247
Views
37
CrossRef citations to date
0
Altmetric
Research Article

The Clinical Chemistry of Inorganic Sulfate

&
Pages 299-344 | Published online: 29 Sep 2008

References

  • Meyer B. The sulfur cycles. In: Sulfur, energy, and environment. pp. 142-168. New York: Elsevier, 1977.
  • Ohmoto H, Kakegawa T, Lowe DR. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science 1993; 262: 555–557.
  • Roy AB, Trudinger PA. The biochemistry of inorganic compounds of sulphur. pp. 1-400. Cambridge: Cambridge University Press, 1970.
  • Jakoby WB, Griffith OW (eds) Sulfur and sulfur amino acids. pp. 1-582. New York: Academic Press, 1987.
  • Greenberg DM (ed)Metabolism of sulfur compounds. 3rd ed pp. 1–614. New York: Academic Press, 1975.
  • Chernova MN, Jiang L, Crest M, et al. Electrogenic sulfate/chloride exchange in Xenopus oocytes mediated by murine AE1 E699Q. J Gen Physiol 1997; 109: 345–360.
  • Nakayama FS, Rasnick BA. Calcium electrode method for measuring dissociation and solubility of calcium sulfate dihydrate. Anal Chem 1967; 39: 1022–1023.
  • Walser M, Browder AA. Ion association. III. The effect of sulfate infusion of calcium excretion. J Clin Invest 1959; 38: 1404–1411.
  • Friedlander MA, Lemke JH, Johnston MJ, et al. The effect of sulfate on serum ionized calcium. Am J Kidney Dis 1983; 2: 660–663.
  • Walser M. Ion association. VII. Dependence of calciuresis on natriuresis during sulfate infusion. Am J Physiol 1961; 201: 769–773.
  • Suzuki K, Nonaka K, Kono N, et al. Effects of the intravenous administration of magnesium sulfate on corrected serum calcium level and nephrogenous cyclic AMP excretion in normal human subjects. Calcif Tissue Int 1986; 39: 304–309.
  • Chakmakjian ZH, Bethune JE. Sodium sulfate treatment of hypercalcemia. N Engl J Med 1966; 275: 862–869.
  • Evans RA, Lawrence PJ, Thanakrishnan G, et al. Immobilization hypercalcaemia due to low bone formation and responding to intravenous sodium sulphate. Postgrad Med J 1986; 62: 395–398
  • Kanyo ZF, Christianson DW. Biological recognition of phosphate and sulfate. J Biol Chem 1991; 266: 4264–4268.
  • Thatcher GRJ, Cameron DR, Nagelkerke R, et al. Selective hydrogen bonding as a mechanism for differentiation of sulfate and phosphate at biomolecular receptor sites. J Chem Soc Chem Commun 1992; i: 386–388.
  • Jacobson BL, Quiocho FA. Sulfate-binding protein dislikes protonated oxyacids. A molecular explanation. J Mol Biol 1988; 204: 783–787.
  • Ledvina PS, Yao N, Choudhary A, et al. Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc Natl Acad Sci USA 1996; 93: 6786–6791.
  • Quiocho FA. Atomic basis of the exquisite specificity of phosphate and sulfate transport receptors. Kidney Int 1996; 49: 943–946.
  • Collins KD, Washabaugh MW. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys 1985; 18: 323–422.
  • Copley RR, Barton GJ. A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites. J Mol Biol 1994; 242: 321–329
  • Chakrabarti P. Anion binding sites in protein structures. J Mol Biol 1993; 234: 463–482.
  • Swan RC, Feinstein HM Madisso H. Distribution of sulfate ion across semipermeable membranes. J Clin Invest 1956; 35: 607–610.
  • Cole DEC, Landry DA. Determination of inorganic sulfate in human saliva and sweat by controlled-flow anion chromatography. Normal values in adult humans. J Chromatogr 1985; 337: 267–278.
  • Greffard A, Trabelsi N, Terzidis H, et al. Inhibition of acid sialidase by inorganic sulfate. Biochim Biophys Acta 1997; 1334: 140–148.
  • Buhler R, Von Wartburg JP. Differential susceptibility of human alcohol dehydrogenase isoenzymes to anions. FEBS Lett 1984; 178: 249–252.
  • Kamlay MT, Halvorson HR Shore JD. Anion effects on the liver alcohol dehydrogenase reaction. Arch Biochem Biophys 1985; 241: 58–66.
  • Lutaya G, Rodrigues LM Griffiths JR. Activation of hepatic glycogen phosphorylase b in vivo by sodium sulphate in normal (Wistar) and phosphorylase b kinase-deficient (gsd/gsd) rats. Biochem J 1986; 239: 493–496.
  • Zographos SE, Oikonomakos NG, Dixon HB, et al. Sulfate-activated phosphorylase b: the pH-dependence of catalytic activity. Biochem J 1995; 310: 565–570.
  • Bunning P, Riordan JF. Sulfate potentiation of the chloride activation of angiotensin converting enzyme. Biochemistry 1987; 26: 3374–3377.
  • Simonsson I, Lindskog S. The interaction of sulfate with carbonic anhydrase. Eur J Biochem 1982; 123: 29–36.
  • Pocker Y, Miao CH. Molecular basis of ionic strength effects: interaction of enzyme and sulfate ion in CO2 hydration and HCO3-dehydration reactions catalyzed by carbonic anhydrase II. Biochemistry 1987; 26: 8481–8486.
  • Dietrich CP, Nader HB, Buonassisi V, et al. Inhibition of synthesis of heparan sulfate by selenate: possible dependence on sulfation for chain polymerization. FASEB J 1988; 2: 56–59.
  • Gunnison AF. Sulfite toxicity: a critical review of in vitro and in vivo data. Food Cosmet Toxicol 1981; 19: 667–682.
  • Gunnison AF, Jacobsen DW. Sulfite hypersensitivity. A critical review. CRC CritRev Toxicol 1987; 17: 185–214.
  • Johnson JL, Wadman SK. Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. pp. 2271-2283. New York: McGraw-Hill Inc, 1995.
  • Robbins PW, Lipmann F. Isolation and identification of active sulfate. J Biol Chem 1957; 229: 837–851.
  • Li H, Deyrup A, Mensch JRJ, et al. The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase-adenosine 5'-phosphosulfate kinase. J Biol Chem 1995; 270: 29453–29459.
  • Lyle S, Stanczak J, Ng K, et al. Rat chondrosarcoma ATP sulfurylase and adenosine 5'-phosphosulfate kinase reside on a single bifunctional protein. Biochemistry 1994; 33: 59205925.
