80
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Molecular Mechanisms of Renal Sulfate Regulation

&
Pages 345-388 | Published online: 29 Sep 2008

References

  • Mulder GJ. Sulfation in vivo and in isolated cell preparations. In: Mulder GJ, ed. Sulfation of drugs and related compounds. Pp. 131–186. Boca Raton: CRC Press Inc., 1981.
  • Klaassen CD, Boles JW. The importance of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 1997; 11: 404418.
  • Galinsky RE, Levy G. Dose- and time-dependent elimination of acetaminophen in rats: Pharmacokinetic implications of cosubstrate depletion. J Pharmacol Exp Ther 1981; 219: 14–20.
  • Cocchetto DM, Levy G. Absorption of orally administered sodium sulfate in humans. J Pharm Sci 1981; 70: 331–333.
  • David G. Biology and pathology of the pericellular heparan sulfate proteoglycan. Biochem Soc Trans 1991; 19: 816–820.
  • Fukui S, Yoshida H, Tanaka T, et al. Glycosaminoglycan synthesis by cultured skin fibroblasts from a patient with Lowe's syndrome. J Biol Chem 1981; 256: 10313–10318.
  • Mohapatra NK, Cheng PW, Parker JC, et al. Alteration of sulfation of glycoconjugates, but not sulfate transport and intracellular inorganic sulfate content in cystic fibrosis airway epithelial Cells. Pediatr Res 1995; 38: 42–48.
  • Franz G, Alban S. Structure-activity relationship of antithrombotic polysaccharide derivatives. Int J Biol Macromol 1995; 17: 311–314.
  • Walenga JM, Petitou M, Samama M, et al. Importance of a 3-0-sulfate group in a heparin pentasaccharide for antithrombotic activity. Thromb Res 1988; 52: 553–563.
  • Witvrouw M, Clercq ED. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 1997; 29: 497–511.
  • Huttner WB. Protein tyrosine sulfation. Topics Biol Sci 1987; 12: 361–363.
  • Beinfeld MC. CCK biosynthesis and processing: recent progress and future challenges. Life Sci 1997; 61: 2359–2366.
  • Wu AM, Csako G, Herp A. Structure, biosynthesis and function of salivary mucins. Mol Cell Biochem 1994; 137: 39–55.
  • Robertson AM, Wright DP. Bacterical glycosulphatases and sulphomucin degradation. Can J Gasteroenterol 1997; 11: 361–366.
  • Dietrich CP, Sampaio LO, Toledo OMS, et al. cell recognition and adhesiveness: A possible biological role for the sulfated mucopolysaccharides. Biochem Biophys Res Commun 1977; 75: 329–336.
  • Dziewiatowski DD. Isolation of chondroitin sulfate-S35 from articular cartilage of rats. J Biol Chem 1951; 189: 187–190.
  • van der Kraan VM, de Vries BJ, van der Berg WB, et al. Effects of drug-mediated serum sulfate depletion on glycosaminoglycan synthesis. Agents Actions 1988; 23: 55–57.
  • Halstead PK, Roe DA. Effect of salicylamide on skeletal glycosaminoglycan sulfation and calcification in fetal rat limbs. Drug Nutr Interact 1981; 1: 75–86.
  • Woodward C, Davidson EA. Structure-function relationships of protein polysaccharide complexes: specific ion-binding properties. Proc Natl Acad Sci USA 1968; 60: 201–205.
  • Nurcombe I, Ford MD, Wildschut JA, et al. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 1993; 260: 103–106.
  • Hastbacka J, de la Chapelle A, Mahtani MM, et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 1994; 78: 1073–1087.
  • Superti-Furga A, Rossi A, Steinmann B, et al. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter. Am J Med Genet 1996; 63: 144–147.
  • Florin T, Neale G, Gibson GR, et al. Metabolism of dietary sulphate: absorption and excretion in humans. Gut 1991; 32: 766–773.
  • Chien L, Robertson H, Gerrard JW. Infantile gastroenteritis due to water with high sulfate content. Can Med Assoc 1968; 99: 102–104.
