1,616
Views
1
CrossRef citations to date
0
Altmetric
Invited Reviews

Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 178-204 | Received 07 Jun 2023, Accepted 28 Sep 2023, Published online: 26 Oct 2023

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi: 10.3322/caac.21654.
  • Huggins C, Hodges CV. Studies on prostatic cancer. Cancer Res. 1941;1(4):293–297.
  • Tannock IF, Osoba D, Stockler MR, et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: A Canadian randomized trial with palliative end points. J Clin Oncol. 1996;14(6):1756–1764. doi: 10.1200/JCO.1996.14.6.1756.
  • Tannock IF, De Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–1512. doi: 10.1056/NEJMoa040720.
  • De Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–1154. doi: 10.1016/S0140-6736(10)61389-X.
  • De Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364(21):1995–2005. doi: 10.1056/NEJMoa1014618.
  • Ryan CJ, Smith MR, De Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–148. doi: 10.1056/NEJMoa1209096.
  • Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–1197. doi: 10.1056/NEJMoa1207506.
  • Beer TM, Armstrong AJ, Rathkopf DE, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371(5):424–433. doi: 10.1056/NEJMoa1405095.
  • Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–223. doi: 10.1056/NEJMoa1213755.
  • Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-t immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–422. doi: 10.1056/NEJMoa1001294.
  • Francini E, Gray KP, Shaw GK, et al. Impact of new systemic therapies on overall survival of patients with metastatic castration-resistant prostate cancer in a hospital-based registry. Prostate Cancer Prostatic Dis. 2019;22(3):420–427. doi: 10.1038/s41391-018-0121-2.
  • van den Bergh GPA, Kuppen MCP, Westgeest HM, et al. Incidence and survival of castration-resistant prostate cancer patients with visceral metastases: results from the Dutch CAPRI-Registry. Prostate Cancer Prostatic Dis. 2023;26(1):162–169. doi: 10.1038/s41391-022-00605-7.
  • Sweeney CJ, Chen Y-H, Carducci M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373(8):737–746. doi: 10.1056/NEJMoa1503747.
  • James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387(10024):1163–1177. doi: 10.1016/S0140-6736(15)01037-5.
  • Gravis G, Fizazi K, Joly F, et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): A randomised, open-label, phase 3 trial. Lancet Oncol. 2013; 14(12):149–158. doi: 10.1016/S1470-2045(12)70560-0.
  • Fizazi K, Tran N, Fein L, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med. 2017;377(4):352–360. doi: 10.1056/NEJMoa1704174.
  • James ND, de Bono JS, Spears MR, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377(4):338–351. doi: 10.1056/NEJMoa1702900.
  • Armstrong AJ, Szmulewitz RZ, Petrylak DP, et al. Arches: A randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 2019;37(32):2974–2986. doi: 10.1200/JCO.19.00799.
  • Davis ID, Martin AJ, Stockler MR, et al. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med. 2019;381(2):121–131. doi: 10.1056/NEJMoa1903835.
  • Chi KN, Agarwal N, Bjartell A, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381(1):13–24. doi: 10.1056/NEJMoa1903307.
  • Fizazi K, Foulon S, Carles J, et al. Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design. Lancet. 2022; 399(10336):1695–1707. doi: 10.1016/S0140-6736(22)00367-1.
  • Senft D, Leiserson MDM, Ruppin E, et al. Precision oncology: the road ahead. Trends Mol Med. 2017;23(10):874–898. doi: 10.1016/j.molmed.2017.08.003.
  • (a)Robinson D, Van Allen Eliezer M, Wu Y-M, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161(5):1215–1228. (b) van Dessel LF, van Riet J, Smits M, et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 2019;10(1):5251. doi: 10.1038/s41467-019-13084-7.
  • Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116(23):11428–11436. doi: 10.1073/pnas.1902651116.
  • Lorente D, Omlin A, Zafeiriou Z, et al. Castration-resistant prostate cancer tissue acquisition from bone metastases for molecular analyses. Clin Genitourin Cancer. 2016; 14(6):485–493. doi: 10.1016/j.clgc.2016.04.016.
  • Ross RW, Halabi S, Ou S-S, et al. Predictors of prostate cancer tissue acquisition by an undirected core bone marrow biopsy in metastatic castration-resistant prostate cancer—a cancer and leukemia group B study. Clin Cancer Res. 2005;11(22):8109–8113. doi: 10.1158/1078-0432.CCR-05-1250.