  • Kurima K, Warman ML, Krishnan S, et al. A member of a family of sulfate-activating enzymes causes murine brachymorphism [published erratum appears in Proc Natl Acad Sci USA 1998; 95: 12071]. Proc Natl Acad Sci USA 1998; 95: 8681–8685.
  • Lyle S, Stanczak JD, Westley J, et al. Sulfate-activating enzymes in normal and brachymorphic mice: evidence for a channeling defect. Biochemistry 1995; 34: 940–945.
  • ul Haque MF, King LM, Krakow D, et al. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet 1998; 20: 157162.
  • Mulder GJ (ed) Sulfation of drugs and related compounds. pp. 1-237. Boca Raton: CRC Press Inc., 1981.
  • Mulder GJ, Caldwell J, Van Kempen GMJ, Vonk RJ (eds). Sulfate metabolism and sulfate conjugation. pp. 1-311. London: Taylor & Francis, 1982.
  • Schwartz NB, Lyle S, Ozeran JD, et al. Sulfate activation and transport in mammals: system components and mechanisms. Chem Biol Interact 1998; 109: 143–151.
  • Leyh TS. The physical biochemistry and molecular genetics of sulfate activation. Crit Rev Biochem Mol Biol 1993; 28: 515–542.
  • Falany CN. Sulfation and sulfotransferases. Introduction: changing view of sulfation and the cytosolic sulfotransferases. FASEB J 1997; 11: 1–2.
  • Weinshilboum RM, Otterness DM, Aksoy IA, et al. Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J 1997; 11: 3–14.
  • Falany CN. Enzymology of human cytosolic sulfotransferases. FASEB J 1997; 11: 206–216.
  • Klaassen CD, Boles JW. Sulfation and sulfotransferases 5: The importance of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 1997; 11: 404–418.
  • Sabry ZI, Shadarevian SB, Cowan JW, et al. Relationship of dietary intake of sulphur amino-acids to urinary excretion of inorganic sulphate in man. Nature 1965; 206: 931–933.
  • Houterman S, van Faassen A, Ocke MC, et al. Is urinary sulfate a biomarker for the intake of animal protein and meat? Cancer Lett 1997; 114: 295–296.
  • Grimble RF. Sulphur amino acids and the metabolic response to cytokines. Adv Exp Med Biol 1994; 359: 41–49.
  • Greer FR, McCormick A Loker J. Increased urinary excretion of inorganic sulfate in premature infants fed bovine milk protein. J Pediatr 1986; 109: 692–697.
  • Cole DE, Zlotkin SH. Increased sulfate as an etiological factor in the hypercalciuria associated with total parenteral nutrition. Am J Clin Nutr 1983; 37: 108–113.
  • Lakshmanan FL, Perera WD, Scrimshaw NS, et al. Plasma and urinary amino acids and selected sulfur metabolites in young men fed a diet devoid of methionine and cystine. Am J Clin Nutr 1976; 29: 1367–1371.
  • Florin T, Neale G, Goretski S, et al. The sulfate content of food and beverages. J Food Compos Anal 1993; 6: 140–151.
  • Ji AJ, Savon SR Jacobsen DW. Determination of total serum sulfite by HPLC with fluorescence detection. Clin Chem 1995; 41: 897–903.
  • Kim DH, Kobashi K. The role of intestinal flora in metabolism of phenolic sulfate esters. Biochem Pharmacol 1986; 35: 3507–3510.
  • Hartiala K. Metabolism of hormones, drugs and other substances by the gut. Physiol Rev 1973; 53: 496–534.
  • Cardin CJ, Mason J. Sulfate transport by rat ileum. Effect of molybdate and other anions. Biochim Biophys Acta 1975; 394: 46–54.
  • Cardin CJ, Mason J. Molybdate and tungstate transfer by rat ileum. Competitive inhibition by sulfate. Biochim Biophys Acta 1976; 455: 937–946.
  • Arduser F, Wolffram S Scharrer E. Active absorption of selenate by rat ileum. J Nutr 1985; 115: 1203–1208.
  • Batt ER. Sulfate accumulation by mouse intestine: influence of age and other factors. Am J Physiol 1969; 217: 1101–1104.
  • Anast C, Kennedy R, Volk G, et al. In vitro studies of sulfate transport by the small intestine of the rat, rabbit, and hamster. J Lab Clin Med 1965; 65: 903–911.
  • Kandylis K. Transfer of plasma sulfate from blood to rumen. A review. JDairy Sci 1983; 66: 2263–2270.
  • Kaneko-Mohammed S, Hogben AM. Ionic fluxes of Rana pipens stomach bathed by sulfate solutions. Am J Physiol 1964; 207: 1173–1176.
  • Lucke H, Stange G Murer H. Sulfate-sodium cotransport by brush-border membrane vesicles isolated from rat ileum. Gastroenterology 1981; 80: 22–30.
  • Ahearn GA, Murer H. Functional roles of Na+ and H+ in SO42-transport by rabbit ileal brush border membrane vesicles. J Membr Biol 1984; 78: 177–186.
  • Langridge-Smith JE, Sellin JH Field M. Sulfate influx across the rabbit ileal brush border membrane: sodium and proton dependence, and substrate specificities. J Membr Biol 1983; 72: 131–139.
  • Langridge-Smith JE, Field M. Sulfate transport in rabbit ileum: characterization of the serosal border anion exchange process. J Membr Biol 1981; 63: 207–214.
  • Smith PL, Orellana SA Field M. Active sulfate absorption in rabbit ileum: dependence on sodium and chloride and effects of agents that alter chloride transport. J Membr Biol 1981; 63: 199–206.
  • Knickelbein RG, Dobbins JW. Sulfate and oxalate exchange for bicarbonate across the basolateral membrane of rabbit ileum. Am J Physiol 1990; 259: G807–G813
  • Ahmed A, Hamza HM. Barium sulfate absorption and sensitivity. Radiology 1989; 172: 213214.
  • Krijgsheld KR, Frankena H, Scholtens E, et al. Absorption, serum levels and urinary excretion of inorganic sulfate after oral administration of sodium sulfate in the conscious rat. Biochim Biophys Acta 1979; 586: 492–500.
  • Morris ME, Levy G. Absorption of sulfate from orally administered magnesium sulfate in man. J Toxicol Clin Toxicol 1983; 20: 107–114.