  • Finkelstein JD. Control of sulfur metabolism in mammals. In: Muth, OH, ed. Symposium-Sulfur in Nutrition. Pp. 46–60. Westpoint: AVI Publishing Co., 1970.
  • Tejnorova I. Sulfite oxidase activity in liver and kidney tissue in five laboratory animal species. Toxicol Appl Pharm 1978; 44: 251–256.
  • Smith JT, Acuff RV. An effect of dietary sulfur on liver inorganic sulfate in the rat. Ann Nutr Metab 1983; 27: 345–348.
  • Mulder, GJ. Sulfation availability in vivo. In: Mulder, GJ, ed. Sulfation of drugs and related compounds. Pp. 31–52. Boca Raton: CRC Press Inc., 1981.
  • Walser M, Seldin DW, Grollman A. An evaluation of radiosulfate for the determination of the volume of extracellular fluid in man and dogs. J Clin Invest 1953; 32: 299–311.
  • Bauer JH. Oral administration of radioactive sulfate to measure extracellular fluid space in man. J Appl Physiol 1976; 40: 648–650.
  • Ryan RJ, Pascal LR, Inoye T, et al. Experiences with radiosulfate in the estimation of physiologic extracellular water in healthy and abnormal man. J Clin Invest 1956; 31: 1119–1130.
  • Lundquist P, Martensson J, Sorbo B, et al. Turbidimetry of inorganic sulfate, ester sulfate, and total sulfur in urine. Clin Chem 1980; 26: 1178–1181.
  • Morris ME, Levy G. Absorption of sulfate from orally administered magnesium sulfate in man. J Toxicol Clin Toxicol 1983; 20: 107–114.
  • Michalk D, Manz F, Muller-Wiefel DE, et al. Renal handling of inorganic sulfate in children with chronic kidney disorders. Miner Electrolyte Metab 1982; 8: 225–260.
  • Liappis N. Geschlechtsspezifische Unterschiede der Ausscheidung von freiem, anorganischem Sulfat im 24-h-Harn von gesunden Kindern. Klin Padiatr 1977; 189: 248–252.
  • Lee H-J, Balasubramanian SV, Morris ME. Effect of pregnancy, postnatal growth and gender on renal sulfate transport. Proc Soc Exp Biol Med 1999; 221: 336–344.
  • Finnstrom O, Lundquist P, Martensson J, et al. The excretion of sulfur compounds in the urine of newborn infants. Metabolism 1983; 32: 732–735.
  • Lin JH, Levy G. Renal clearance of inorganic sulfate in rats: effect of acetami-nophen-induced depletion of endogenous sulfate. J Pharm Sci 1983; 72: 213217.
  • Morris ME, Galinsky RE, Levy G. Depletion of endogenous inorganic sulfate in the mammalian central nervous system by acetaminophen. J Pharm Sci 1984; 73: 853.
  • Bakhtian S, Kimura RE, Galinsky RE. Age-related changes in homeostasis of inorganic sulfate in male F-344 rats. Mech Ageing Develop 1993; 66: 257–267.
  • Morris ME, Levy G. Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clin Pharmacol Ther 1983; 33: 529–536.
  • Berglund F. Transport of inorganic sulfate by the renal tubules. Acta Physiol Scand 1960; 49: 4–37.
  • Walser, M, Browder, AA. Ion association. III. The effect of sulfate infusion on calcium excretion. Clin Invest 1959; 1404–1411.
  • Quamme GA. Effects of intraluminal sulfate on electrolyte transfers along the perfused rat nephron. Can J Physiol Pharmacol 1981; 59: 122–130.
  • Brazy PC, Dennis VW. Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am J Physiol 1981; 241: F300–F307.
  • Becker EL, Heinemann HO, Igarashi K, et al. Renal mechanisms for the excretion of inorganic sulfate in man. J Clin Invest 1960; 39: 1909–1913.
  • Hierholzer K, Cade R, Gurd R, et al. Stop-flow analysis of renal reabsorption and excretion of sulfate in the dog. Am J Physiol 1960; 198: 833–837.
