat and mass transfer of Ag − H2O nano-thin film flowing over a porous medium: a modified Buongiorno’s model,” Chin. J. Phys, vol. 84, pp. 330–342, Aug. 2023. DOI: 10.1016/j.cjph.2023.01.001.
  • S. Li et al., “Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet,” Sci Rep, vol. 13, no. 1, pp. 2340, Feb. 2023. DOI: 10.1038/s41598-023-29485-0.
  • A. A. Khidir, “Application of successive linearisation method on mixed convection boundary layer flow of nanofluid from an exponentially stretching surface with magnetic field effect,” j Nanofluids, vol. 12, no. 2, pp. 465–475, Mar. 2023. DOI: 10.1166/jon.2023.1961.
  • V. Puneeth, M. I. Khan, S. S. Narayan, E. R. El-Zahar and K. Geudri, “The impact of the movement of the gyrotactic microorganisms on the heat and mass transfer characteristics of Casson nanofluid,” Waves Random Complex Media, pp. 1–24, Apr. 2022. DOI: 10.1080/17455030.2022.2055811.
  • A. Ali, S. Sarkar and S. Das, “Bioconvective chemically reactive entropy optimized cross-nano-material conveying oxytactic microorganisms over a flexible cylinder with Lorentz force and Arrhenius kinetics,” Math. Comp. Simulat, vol. 205, pp. 1029–1051, Mar. 2023. DOI: 10.1016/j.matcom.2022.11.002.
  • A. Ali, S. Sarkar and S. Das, “Physical insight into magneto-thermo-migration of motile gyrotactic microorganisms over a flexible cylinder with wall slip, and Arrhenius kinetics,” Waves Random Complex Media, pp. 1–24, Feb. 2023. DOI: 10.1080/17455030.2023.2178059.
  • S. Sarkar, A. Ali and S. Das, “Bioconvection in non-Newtonian nanofluid near a perforated Riga plate induced by haphazard motion of nanoparticles and gyrotactic microorganisms in the attendance of thermal radiation and Arrhenius chemical reaction: sensitivity analysis,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 7922–7940, Jun. 2022. DOI: 10.1080/01430750.2022.2086919.
  • S. Sarkar and S. Das, “Magneto-thermo-bioconvection of a chemically sensitive cross nanofluid with an infusion of gyrotactic microorganisms over a lubricious cylindrical surface: statistical analysis,” Int. J. Modelling Simul, pp. 1–22, Nov. 2022. DOI: 10.1080/02286203.2022.2141221.
  • M. I. Khan and V. Puneeth, “Isothermal autocatalysis of homogeneous–heterogeneous chemical reaction in the nanofluid flowing in a diverging channel in the presence of bioconvection,” Waves Random Complex Media, pp. 1–21, Dec. 2021. DOI: 10.1080/17455030.2021.2008547.
  • A. Garg, Y. D. Sharma and S. K. Jain, “Onset of triply diffusive thermo-bio-convection in the presence of gyrotactic microorganisms and internal heating into an anisotropic porous medium: oscillatory convection,” Chin. J. Phys, vol. 84, pp. 173–188, Aug. 2023. DOI: 10.1016/j.cjph.2023.05.014.
  • S. Abbas et al., “Bio-convection flow of fractionalized second grade fluid through a vertical channel with Fourier’s and Fick’s laws,” Mod. Phys. Lett. B, vol. 37, no. 23, pp. 2350069, May 2023. DOI: 10.1142/S0217984923500690.
  • V. Puneeth et al., “Stratified bioconvective jet flow of williamson nanofluid in porous medium in the presence of arrhenius activation energy,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 309–319, May 2023. DOI: 10.1142/S2737416523400069.
  • T., Hayat, Khursheed, Muhammad, A., Alsaedi, Inayatullah, "Heat transfer analysis in bio-convection second grade nanofluid with Cattaneo–Christov heat flux model," Proc. Inst. Mech. Eng., E, vol. 237, no.4, pp.1117–1124, Jun. 2023. DOI: 10.1177/09544089221097684.
  • V. Puneeth, F. Ali, M. R. Khan, M. S. Anwar and N. A. Ahammad, “Theoretical analysis of the thermal characteristics of Ree–Eyring nanofluid flowing past a stretching sheet due to bioconvection," Biomass Convers,” Biorefin, Jul. 2022. DOI: 10.1007/s13399-022-02985-1.
  • S. T. Mohyud-Din and S. Z. A. Zaidi, “Soret and MHD effects on bioconvection wall jet flow of nanofluid containing gyrotactic microorganisms,” Neural Comput. Appl., vol. 28, no. S1, pp. 599–609, Dec. 2017. DOI: 10.1007/s00521-016-2366-9.
  • V. Puneeth, M. I. Khan, M. Jameel, K. Geudri and A. M. Galal, “The convective heat transfer analysis of the casson nanofluid jet flow under the influence of the movement of gyrotactic microorganisms,” J. Indian Chem. Soc., vol. 99, no. 9, pp. 100612, Sep. 2022. DOI: 10.1016/j.jics.2022.100612.
  • M. D. Alsulami, M. C. Jayaprakash, J. K. Madhukesh, G. Sowmya and R. N. Kumar, “Bioconvection in radiative Glauert wall jet flow of nanofluid: a Buongiorno model,” Waves Random Complex Media, pp. 1–18, Oct. 2022. DOI: 10.1080/17455030.2022.2128224.
  • A. Jafarimoghaddam and I. Pop, “Numerical modeling of Glauert type exponentially decaying wall jet flows of nanofluids using Tiwari and Das’ nanofluid model,” HFF, vol. 29, no. 3, pp. 1010–1038, Feb. 2019. DOI: 10.1108/HFF-08-2018-0437.
  • V. Puneeth et al., “Implementation of modified Buongiorno’s model for the investigation of chemically reacting rGO-Fe3O4-TiO2-H2O ternary nanofluid jet flow in the presence of bio-active mixers,” Chem. Phys. Lett, vol. 786, pp. 139194, Jan. 2022. DOI: 10.1016/j.cplett.2021.139194.
  • M. Turkyilmazoglu, “Flow of nanofluid plane wall jet and heat transfer,” Euro. J. Mech. B/Fluids, vol. 59, pp. 18–24, Sep. 2016. DOI: 10.1016/j.euromechflu.2016.04.007.
  • E. H. Aly, U. S. Mahabaleshwar, T. Anusha, W. K. Usafzai and I. Pop, “Wall jet flow and heat transfer of a hybrid nanofluid subject to suction/injection with thermal radiation,” Therm. Sci. Eng. Prog, vol. 32, pp. 101294, Jul. 2022. DOI: 10.1016/j.tsep.2022.101294.
  • W. K. Usafzai, A. M. Saeed, E. H. Aly, V. Puneeth and I. Pop, “Wall jet nanofluid flow with thermal energy and radiation in the presence of power-law,” Numer. Heat Transfer A, pp. 1–13, Jun. 2023. DOI: 10.1080/10407782.2023.2222456.
  • S. Z. A. Zaidi, S. T. Mohyud-Din and B. Bin-Mohsen, “A comparative study of wall jet flow containing carbon nanotubes with convective heat transfer and MHD,” EC, vol. 34, no. 3, pp. 739–753, May 2017. DOI: 10.1108/EC-03-2016-0087.
  • S. Z. A. Zaidi and S. T. Mohyud-Din, “Convective heat transfer and MHD effects on two dimensional wall jet flow of a nanofluid with passive control model,” Aerosp. Sci. Technol., vol. 49, pp. 225–230, Feb. 2016. DOI: 10.1016/j.ast.2015.12.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.