  • Florin T, Neale G, Gibson GR, et al. Metabolism of dietary sulphate: absorption and excretion in humans. Gut 1991; 32: 766–773.
  • Roediger WE, Duncan A, Kapaniris O, et al. Sulfide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin Sci 1993; 85: 623–627.
  • Christl SU, Gibson GR Cummings JH. Role of dietary sulfate in the regulation of methanogenesis in the human large intestine. Gut 1992; 33: 1234–1238.
  • Martensson J. The effects of short-term fasting on the excretion of sulfur compounds in healthy subjects. Metabolism 1982; 31: 487–492.
  • Cheema-Dhadli S, Halperin ML. Relative rates of appearance of nitrogen and sulfur: implications for postprandial synthesis of proteins. Can J Physiol Pharmacol 1993; 71: 120–127.
  • McNally ME, Atkinson SA Cole DE. Contribution of sulfate and sulfoesters to total sulfur intake in infants fed human milk. J Nutr 1991; 121: 1250–1254.
  • Denis W. Sulfates in blood. J Biol Chem 1921; 49: 311–317.
  • Folin O. On sulfate and sulfur determinations. J Biol Chem 1904-5; 1: 131–159.
  • Cuthbertson DP, Tompsett SL. A preliminary note on the inorganic sulphate content of the blood with a method for its determination. Biochem J 1931; 25: 1237–1243.
  • Kleeman CR, Taborsky E Epstein FH. Improved method for determination of inorganic sulfate in biologic fluids. Proc Soc Exp Biol Med 1956; 91: 480–483.
  • Berglund F, Sorbo B. Turbidimetric analysis of inorganic sulfate in serum, plasma and urine. Scand J Clin Lab Invest 1960; 12: 147–153.
  • Lundquist P, Martensson J, Sorbo B, et al. Turbidimetry of inorganic sulfate, ester sulfate, and total sulfur in urine. Clin Chem 1980; 26: 1178–1181.
  • Sorbo B. Sulfate: turbidimetric and nephelometric methods. Methods Enzymol. 1987; 143: 36.
  • Henry RJ. Sulfate. In: Clinical chemistry: Principles and techniques. pp. 416-421. New York: Harper & Row, 1964.
  • Geise RJ, Machnicki NI Ianniello RM. Determination of chloride, sulfate, nitrate, and phosphate in N-methyl-2-pyrrolidone and gamma-butyrolactone by capillary electrophoresis. J Liquid Chromatogr 1993; 16: 3699–3712.
  • Boismenu D, Robitaille L, Hamadeh MJ, et al. Measurement of sulfate concentrations and Tracer/Tracee ratios in biological fluids by electrospray tandem mass spectrometry. Anal Biochem 1998; 261: 93–99.
  • Sullivan DM. Sulfate determination: ion chromatography. Methods Enzymol 1987; 143: 7–11.
  • Cole DE, Evrovski J. Quantitation of sulfate and thiosulfate in clinical samples by ion chromatography. J Chromatogr A 1997; 789: 221–232.
  • Kock R, Schneider H, Delvoux B, et al. The determination of inorganic sulphate in serum and synovial fluid by high performance ion chromatography. Eur J Clin Chem Clin Biochem 1997; 35: 679–685.
  • Tallgren LG. Inorganic sulfates in relation to the serum thyroxine level and in renal failure. Acta Med Scand Suppl 1980; 640: 1–100.
  • Cole DEC, Scriver CR. Microassay of inorganic sulfate in biological fluids by controlled flow anion chromatography. J Chromatogr 1981; 225: 359–367.
  • Cole DEC, Shafai J Scriver CR. Inorganic sulfate in cerebrospinal fluid from infants and children. Clin Chim Acta 1982; 120: 153–159.
  • Morris ME, Levy G. Assay of inorganic sulfate in biologic fluids by nonsuppressed (single-column) ion chromatography. Anal Biochem 1988; 172: 16–21.
  • Morris ME, Gengo FM, Kinkel WR, et al. Effect of acetaminophen on inorganic sulfate concentrations in human cerebrospinal fluid. JPharm Sci 1986; 75: 722–723.
  • Morris ME, Galinsky RE Levy G. Depletion of endogenous inorganic sulfate in the mammalian central nervous system by acetaminophen. J Pharm Sci 1984; 73: 853.
  • Richmond J, Hastings AB. Distribution equilibria of sulfate in vitro between red blood cells and plasma. Am J Physiol 1960; 199: 821–823.
  • Tanner MJ. The structure and function of band 3 (AE1): recent developments. Mol Membr Biol 1997; 14: 155–165.
  • Lux SE, John KM, Kopito RR, et al. Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci USA 1989; 86: 9089–9093.
  • Sekler I, Lo RS, Mastrocola T, et al. Sulfate transport mediated by the mammalian anion exchangers in reconstituted proteoliposomes. J Biol Chem 1995; 270: 11251–11256.
  • Markovich D, Stange G, Bertran J, et al. Two mRNA transcripts (rBAT-1 and rBAT-2) are involved in system b0,(+)-related amino acid transport. J Biol Chem 1993; 268: 1362–1367.
  • Bourdillon J, Lavietes PH. Observations on the fate of sodium sulfate injected intravenously in man. J Clin Invest 1936; 15: 301–311.
  • Macchia DD, Makiejus R Rizos S. Influence of cation markers on sulfate distribution in mouse gastrocnemius muscle. Pflugers Arch 1986; 407: 235–237.
  • Moseley RH, Boyer JL. Mechanisms of electrolyte transport in the liver and their functional significance. Semin Liver Dis 1985; 5: 122–135.
  • Hugentobler G, Meier PJ. Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles. Am J Physiol 1986; 251: G656–G664.
  • Garcia C, Montuenga LM, Medina JF, et al. In situ detection of AE2 anion-exchanger mRNA in the human liver. Cell Tissue Res 1998; 291: 481–488.
  • Rao AM, Drake MR Stipanuk MH. Role of the transsulfuration pathway and of gamma-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepato-cytes. J Nutr 1990; 120: 837–845.
  • Aiuchi T, Arai M, Nakaya K, et al. Characterization of anion permeability in AH-66 hepatoma ascites cells. J Biochem (Tokyo) 1983; 93: 81–86.
  • Keller JM, Keller KM. Amino acid sulfur as a source of sulfate for sulfated proteoglycans produced by Swiss mouse 3T3 cells. Biochim Biophys Acta 1987; 926: 139–144.