  • Lotscher M, Custer M, Quabius ES, et al. Immunolocalization of Na/SO4 cotransport (NaSi-1) in rat kidney. Pflugers Arch 1996; 432: 373–378.
  • Frick A. Microperfusion studies in the inner medullary collecting duct in the isolated papilla of the rat kidney: evidence for an uptake of 35SO42-. Pharm Pharmacol Lett 1992; 2: 40–42.
  • Lucke H, Stange G, Murer H. Sulfate-ion/sodium-ion co-transport by brush-border membrane vesicles isolated from rat kidney cortex. Biochem J 1979; 182: 223–229.
  • Schneider EG, Durham JC, Sacktor B. Sodium-dependent transport of inorganic sulfate by rabbit renal brush border membrane vesicles. J Biol Chem 1984; 259: 14591–14599.
  • Ullrich KJ, Rumrich G, Kloss S. Bidirectional active transport of thiosulfate in the proximal convolution of the rat kidney. PJlugers Arch 1980; 387: 127–132.
  • Turner RJ. Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am J Physiol 1984; 247: F793–F798.
  • Busch AE, Waldegger S, Herzer T, et al. Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+/SO42-transport protein NaSi-1. J Biol Chem 1994; 269: 12407–12409.
  • Tenenhouse HS, Martel J. Na+-dependent sulfate transport in opossum kidney cells is DIDS sensitive. Am J Physiol 1993; 265: C54–C61.
  • Tenenhouse HS, Lee J, Harvey N. Renal brush-border membrane Na+-sulfate cotransport: Stimulation by thyroid hormone. Am J Physiol 1991; 261: F420–F426.
  • Mammarella ML, Morris ME. Thiosulfate inhibits the renal transport of inorganic sulfate in rat membrane vesicle preparations. Pharm Res 1993; 10: S–411.
  • Pritchard JB, Renfro JL. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc Natl Acad Sci USA 1983; 80: 2603–2607.
  • Low I, Friedrich T, Buckhardt G. Properties of an anion-exchanger in rat renal basolateral membrane vesicles. Am J Physiol 1984; 246: F334–F342.
  • Pritchard JB. Sulfate-bicarbonate exchange in brush-border membrane from rat renal cortex. Am J Physiol 1987; 252: F346–F356.
  • Darling IM, Mammarella ML, Chen Q, et al. Salicylate inhibits the renal transport of inorganic sulfate in rat membrane vesicle preparations. Drug Metab Disp 1994; 22: 318–323.
  • Shimada H, Burckhardt G. Kinetics studies of sulfate transport in basolateral membrane vesicles from rat renal cortex. Pflugers Arch 1986; 407: S160–S167.
  • Ullrich KJ, Rumrich G, Kloss S. Contraluminal sulfate transport in the proximal tubule of the rat kidney. I. Kinetics, effects of K+, Na+, Ca2+ H+ and anions. Pflugers Arch 1984; 402: 264–271.
  • Ullrich KJ, Rumrich G, Kloss S. Contraluminal sulfate transport in the proximal tubule of the rat kidney II. Specificity: sulfate-ester, sulfonates and amino sulfonates. Pflugers Arch 1985; 404: 293–299.
  • Ullrich KJ, Rumrich G, Kloss S. Contraluminal sulfate transport in the proximal tubule of the rat kidney. III. Specificity: disulfonates, di- and tri-carboxylates and sulfocarboxylates. Pflugers Arch 1985; 404: 300–306.
  • Ullrich KJ, Rumrich G, Kloss S. Contraluminal sulfate transport in the proximal tubule of the rat kidney. IV. Specificity: salicylate analogs. Pflugers Arch 1985; 404: 307–310.
  • Ullrich KJ, Fritzsch G, Rumrich G, et al. Polysubstrates: substances that interact with renal contraluminal PAH, sulfate, and NMeN transport: sulfamoyl-, sulfonyurea-, thiazide- and benzeneamino-carboxylate (nicotinate) compounds. J Pharmacol Exp Ther 1994; 269: 684–692.
  • Markovich D, Forgo J, Stange G, et al. Expression cloning of rat renal Na+/SO42-cotransport. Proc Natl Acad Sci USA 1993; 90: 8073–8077.
  • Markovich D, Bissig M, Sorribas V, et al. Expression of rat renal sulfate transport systems in Xenopus laevis oocytes. J Biol Chem 1994; 269: 30223026.
  • Pajor AM, Sun N, Bai L, et al. The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein. Biochim Biophys Acta 1998; 1370: 98–106.
  • Norbis F, Perego C, Markovich D, et al. cDNA cloning of a rat small-intestinal Na+/SO42-cotransporter. Pflugers Arch 1994; 428: 217–223.
  • Custer M, Murer H, Biber J. Nephron localization of Na/SO42-cotransport-related mRNA and protein. Pflugers Arch 1994; 429: 165–168.
  • Bissig M, Hagenbuch B, Stieger B, et al. Functional expression cloning ofthe canalicular sulfate transport system of rat hepatocytes. J Biol Chem 1994; 269: 3017–3021.
  • Karniski LP, Lotscher M, Fucentese M, et al. Immunolocalization of sat-1 sulfate/ oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 1998; 275: F79–F87.
  • Meier MS, Schmidt-Kessen W. Untersuchungen uber den Stoffwechsel des anor-ganischen Sulfates. Munch Med Wschr 1978; 120: 357–362.
  • Hoffman DA, Wallace SM, Verbeeck RK. Circadian rhythm of serum sulfate levels in man and acetaminophen pharmacokinetics. Eur J Clin Pharmacol 1990; 39: 143148.
  • Sabry ZI, Shadarevian SB, Cowan JW, et al. Relationship of dietary intake of sulphur amino-acids to urinary excretion of inorganic sulphate in man. Nature 1965; 206: 931–933.
  • Ittyerah TR. Urinary excretion of sulfate in kwashiorkor. Clin Chim Acta 1969; 25: 365–369.
  • Tomozawa M, Yukihiro K, Yao W-B, et al. Excretion of taurine and sulfate in rats fed with a low protein diet. Acta Med Okayama 1998; 52: 77–81.
  • Pena DR, Neiberger RE. Renal brush border sodium-sulfate cotransport in guinea pig: effect of age and diet. Pediatr Nephrol 1997; 11: 724–727.
  • Lotspeich WD. Renal tubular reabsorption of inorganic sulfate in the normal dog. Am J Physiol 1947; 151: 311–318.
  • Frick A, Durasin I, Neuweg M. Reabsorption of inorganic sulfate in the rat kidney: evidence for an adaptive depression of TmSO4 during SO4 loading. Pflugers Arch 1984; 402: 433–438.
  • Neiberger RE. Adaptation of renal sulfate transport in response to dietary sulfate intake in guinea pigs. Child Nephrol Urol 1991; 11: 61–64.
  • Markovich D, Murer H, Biber J, et al. Dietary sulfate regulates the expression of the renal brush border Na/Si-cotransporter NaSi-1. J Am Soc Nephrol 1998; 9: 1568–1573.
  • Rozman P, Kim HJ, Madhu C, et al. Homeostasis of sulfate and 3'-phosphoadenosine 5'-phosphosulfate in rats with deficient dietary intake of sulfur. Drug Metab Disp 1992; 20: 374–378.
  • Benincosa LJ, Sagawa K, Morris ME. Renal adaptation to altered dietary sulfate in rats. J Pharmacol Exp Ther 1995; 272: 248–255.
  • Sagawa K, DuBois DC, Almon RR, et al. Cellular mechanisms of renal adaptation of sodium-dependent sulfate cotransport to altered dietary sulfate in rats. J Pharmacol Exp Ther 1998; 287: 1056–1062.
  • Cole DEC, Baldwin LS, Stirk LJ. Increased inorganic sulfate in mother and fetus at parturition. Evidence for a fetal-to-mother gradient. Am J Obstet Gynecol 1984; 148: 596–599.
  • Cole DE, Shafai J, Scriver CR. Inorganic sulfate in cerebrospinal fluid from infants and children. Clin Chim Acta 1982; 120: 153–159.