  • Wolpaw EW, Martin DL. Sulfate-chloride exchange transport in a glioma cell line. Biochim Biophys Acta 1986; 855: 302–311.
  • Mohapatra NK, Cheng PW, Parker JC, et al. Sulfate concentrations and transport in human bronchial epithelial cells. Am J Physiol 1993; 264: C1231–C1237.
  • Stipanuk MH, De la Rosa J Hirschberger LL. Catabolism of cyst(e)ine by rat renal cortical tubules. J. Nutr 1990;120:450–458.
  • Stipanuk MH, Coloso RM, Garcia RA, et al. Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. J Nutr 1992; 122: 420–427.
  • Garcia RA, Stipanuk MH. The splanchnic organs, liver and kidney have unique roles in the metabolism of sulfur amino acids and their metabolites in rats. J Nutr 1992; 122: 1693–1701.
  • Chou HF, Passage M Jonas AJ. Regulation of lysosomal sulfate transport by thyroid hormone. J Biol Chem 1994; 269: 23524–23529.
  • Chou HF, Passage M Jonas AJ. ATP stimulates lysosomal sulfate transport at neutral pH: evidence for phosphorylation of the lysosomal sulphate carrier. Biochem J. 1997; 327: 781786.
  • Chou HF, Passage M Jonas AJ. Lysosomal sulphate transport is dependent upon sulfydryl groups. Biochem J 1998; 330: 713–717.
  • Jonas AJ, Jobe H. Sulfate transport by rat liver lysosomes. J Biol Chem 1990; 265: 1754517549.
  • Crompton M, Palmieri F, Capano M, et al. A kinetic study of sulphate transport in rat liver mitochondria. Biochem J 1975; 146: 667–673.
  • Saris NE. Sulfate transport by H+ symport and by the dicarboxylate carrier in mitochondria. Biochem J 1980; 192: 911–917.
  • Beck L, Mahfoudi A, Mularoni A, et al. Progesterone stimulates sulfate uptake in subcultured endometrial epithelial cells. Mol Cell Endocrinol 1992; 90: 95–102.
  • Imai Y, Yanagishita M Hascall VC. Measurement of contribution from intracellular cysteine to sulfate in phosphoadenosine phosphosulfate in rat ovarian granulosa cells. Arch Biochem Biophys 1994; 312: 392–400.
  • Dieu JP. Automated determination of urinary inorganic sulfates with the “AutoAnalyzer”. Clin Chem 1971; 17: 1183–1185.
  • Miller E, Hlad CJJ, Levine S, et al. Use of radioisotopes to measure body fluids constituents. II. Urine sulfate. J Lab Clin Med 1963; 62: 710–714.
  • Belcher R, Bogdanski SL, Rix IH, et al. A review of methods for the determination of sulphate in urine. Mikrochim Acta 1977; II: 81–90.
  • Simmons WK. Use of the inorganic sulfate sulfur-creatinine ratio in field studies. Am J Clin Nutr 1973; 26: 72–76.
  • Kagamimori S, Naruse Y, Matsubara I, et al. Genetic and environmental effects on urinary kallikrein, catecholamines, sodium, potassium, urea nitrogen and inorganic sulfate sulfur levels in school-age twins. Hum Hered 1996; 46: 1–6.
  • Bella DL, Stipanuk MH. Effects of protein, methionine, or chloride on acid-base balance and on cysteine catabolism. Am J Physiol 1995; 269: E910–E917
  • Werness PG, Brown CM, Smith LH, et al. EQUIL2: a BASIC computer program for the calculation of urinary saturation. J Urol 1985; 134: 1242–1244.
  • Brown CM, Ackermann DK Purich DL. EQUIL93: a tool for experimental and clinical urolithiasis. Urol Res 1994; 22: 119–126.
  • Robert M, Boularan AM, Colette C, et al. Urinary calcium oxalate saturation in 'stone formers' and normal subjects: an application of the EQUIL2 program. Br J Urol 1994; 73: 358–361.
  • Singh RP, Nancollas GH. Determination of phosphate, sulfate and oxalate in urine by ion chromatography. J Chromatogr 1988; 433: 373–376.
  • Blau N, Matasovic A, Lukasiewicz-Wedlechowicz A, et al. Simultaneous determination of oxalate, glycolate, citrate, and sulfate from dried urine filter paper spots in a pediatric population. Clin Chem 1998; 44: 1554–1556.
  • Puche RC, Vaccaro D, Sanchez A, et al. Increased fractional excretion of sulfate in stone formers. Br J Urol 1993; 71: 523–526.
  • Lemann JJ, Relman AS. the relation of sulfur metabolism to acid-base balance and electrolyte excretion: The effects of DL-methionine in normal man. J Clin Invest 1959; 38: 2215–2223.
  • Tschope W, Ritz E. Sulfur-containing amino acids are a major determinant of urinary calcium. Miner Electrolyte Metab 1985; 11: 137–139.
  • Jourdan M, Glock C, Margen S, et al. Sulfate, acid-base, and mineral balances of obese women during weight loss. Am J Clin Nutr 1980; 33: 236–243.
  • Chan JC. Hydrogen ion production secondary to metabolism of sulfur-amino acids and organic acids. Nutr Metab 1978; 22: 288–294.
  • Chan JC. Nutrition and acid-base metabolism. Fed Proc. 1981; 40: 2423–2428.
  • Cole DE, McPhee MD Crocker JF. The hypocalcemic effect of inorganic sulfate infusions. Nephron 1989; 53: 78–80.
  • Whiting SJ, Cole DE. The comparative effects of feeding ammonium carbonate, ammonium sulfate, and ammonium chloride on urinary calcium excretion in the rat. Can J Physiol Pharmacol 1987; 65: 2202–2204.
  • Couzy F, Kastenmayer P, Vigo M, et al. Calcium bioavailability from a calcium- and sulfate-rich mineral water, compared with milk, in young adult women. Am J Clin Nutr 1995; 62: 1239–1244.
  • McPhee MD, Atkinson SA Cole DE. Quantitation of free sulfate and total sulfoesters in human breast milk by ion chromatography. J Chromatograph 1990; 527: 41–50.
  • Hoppe B, Roth B, Bauerfeld C, et al. Oxalate, citrate, and sulfate concentration in human milk compared with formula preparations: influence on urinary anion excretion. J Pediatr Gastroenterol Nutr 1998; 27: 383–386.
  • Cole DEC, Boucher MJ. Use of a new sample-collection device (Macroduct) in anion analysis of human sweat. Clin Chem 1986; 32: 1375–1378.