  • Levy G, Khanna NN, Soda DM, et al. Pharmacokinetics of acetaminophen in the human neonate: formation of acetaminophen glucuronide and sulfate in relation to plasma bilirubin concentration and D-glucaric acid excretion. Pediatrics 1975; 55: 818–825.
  • Pena DR, Neiberger RE. Developmental differences in renal sulfate reabsorption: Transport kinetics in brush border membrane vesicles. Pediatr Nephrol 1992; 6: 532–535.
  • Larsson L, Hoster M. Ultrastructure and net fluid transport in isolated perfused developing proximal tubules. J Ultrastruct Res 1976; 54: 276–285.
  • Spitzer A, Brandis M. Functional and morphologic maturation of the superficial nephrons. Relationship to total kidney function. J Clin Invest 1974; 53: 1–12.
  • Cole DE, Evans JR, Raad M, et al. Inorganic sulfate metabolism in the very low birthweight infant. Biol Neonate 1990; 57: 292–299.
  • Sagawa K, Han B, DuBois DC, et al. Age and growth hormone induced alterations in renal sulfate transport. J Pharmacol Exp Ther 1999; 290: 1182–1187.
  • Morris ME, Levy G. Plasma inorganic sulfate concentrations in pregnant women. JPharm Sci 1983; 72: 715–716.
  • Lind T. Clinical chemistry of pregnancy. In: Latner AL, Schwartz MK, eds. Advances in clinical chemistry. Pp. 1–24. New York: Academic Press, 1980.
  • Cole DEC, Baldwin LS, Stirk LJ. Increased renal reabsorption of inorganic sulfate in third trimester high risk pregnancies. Obstet Gynecol 1985; 66: 485–490.
  • Parpia SH, Morris ME. Inorganic sulfate clearance and protein binding in pregnant rats. FASEB J 1991; 5: A1568.
  • Lin JH, Levy G. Effect of pregnancy on the pharmacokinetics of acetaminophen in rats. J Pharmacol Exp Ther 1983; 225: 653–659.
  • Tallgren LG. Inorganic sulfate in relation to the serum thyroxine level and renal failure. Acta Med Scand Suppl 1980;. 640: 1–100.
  • Benincosa LJ, Sagawa K, Massey LK, et al. Effects of acute caffeine ingestion and menopause on sulfate homeostasis in women. Life Sci 1995; 57: 1497–1505.
  • Gershberg H, Heinemann HO, Stumpf HH. Renal function studies and autopsy report in a patient with gigantism and acromegaly. Endocrinology 1957; 17: 377–385.
  • Gershberg H, Casch J. Effect of growth hormone on sulfate Tm, urea clearance and fasting blood glucose. Proc Soc Exp Biol Med 1956; 91: 46–49.
  • Meier S, Solursh M. Stimulation of sulfate incorporation by growth hormone treatment of cultured chick embryo chondrocytes. Clin Comp Endocrinol 1972; 18: 89–97.
  • McCormick SD, Tsai PI, Kelley KM, et al. Hormonal control of sulfate uptake by branchial cartilage of coho salmon: Role of IGF-I. J Exp Zool 1992; 262: 166–171.
  • McKern NM, Cheek DB, Crewther WG. Sulfate uptake and somatomedin levels in the 'Little' (lit/lit) mouse. Aust J Biol Sci 1981; 34: 221–230.
  • Fernandes I, Hampson G, Cahours X, et al. Abnormal sulfate metabolism in vitamin D-deficient rats. J Clin Invest 1997; 100: 2196–2203.
  • Mohan PS, Rao KSJ. Sulfate metabolism in vitamin A-deficient rats. J Nutr 1980; 110: 868–875.
  • Beers KW, Dousa TP. Thyroid hormone stimulates the Na+-PO4 symporter but not the Na+-SO4 symporter in renal brush border. Am J Physiol 1993; 265: F323–F326.
  • Sagawa K, Murer H, Morris ME. Effect of experimentally induced hypothyroidism on sulfate renal transport in rats. Am J Physiol 1999; 276: F164–F171.
  • Sallis JD, Martin TJ, De Luise M, et al. Relationship of the parathyroids and calcitonin in maintaining sulphate homeostasis. Hormone Metab Res 1970; 2: 238–241.
  • Glahn RP, Onsgard MJ, Tyce GM, et al. Autocrine/paracrine regulation of renal Na(+)-phosphate cotransport by dopamine. Am J Physiol 1993; 264: F618–622.
  • Renfro JL, Clark NB, Metts RE, et al. Glucocorticoid inhibition of Na-SO4 transport by chick renal brush-border membranes. Am J Physiol 1989; 256: R1176–R1183.
  • Tessler RH, Salmon WD. Glucocorticoid inhibition of sulfate incorporation by cartilage of normal rats. Endocrinology 1975; 98: 898–902.
  • Hegner D. Age-dependence of molecular and functional changes in biological membrane properties. Mech Ageing Develop 1980; 14: 101–108.
  • Ramsammy LS, Boos C, Josepovitz C, et al. Biophysical and biochemical alterations of renal cortical membrane in diabetic rat. Biochim Biophys Acta 1993; 1146: 1–8.
  • Levi M, Baird B, Wilson P, et al. In vivo and in vitro hypercalcemia modulates renal brush border membrane (BBM) phosphate transport and fluidity. Clin Res 1988; 36: 522A.
  • Imai Y, Scoble JE, MacIntyre N, et al. Increased Na+-dependent D-glucose transport and altered lipid composition in renal cortical brush-border membrane vesicles from bile duct-ligated rats. J Lipid Res 1992; 33: 473–483.
  • Molitoris BA, Kinne R. Ischemia induces surface membrane dysfunction: mechanisms of altered Na+-dependent glucose transport. J Clin Invest 1987; 80: 647–654.
  • Lee H-J, Balasubramanian SV, Murer H, et al. Modulation of sulfate renal transport by alterations in cell membrane fluidity. JPharm Sci 1999; 88: 976–980.
  • Frick A, Durasin I. Regulation of the renal transport of inorganic sulfate: effects of metabolic changes in arterial blood pH. Pflugers Arch 1986; 407: 541–546.
  • Chan JC. Urinary sulfate excretion in children with classic tubular acidosis. Nutr Metab 1978; 22: 257–261.
  • Kinsella J, Cujdik T, Sacktor B. Na+-H+ exchange activity in renal brush border membrane vesicles in response to metabolic acidosis: the role of glucocorticoids. Proc Natl Acad Sci USA 1984; 81: 630–634.
  • Markovich D, Wang H, Puttaparthi K, et al. Chronic K depletion inhibits renal brush border membrane Na/sulfate cotransport. Kidney Int 1999; 1: 244–251.
  • Morris ME, Kwon OK, Mansfield IL. Sulfate homeostasis. I. Effect of salicylic acid and its metabolites on inorganic sulfate in rats. J Pharmacol Exp Ther 1988; 244: 945–949.
  • Darling IM, Morris ME. Sulfate homeostasis. IV. Probenecid-in-duced alterations of inorganic sulfate in rats. Pharm Res 1991; 8: 376–379.
  • de Vries BJ, van der Kraan PM, van der Berg WB. Decrease of inorganic blood sulfate following treatment with selected antirheumatic drugs: potential consequence for articular cartilage. Agents Actions 1990; 29: 224–231.
  • Balasubramanian SV, Straubinger RM, Morris ME. Salicylic acid induces changes in the physical properties of model and native kidney membranes. J Pharm Sci 1997; 86: 199–204.
  • Morris ME, Benincosa LJ. Influence of NSAID-induced inhibition of renal prostaglandin synthesis on inorganic sulfate clearance in rats. Proc Soc Exp Biol Med 1992; 199: 410–416.
  • Benincosa LJ, Morris ME. Tiaprofenic acid inhibits the renal reabsorption of sulfate in rats. Prostaglandins Leukot Essent Fatty Acids 1993; 49: 503508.
  • Benincosa LJ, Morris ME. Inhibition of renal prostaglandin synthesis decreases sulfate renal transport in BBM vesicles. Pharm Res 1992; 9: S–281.