  • Cole DE, Boucher MJ. Increased sweat sulfate concentrations in chronic renal failure. Nephron 1986; 44: 92–95.
  • Cole DEC, Baldwin LS Stirk LJ. Increased inorganic sulfate in mother and fetus at parturition: evidence for a fetal-to-maternal gradient. Am J Obstet Gynecol 1984; 148: 596–599.
  • Cole DE, Koltay M Scriver CR. Sulfate transport by mouse renal cortical slices does not represent uptake by brush-border membrane. Biochim Biophys Acta 1984; 776: 113–121.
  • Cole DE, Rastogi N. Sulfate transport in human placenta: further evidence for a sodium-independent mechanism. Biochim Biophys Acta 1991; 1064: 287–292.
  • Grassl SM. Sulfate transport in human placental brush-border membrane vesicles. Biochim Biophys Acta 1996; 1282: 115–123.
  • Boyd CA, Shennan DB. Human placental sulphate transport: studies on chorionic trophoblast brush border membrane vesicles. J Physiol (London) 1986; 377: 15–24.
  • Boyd CA. Cotransport systems in the brush border membrane of the human placenta. Ciba Found Symp 1983; 95: 300–326.
  • Shennan DB, Boyd CA. Ion transport by the placenta: a review of membrane transport systems. Biochim Biophys Acta 1987; 906: 437–457.
  • Cole DEC, Baskin K, Grant AG, et al. Sulfate transfer in the dually perfused placenta. J Mat Fetal Med 1994; 3: 119–125.
  • Cole DE, Oulton M, Stirk LJ, et al. Increased inorganic sulfate concentrations in amniotic fluid. J Perinat Med 1992; 20: 443–447.
  • Muller F, Dommergues M, Bussieres L, et al. Development of human renal function: reference intervals for 10 biochemical markers in fetal urine. Clin Chem 1996; 42:1855–1860.
  • Cole DE, Baldwin LS Stirk LJ. Increased renal reabsorption of inorganic sulfate in third-trimester high-risk pregnancies. Obstet Gynecol 1985; 66: 485–490.
  • Wakefield EG, Power MH Keith N. Inorganic sulphates in the serum in early renal insufficiency: Significance of determinations. JAMA 1931; 97: 913–917.
  • Hayman JMJ. The excretion of inorganic sulfates. J Clin Invest 1932; 11: 607–619.
  • Macy JW. Significance of the inorganic sulfate clearance in renal disease. Arch Int Med 1934; 54: 389–404.
  • Kirschbaum B. Effect of hemodialysis on the hypersulfatemia of chronic renal failure. ASAIO J 1998; 44: 314–318.
  • Holmes JH, Miller ES Hlad CJJ. Serum and urine sulfate changes in uremia. Tr Am Soc Int Org 1960; 6: 163–175.
  • Power MH, Wakefield EG. A volumetric benzidine method for the determination of inorganic and ethereal sulfate in serum. J Biol Chem 1938; 123: 665–678.
  • Brown BH, Lewis HB. The metabolism of sulfur. XXVII. The distribution of sulfur in the ultrafiltrates of blood plasma. J Biol Chem. 1941; 138: 705–726.
  • Stanfel LA, Gulyassy PF Jarrard EA. Determination of indoxyl sulfate in plasma of patients with renal failure by use of ion-pairing liquid chromatography. Clin Chem 1986; 32: 938–942.
  • Cuche JL, Prinseau J, Selz F, et al. Plasma free, sulfo- and glucurono-conjugated catechola-mines in uremic patients. Kidney Int 1986; 30: 566–572.
  • Cuche JL, Safar M. Potential role of the renal tubule in fixing the level of plasma sulfoconjugated catecholamines in the dog. J Lab Clin Med 1992; 119: 391–396.
  • Hanze S. Serumsulfat und Sulfatclearance bei normaler und eingeschrankter Nierenfunktion. Klin Wochenschr 1966; 44: 1247–1251.
  • Freeman RM, Richards CJ. Studies on sulfate in end-stage renal disease. Kidney Int 1979; 15: 167–175.
  • Michalk D, Klare B, Manz F, et al. Plasma inorganic sulfate in children with chronic renal failure. Clin Nephrol 1981; 16: 8–12.
  • Cole DEC, Hanning RM, et al. Clearance of inorganic sulfate by peritoneal dialysis in children with chronic renal failure. Nephron 1986; 44: 186–190.
  • Michalk D, Manz F, Muller-Wiefel DE, et al. Renal handling of inorganic sulfate in children with chronic kidney disorders. Miner Electrolyte Metab 1982; 8: 255–260.
  • Morris ME, Freer JP Watson WA. Sulfate homeostasis. III. Effect of chronic naproxen or sulindac treatment on inorganic sulfate disposition in arthritic patients with renal impairment. Pharm Res 1991; 8: 242–246.
  • Kan M, Kashiwagi H Maeda K. Determination of the total amount of inorganic sulfate removed during hemodialysis treatment. Clin Chim Acta 1981; 114: 275–278.
  • Marangella M, Petrarulo M, Cosseddu D, et al. Plasma profiles and removal rates of inorganic sulfate, and their influence on serum ionized calcium, in patients on maintenance haemodialysis. Clin Sci (Colch) 1991; 80: 489–495.
  • Michalk D, Tschope W, Bohles HJ, et al. Possible role of inorganic sulphate in the pathogenesis of hyperparathyroidism in chronic renal failure. Proc Eur Dial Transplant Assoc 1981; 18: 561–566.
  • Cole DEC, Tenenhouse HS Scriver CR. Elevated serum sulfate (SO4) after 1,25(OH)2D3 treatment: a marker for decreased glomerular filtration (GR) with hypercalcemia? [abstract]. Pediat Res 1981; 15: 691.
  • Cole DE, Evans JR Raad M, Hamilton DC. Inorganic sulfate metabolism in the very low birth weight infant. Biol Neonate 1990; 57: 292–299.
  • Fernandes I, Hampson G, Cahours X, et al. Abnormal sulfate metabolism in vitamin D-deficient rats. J Clin Invest 1997; 100: 2196–2203.
  • Ricci J, Oster JR, Gutierrez R, et al. Influence of magnesium sulfate-induced hypermagnesemia on the anion gap: role of hypersulfatemia. Am J Nephrol 1990; 10: 409–411.
  • Cole DEC, McPhee MD Zlotkin SH. Relationship between the sulfur content of total parenteral nutrition and sulfoester excretion in low-birth weight infants. Am J Clin Nutr 1988; 47: 128133.
  • Morris RC, Piel CF Audioun E. Renal tubular acidosis. Effects of sodium phosphate and sulfate on renal acidification in two patients with renal tubular acidosis. Pediatrics 1965; 36: 899–904.
  • Batlle DC, Sehy JT, Roseman MK, et al. Clinical and pathophysiologic spectrum of acquired distal renal tubular acidosis. Kidney Int 1981; 20: 389–396.
  • Blum JE, Coe FL. Metabolic acidosis after sulfur ingestion. N Engl J Med 1977; 297: 869870.
  • Schwartz SM, Carroll HM Scharschmidt LA. Sublimed (inorganic) sulfur ingestion: a cause of life-threatening metabolic acidosis with a high anion gap. Arch Int Med 1986; 146: 14371438.
  • Friedman AL, Trygstad CW Chesney RW. Autosomal dominant Fanconi syndrome with early renal failure. Am J Med Genet 1978; 2: 225–232.
  • Tolaymat A, Sakarcan A Neiberger R. Idiopathic Fanconi syndrome in a family. I. Clinical aspects. J Am Soc Nephrol 1992; 2: 1310–1317.
  • Zamlauski-Tucker MJ, Morris ME Springate JE. Ifosfamide metabolite chloroacetaldehyde causes Fanconi syndrome in the perfused rat kidney. Toxicol Appl Pharmacol 1994; 129: 170175.
  • Cole DEC, Blight C, Digout S, et al. Impaired renal handling of inorganic sulfate in idiopathic Fanconi Syndrome [abstract]. J Am Soc Nephrol 1991; 2: 265A.
  • Shih VE, Abroms IF, Johnson JL, et al. Sulfite oxidase deficiency. Biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. N Engl J Med 1977; 297: 1022–1028.
  • Percy A, Mudd H, Irreverre F, et al. Sulfite oxidase deficiency: Sulfate esters in tissues and urine. Biochem Med 1968; 2: 198–208.
  • van der Klei-van Moorsel JM, Smit LM, Brockstedt M, et al. Infantile isolated sulphite oxidase deficiency: report of a case with negative sulphite test and normal sulphate excretion. Eur J Pediatr 1991; 150: 196–197.
  • Cole DE, Evrovski J Pirone R. Urinary thiosulfate determined by suppressed ion chromatography with conductimetric detection. J Chromatogr B 1995; 672: 149–154.
  • Cole DE, Evrovski J. Screening for sulfite oxidase deficiency with urinary thiosulfate/sulfate ratios determined by anion chromatography. Clin Chem 1996; 42: 654–655.
  • Mulder GJ, Scholtens E. The availability of inorganic sulfate in blood for sulphate conjugation of drugs in rat liver in vivo. (35S)Sulfate incorporation into harmol sulfate. Biochem J 1978; 172: 247–251.
  • Lin JH, Levy G. Renal clearance of inorganic sulfate in rats: effect of acetaminophen-induced depletion of endogenous sulfate. J Pharm Sci 1983; 72: 213–217.
  • Morris ME, Levy G. Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clin Pharmacol Ther 1983; 33: 529–536.
  • Hendrix-Treacy S, Wallace SM, Hindmarsh KW, et al. The effect of acetaminophen administration on its disposition and body stores of sulfate. Eur J Clin Pharmacol 1986; 30: 273278.
  • Weitering JG, Krijgsheld KR Mulder GJ. The availability of inorganic sulphate as a rate limiting factor in the sulphate conjugation ofxenobiotics in the rat? Sulfation and glucuronidation of phenol. Biochem Pharmacol 1979; 28: 757–762.
  • Kim HJ, Cho JH Klaassen CD. Depletion of hepatic 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and sulfate in rats by xenobiotics that are sulfated. J Pharmacol Exp Ther 1995; 275: 654–658.
  • Kim HJ, Madhu C, Cho JH, et al. In vivo modification of 3'-phosphoadenosine 5'-phosphosulfate and sulfate by infusion of sodium sulfate, cysteine, and methionine. Drug Metab Dispos 1995; 23: 840–845.
  • Lin JH, Levy G. Effect of prevention of inorganic sulfate depletion on the pharmacokinetics of acetaminophen in rats. J Pharmacol Exp Ther 1986; 239: 94–98.
  • Lin JH, Levy G. Sulfate depletion after acetaminophen administration and replenishment by infusion of sodium sulfate or N-acetylcysteine in rats. Biochem Pharmacol 1981; 30: 27232725.
  • Galinsky RE, Levy G. Evaluation of activated charcoal-sodium sulfate combination for inhibition of acetaminophen absorption and repletion of inorganic sulfate. J Toxicol Clin Toxicol 1984; 22: 21–30.
  • Levy G, Galinsky RE Lin JH. Pharmacokinetic consequences and toxicologic implications of endogenous cosubstrate depletion. Drug Metab Rev 1982; 13: 1009–1020.
  • van der Kraan PM, Vitters EL, de Vries BJ, et al. Synthesis of aberrant glycosaminoglycans during cartilage culture in 'sulfate free' medium. J Biochem Biophys Methods 1988; 15: 273277.
  • de Vries BJ, van den Berg WB, Vitters E, et al. The effect of salicylate on anatomically intact articular cartilage is influenced by sulfate and serum in the culture medium. J Rheumatol 1986; 13: 686–693.
  • van der Kraan PM, de Vries BJ, van den Berg WB, et al. Effects of drug-mediated serum sulfate depletion on glycosaminoglycan synthesis. Agents Actions 1988; 23: 55–57.
  • Spiro MJ. Sulfate metabolism in the alloxan-diabetic rat: relationship of altered sulfate pools to proteoglycan sulfation in heart and other tissues. Diabetologia 1987; 30: 259–267.
  • Morris ME, Kwon O Mansfield IL. Sulfate homeostasis. I. Effect of salicylic acid and its metabolites on inorganic sulfate in rats. J Pharmacol Exp Ther 1988; 244: 945–949.
  • de Vries BJ, van den Berg WB van de Putte LB. Salicylate-induced depletion of endogenous inorganic sulfate. Potential role in the suppression of sulfated glycosaminoglycan synthesis in murine articular cartilage. Arthritis Rheum 1985; 28: 922–929.
  • Morris ME, Benincosa LJ. Sulfate homeostasis. II. Influence of chronic aspirin administration on inorganic sulfate in humans. Pharm Res 1990; 7: 719–722.