  • Benincosa LJ, Morris ME. Inhibition of sulfate transport in rat kidney membrane vesicles preparations by nonsteroidal antiinflammatory drugs. Drug Metab Disp 1993; 21: 750–752.
  • Kuehl FA. Prostaglandins, cyclic nucleotides and cell function. Prostaglandins 1974; 5: 325–340.
  • Schlondorff D, Yoo P, Alpert BE. Stimulation of adenylate cyclase in isolated rat glomeruli by prostaglandins. Am J Physiol 1978; 235: F458–F464.
  • Benincosa LJ, Morris ME. Influence of dibutyryl-cAMP on ibuprofen-induced alterations of sulfate renal clearance in rats. Drug Metab Disp 1992; 20: 461–464.
  • Sagawa K, Benincosa LJ, Murer H, et al. Ibuprofen-induced changes in sulfate renal transport. J Pharmacol Exp Ther 1998; 287: 1092–1097.
  • Markovich D, Knight D. Renal Na-Si cotransporter NaSi-1 is inhibited by heavy metals. Am J Physiol 1998; 274: F283–F289.
  • Herak-Kramberger CM, Spindler B, Biber J, et al. Renal type II Na/Pi-cotransport is strongly impaired, whereas the Na/sulfate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pflugers Arch 1996; 432: 336–344.
  • Lu Y-Y, Yang J-L. Long-term exposure to chromium (VI) oxide leads to defects in sulfate transport system in Chinese hamster ovary cells. J Cell Biochem 1995; 57: 655–665.
  • Spiro MJ. Sulfate Metabolism in the alloxan-diabetic rat: relationship of altered sulfate pools to proteoglycan sulfation in heart and other tissues. Diabetologia 1987; 30: 259–267.
  • Fan M-Y, Templeton DM. Sulfate metabolism in experimental diabetes. Diabetes Metab 1992; 18: 98–103.
  • Papadopoulou DB. Urinary sulfur partition in normal men and in cancer patients. Clin Chem 1957; 3: 257–262.
  • Freeman RM, Richards CJ. Studies on sulfate in end stage renal disease. Kidney Int 1979; 15: 167–175.
  • Morris ME, Freer JP, Watson WA. Sulfate homeostasis. III. Effect of chronic naproxen or sulindac treatment on inorganic sulfate disposition in arthritic patients with renal impairment. Pharm Res 1991; 8: 242–246.
  • Bradley H, Gough A, Sokhi RS, et al. Sulfate metabolism is abnormal in patients with rheumatoid arthritis. Confirmation by in vivo biochemical findings. J Rheumatol 1994; 21: 1192–1196.
  • Cole DE, Landry DA, Boucher MJ, et al. Sweat sulfate concenrations are decreased in cystic fibrosis. Clin Chim Acta 1986; 155: 237–243.
  • Grassl SM. Sulfate transport in human placental brush-border membrane vesicles. Biochim Biophys Acta 1996; 1282: 115–123.
  • Rossi A, Bonaventure J, Delezoide A-L, et al. Undersulfation of proteoglycans synthesized by chondrocytes from a patient with achondrogenesis type 1B homozygous for an L483P substitution in the diastrophic dysplasia sulfate transporter. J Biol Chem 1996; 271: 18456–18464.
  • Silberg DG, Wang W, Moseley RH, et al. The down regulated in adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J Biol Chem 1995; 270: 11897–11902.
  • Hoglund P. Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 1996; 14: 316–319.
  • Morton CC. Sounding out a novel sulfate transporter. Nat Genet 1997; 17: 370371.
  • Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997; 17: 411–422.
  • Scott DA, Wang R, Kreman TM, et al. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 1999; 21: 440–443
  • Lee H-J, Morris ME. Developmental changes in renal sulfate transport in guinea pigs. Pharm Res 1995; 12: S–252.
  • Neiberger RE. Developmental changes in the renal capacity for sulfate reabsorp-tion in the guinea pig. Pediatr Nephrol 1992; 6: 65–67.
  • Murer H, Markovich D, Biber J. Renal and small intestinal sodium-dependent symporters of phosphate and sulfate. J Exp Biol 1994; 196: 167–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.