  • Darling IM, Mammarella ML, Chen Q, et al. Salicylate inhibits the renal transport of inorganic sulfate in rat membrane vesicle preparations. Drug Metab Dispos 1994; 22: 318–323.
  • de Vries BJ, van der Kraan PM van den Berg WB. Decrease of inorganic blood sulfate following treatment with selected antirheumatic drugs: potential consequence for articular cartilage. Agents Actions 1990; 29: 224–231.
  • Bradley H, Gough A, Sokhi RS, et al. Sulfate metabolism is abnormal in patients with rheumatoid arthritis. Confirmation by in vivo biochemical findings. J Rheumatol 1994; 21: 1192–1196.
  • Martensson J, Hermansson G. Sulfur amino acid metabolism in juvenile-onset nonketotic and ketotic diabetic patients. Metabolism 1984; 33: 425–428.
  • Templeton DM, Wang A. Conserved charge of glomerular and mesangial cell proteoglycans: possible role of amino acid-derived sulfate. Can J Physiol Pharmacol 1992; 70: 843–852.
  • Fan MY, Templeton DM. Sulfate metabolism in experimental diabetes. Diabete Metab 1992; 18: 98–103.
  • Sobue M, Takeuchi J, Ito K, et al. Effect of environmental sulfate concentration on the synthesis of low and high sulfated chondroitin sulfates by chick embryo cartilage. J Biol Chem 1978; 253: 6190–6196.
  • Ito K, Kimata K, Sobue M Suzuki S. Altered proteoglycan synthesis by epiphyseal cartilages in culture at low SO42-concentration. J Biol Chem 1982; 257: 917–923.
  • Humphries DE, Silbert CK Silbert JE. Glycosaminoglycan production by bovine aortic endothelial cells cultured in sulfate-depleted medium. J Biol Chem 1986; 261: 9122–9127.
  • Silbert JE, Palmer ME, Humphries DE, et al. Formation of dermatan sulfate by cultured human skin fibroblasts. Effects of sulfate concentration on proportions of dermatan/chondroitin. J Biol Chem 1986; 261: 13397–13400.
  • Lidholt K, Kjellen L Lindahl U. Biosynthesis of heparin. Relationship between the polymerization and sulphation processes. Biochem J 1989; 261: 999–1007.
  • Tyree B, Hassell JR Hascall VC. Altered synthesis of heparan sulfate proteoglycans at low sulfate concentration. Arch Biochem Biophys 1986; 250: 202–210.
  • Hastbacka J, Superti-Furga A, Wilcox WR, et al. Sulfate transport in chondrodysplasia. Ann NY Acad Sci 1996; 785: 131–136.
  • Rossi A, Bonaventure J, Delezoide AL, et al. Undersulfation of proteoglycans synthesized by chondrocytes from a patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter. J Biol Chem 1996; 271: 18456–18464.
  • Rossi A, Bonaventure J, Delezoide AL, et al. Undersulfation of cartilage proteoglycans ex vivo and increased contribution of amino acid sulfur to sulfation in vitro in McAlister dysplasia/ atelosteogenesis type 2. Eur J Biochem 1997; 248: 741–747.
  • Superti-Furga A, Hastbacka J, Rossi A, et al. A family of chondrodysplasias caused by mutations in the diastrophic dysplasia sulfate transporter gene and associated with impaired sulfation of proteoglycans. Ann NY Acad Sci 1996; 785: 195–201.
  • Superti-Furga A, Rossi A, Steinmann B, et al. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: genotype/phenotype correlations. Am J Med Genet 1996; 63: 144–147.
  • Rossi A, Kaitila I, Wilcox WR, et al. Proteoglycan sulfation in cartilage and cell cultures from patients with sulfate transporter chondrodysplasias: relationship to clinical severity and indications on the role of intracellular sulfate production. Matrix Biol 1998; 17: 361–369.
  • Byeon MK, Frankel A, Papas TS, et al. Human DRA functions as a sulfate transporter in Sf9 insect cells. Protein Expr Purif 1998; 12: 67–74.
  • Kere J, Lohi H Hoglund P. Genetic disorders of Membrane Transport. III. Congenital chloride diarrhea. Am J Physiol 1999; 276: G7–G13
  • Freel RW, Hatch M Vaziri ND. cAMP-dependent sulfate secretion by the rabbit distal colon: a comparison with electrogenic chloride secretion. Am J Physiol 1997; 273: C148–C160
  • Morton CC. Sounding out a novel sulfate transporter. Nat Genet 1997; 17: 370–371.
  • Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997; 17: 411–422.
  • Scott DA, Wang R, Kreman TM, et al. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 1999; 21: 440–443.
  • Franzon VL, Gibson MA, Hatzinikolas G, et al. Molecular cloning of a novel human PAPS synthetase which is differentially expressed in metastatic and non-metastatic colon carcinoma cells. Int J Biochem Cell Biol 1999; 31: 613–626.
  • Zhang Y, Doranz B, Yankaskas JR, et al. Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis. J Clin Invest 1995; 96: 2997–3004.
  • Hill WG, Harper GS, Rozaklis T, et al. Organ-specific over-sulfation of glycosaminoglycans and altered extracellular matrix in a mouse model of cystic fibrosis. Biochem Mol Med 1997; 62: 113–122.
  • Elgavish A, Meezan E. Increased sulfate uptake in skin fibroblasts isolated from cystic fibrosis patients. Biochem Biophys Res Commun 1988; 152: 99–106.
  • Cheng PW, Boat TF, Cranfill K, et al. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 1989; 84: 68–72.
  • Cole DE, Landry DA, Boucher MJ, et al. Sweat sulfate concentrations are decreased in cystic fibrosis. Clin Chim Acta 1986; 155: 237–243.
  • Mohapatra NK, Cheng PW, Parker JC, et al. Alteration of sulfation of glycoconjugates, but not sulfate transport and intracellular inorganic sulfate content in cystic fibrosis airway epithelial cells. Pediatr Res 1995; 38: 42–48.
  • Mohapatra NK, Cheng PW, Parker JC, et al. Sulfate concentrations and transport in human bronchial epithelial cells. Am J Physiol 1993; 264: C1231–C1237
  • Pasyk EA, Foskett JK. Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3'-phosphate 5'-phosphosulfate channels in endoplasmic reticulum and plasma membranes. J Biol Chem 1997; 272: 7746–7751.
  • Pillion DJ, Neumeier TT Meezan E. Serum sulfate levels in patients with cystic fibrosis. Clin Chim Acta 1984; 142: 241–247.
  • Heafield MT, Fearn S, Steventon GB, et al. Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson's and Alzheimer's disease. Neurosci Lett 1990; 110: 216–220.
  • Perry TL, Krieger C, Hansen S, et al. Amyotrophic lateral sclerosis: fasting plasma levels of cysteine and inorganic sulfate are normal, as are brain contents of cysteine. Neurology 1991; 41: 487–490.
  • Steventon GB, Waring RH, Heafield MT, et al. Cystine, sulfate, and ALS. Neurology 1991; 41: 1851–1852.
  • Olomu AB, Vickers CR, Waring RH, et al. High incidence of poor sulfoxidation in patients with primary biliary cirrhosis. N Engl J Med 1988; 318: 1089–1092.
  • Horowitz JH, Rypins EB, Henderson JM, et al. Evidence for impairment of transsulfuration pathway in cirrhosis. Gastroenterology 1981; 81: 668–675.
  • Martensson J, Foberg U, Fryden A, et al. Sulfur amino acid metabolism in hepatobiliary disorders. Scand J Gastroenterol 1992; 27: 405–411.
  • Baldetorp L, Martensson J. Urinary excretion of inorganic sulfate, ester sulfate, total sulfur and taurine in cancer patients. Acta Med Scand 1980; 208: 293–295.
  • Papadopoulou DB. Urinary sulfur partition in normal men and cancer patients. Clin Chem 1957; 3: 257–262.
  • O'Reilly BA, Waring RH. Enzyme and sulfur oxidation deficiency in autistic children with known food/chemical intolerances. J Orthomol Med 1993; 8: 198–200.
  • Baldetorp L, Martensson J. Urinary excretion of inorganic sulfate, ester sulfate, total sulfur and taurine in cancer patients. Acta Med Scand 1980; 208: 293–295.
  • Hack V, Gross A, Kinscherf R, et al. Abnormal glutathione and sulfate levels after interleukin 6 treatment and in tumor-induced cachexia. FASEB J 1996; 10: 1219–1226.
  • Gordon C, Bradley H, Waring RH, et al. Abnormal sulphur oxidation in systemic lupus erythematosus. Lancet 1992; 339: 25–26.
  • Murer H, Manganel M Roch-Ramel F. Tubular transport of monocarboxylates, Krebs cycle intermediates, and inorganic sulfate. In: Winghager EE (ed). Handbook of physiology section 8: renal physiology. pp. 2165-2188. New York: Oxford University Press, 1992.
  • Cole DEC, Scriver CR. Age-dependent serum sulfate levels in children and adolescents. Clin Chim Acta 1980; 107: 135–139.
  • Cole DEC, Thurgood AM Whiting SJ. Increased serum sulfate after protein loading in adult humans. Can J Physiol Pharmacol 1991; 69: 25–27.
  • Hoffman DA, Wallace SM Verbeeck RK. Circadian rhythm of serum sulfate levels in man and acetaminophen pharmacokinetics. Eur J Clin Pharmacol 1990; 39: 143–148.
  • Benincosa LJ, Sagawa K, Massey LK, et al. Effects of acute caffeine ingestion and menopause on sulfate homeostasis in women. Life Sci 1995; 57: 1497–1505.
  • Cole DEC, Baldwin LS Stirk LJ. Increased serum sulfate in pregnancy: relationship to gestational age. Clin Chem 1985; 31: 866–867.
  • Morris ME, Levy G. Plasma inorganic sulfate concentrations in pregnant women. J Pharm Sci 1983; 72: 715–716.
  • Berlyne GM, Bedrak E Yagil R. Metabolic effects of drinking mineral waters. Q J Med 1973; 42: 793–803.
  • Chien L, Robertson H Gerrard JW. Infantile gastroenteritis due to water with high sulfate content. Can Med Assoc J 1968; 99: 102–104.
  • Michalk D, Manz F. Determination of inorganic plasma sulfate by indirect atomic absorption spectrophotometry. Clin Chim Acta 1980; 107: 43–48.
  • Cole DEC, Mohyuddin F Scriver CR. A microassay for analysis of serum sulfate. Anal Biochem 1979; 100: 339–342.
  • Miller E, Hlad CJJ, Levine S, et al. The use of radioisotopes to measure body fluids constituents. I. Plasma sulfate. J Lab Clin Med 1961; 58: 656–661.
  • Soliman H, Callebert J, Tabuteau F, et al. Serum inorganic sulfate: quantitation by a new radiochemical method. J Clin Chem Clin Biochem 1986; 24: 1029–1032.
  • Reiter C, Muller S Muller T. Improved method for the determination of sulphate in human serum using ion chromatography. J Chromatogr 1987; 413: 251–256.
  • de Jong, Burggraaf M. An ion chromatographic method for the simultaneous determination of inorganic phosphate, bromide, nitrate and sulfate in human serum. Clin Chim Acta 1983; 132: 63–71.
  • Koopman BJ, Jansen G, Wolthers BG, et al. Determination of inorganic sulfate in plasma by reversed-phase chromatography using ultraviolet detection and its application to plasma samples of patients receiving different types of hemodialysis. J Chromatogr 1985; 337: 259266.
  • Bissig M, Hagenbuch B, Stieger B, et al. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem 1994; 269: 3017–21.
  • Markovich D, Forgo J, Stange G, et al. Expression cloning of rat renal Na+/SO42-cotransport. Proc Natl Acad Sci USA 1993; 90: 8073–7.
  • Busch AE, Waldegger S, Herzer T, et al. Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+/SO42-transport protein NaSi-1. J Biol Chem 1994; 269: 12407–9.
  • Hastbacka J, de la Chapelle A, Mahtani MM, et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994; 78: 1073–87.
  • Satoh H, Susaki M, Shukunami C, et al. Functional analysis of diastrophic dysplasia sulfate transporter. Its involvement in growth regulation of chondrocytes mediated by sulfated proteoglycans. J Biol Chem 1998; 273: 12307–15.
  • Superti-Furga A. A defect in the metabolic activation of sulfate in a patient with achondrogenesis type IB. Am J Hum Genet 1994; 55: 1137–45.
  • Superti-Furga A, Hastbacka J, Wilcox WR, et al. Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat Genet 1996; 12: 100–2.
  • Hastbacka J, Superti-Furga A, Wilcox WR, et al. Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am J Hum Genet 1996; 58: 255–62.
  • Silberg DG, Wang W, Moseley RH, et al. The Down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J Biol Chem 1995; 270: 11897–902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.