  • Beltran H, Wyatt AW, Chedgy EC, et al. Impact of therapy on genomics and transcriptomics in high-risk prostate cancer treated with neoadjuvant docetaxel and androgen deprivation therapy. Clin Cancer Res. 2017;23(22):6802–6811. doi: 10.1158/1078-0432.CCR-17-1034.
  • Martinez-Jimenez F, Movasati A, Brunner S, et al. Pan-cancer whole genome comparison of primary and metastatic solid tumors. Nature. 2023; 618(7964):333–341. doi: 10.1038/s41586-023-06054-z.
  • Mateo J, Seed G, Bertan C, et al. Genomics of lethal prostate cancer at diagnosis and castration resistance. J Clin Invest. 2020;130(4):1743–1751. doi: 10.1172/JCI132031.
  • Liu AY, Roudier MP, True LD. Heterogeneity in primary and metastatic prostate cancer as defined by cell surface cd profile. Am J Pathol. 2004;165(5):1543–1556. doi: 10.1016/S0002-9440(10)63412-8.
  • Liu W, Laitinen S, Khan S, et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 2009;15(5):559–565. doi: 10.1038/nm.1944.
  • Mandel P. Les acides nucleiques du plasma sanguin chez 1 homme. CR Seances Soc Biol Fil. 1948;142:241–243.
  • Maia MC, Salgia M, Pal SK. Harnessing cell-free DNA: plasma circulating tumour DNA for liquid biopsy in genitourinary cancers. Nat Rev Urol. 2020;17(5):271–291. doi: 10.1038/s41585-020-0297-9.
  • Chabon JJ, Hamilton EG, Kurtz DM, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580(7802):245–251. doi: 10.1038/s41586-020-2140-0.
  • Cristiano S, Leal A, Phallen J, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570(7761):385–389. doi: 10.1038/s41586-019-1272-6.
  • Mouliere F, Chandrananda D, Piskorz AM, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10(466):eaat4921. doi: 10.1126/scitranslmed.aat4921.
  • Fan L, Fei X, Zhu Y, et al. Comparative analysis of genomic alterations across castration sensitive and castration resistant prostate cancer via circulating tumor DNA sequencing. J Urol. 2021;205(2):461–469. doi: 10.1097/JU.0000000000001363.
  • Kohli M, Tan W, Zheng T, et al. Clinical and genomic insights into circulating tumor DNA-based alterations across the spectrum of metastatic hormone-sensitive and castrate-resistant prostate cancer. EBioMedicine. 2020;54:102728. doi: 10.1016/j.ebiom.2020.102728.
  • Vandekerkhove G, Struss WJ, Annala M, et al. Circulating tumor DNA abundance and potential utility in de novo metastatic prostate cancer. Eur Urol. 2019;75(4):667–675. doi: 10.1016/j.eururo.2018.12.042.
  • Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. doi: 10.1126/scitranslmed.3007094.
  • Annala M, Taavitsainen S, Khalaf DJ, et al. Evolution of castration-resistant prostate cancer in ctdna during sequential androgen receptor pathway inhibition. Clin Cancer Res. 2021;27(16):4610–4623. doi: 10.1158/1078-0432.CCR-21-1625.
  • Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 2018;8(4):444–457. doi: 10.1158/2159-8290.CD-17-0937.
  • Sumanasuriya S, Seed G, Parr H, et al. Elucidating prostate cancer behaviour during treatment via low-pass whole-genome sequencing of circulating tumour DNA. Eur Urol. 2021;80(2):243–253. doi: 10.1016/j.eururo.2021.05.030.
  • Annala M, Fu S, Bacon JVW, et al. Cabazitaxel versus abiraterone or enzalutamide in poor prognosis metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase II trial. Ann Oncol. 2021;32(7):896–905. doi: 10.1016/j.annonc.2021.03.205.
  • Wyatt AW, Annala M, Aggarwal R, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J Natl Cancer Inst. 2017; 109(12):djx118. doi: 10.1093/jnci/djx118.
  • Tukachinsky H, Madison RW, Chung JH, et al. Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. Clin Cancer Res. 2021;27(11):3094–3105. doi: 10.1158/1078-0432.CCR-20-4805.
  • Khier S, Lohan L. Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future Sci OA. 2018; 4(4):FSO295. doi: 10.4155/fsoa-2017-0140.
  • Sumiyoshi T, Chi KN, Wyatt AW. Clinical implications of genomic alterations in metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(2):310–322. doi: 10.1038/s41391-020-00308-x.
  • Slootbeek PH, Kloots IS, Smits M, et al. Impact of molecular tumour board discussion on targeted therapy allocation in advanced prostate cancer. Br J Cancer. 2022;126(6):907–916. doi: 10.1038/s41416-021-01663-9.
  • Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO precision medicine working group. Ann Oncol. 2020;31(11):1491–1505. doi: 10.1016/j.annonc.2020.07.014.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013.
  • Lang SH, Swift SL, White H, et al. A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. Int J Oncol. 2019;55(3):597–616. doi: 10.3892/ijo.2019.4842.
  • Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443–453. doi: 10.1056/NEJMoa1603144.
  • Marshall CH, Fu W, Wang H, et al. Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of gleason score and tumor stage. Prostate Cancer Prostatic Dis. 2019;22(1):59–65. doi: 10.1038/s41391-018-0086-1.
  • Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013;31(14):1748–1757. doi: 10.1200/JCO.2012.43.1882.
  • Annala M, Struss WJ, Warner EW, et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair–deficient prostate cancer. Eur Urol. 2017;72(1):34–42. doi: 10.1016/j.eururo.2017.02.023.
  • Mateo J, Cheng HH, Beltran H, et al. Clinical outcome of prostate cancer patients with germline DNA repair mutations: retrospective analysis from an international study. Eur Urol. 2018;73(5):687–693. doi: 10.1016/j.eururo.2018.01.010.
  • Castro E, Romero-Laorden N, Ad P, et al. PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37(6):490–503. doi: 10.1200/JCO.18.00358.
  • Antonarakis ES, Lu C, Luber B, et al. Germline DNA-repair gene mutations and outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide. Eur Urol. 2018;74(2):218–225. doi: 10.1016/j.eururo.2018.01.035.
  • Fazekas T, Széles ÁD, Teutsch B, et al. Therapeutic sensitivity to standard treatments in BRCA positive metastatic castration-resistant prostate cancer patients—a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2022. doi: 10.1038/s41391-022-00626-2. Epub ahead of print
  • Antonarakis ES, Shaukat F, Isaacsson Velho P, et al. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations. Eur Urol. 2019;75(3):378–382. doi: 10.1016/j.eururo.2018.10.009.
  • Graham LS, Montgomery B, Cheng HH, et al. Mismatch repair deficiency in metastatic prostate cancer: response to PD-1 blockade and standard therapies. PLoS One. 2020;15(5):e0233260. doi: 10.1371/journal.pone.0233260.
  • Abida W, Cheng ML, Armenia J, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 2019;5(4):471–478. doi: 10.1001/jamaoncol.2018.5801.
  • Ritch E, Fu SYF, Herberts C, et al. Identification of hypermutation and defective mismatch repair in ctDNA from metastatic prostate cancer. Clin Cancer Res. 2020;26(5):1114–1125. doi: 10.1158/1078-0432.CCR-19-1623.
  • Cannan WJ, Pederson DS. Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol. 2016;231(1):3–14. doi: 10.1002/jcp.25048.
  • Sun Y, McCorvie TJ, Yates LA, et al. Structural basis of homologous recombination. Cell Mol Life Sci. 2020;77(1):3–18. doi: 10.1007/s00018-019-03365-1.
  • Wen J, Cerosaletti K, Schultz KJ, et al. NBN phosphorylation regulates the accumulation of MRN and ATM at sites of DNA double-strand breaks. Oncogene. 2013;32(37):4448–4456. doi: 10.1038/onc.2012.443.
  • Williams AB, Schumacher B. P53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 2016;6(5):a026070. doi: 10.1101/cshperspect.a026070.
  • Ansari N, Shahrabi S, Khosravi A, et al. Prognostic significance of CHEK2 mutation in progression of breast cancer. Lab Med. 2019;50(3):e36–e41. doi: 10.1093/labmed/lmz009.
  • Caestecker KW, Van de Walle GR. The role of brca1 in DNA double-strand repair: past and present. Exp Cell Res. 2013;319(5):575–587. doi: 10.1016/j.yexcr.2012.11.013.
  • Scully R, Panday A, Elango R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714. doi: 10.1038/s41580-019-0152-0.
  • Li X, Heyer W-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008;18(1):99–113. doi: 10.1038/cr.2008.1.
  • de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382(22):2091–2102. doi: 10.1056/NEJMoa1911440.
  • Jonsson P, Bandlamudi C, Cheng ML, et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature. 2019;571(7766):576–579. doi: 10.1038/s41586-019-1382-1.
  • Chi KN, Barnicle A, Sibilla C, et al. Concordance of BRCA1, BRCA2 (BRCA), and ATM mutations identified in matched tumor tissue and circulating tumor DNA (ctDNA) in men with metastatic castration-resistant prostate cancer (mCRPC) screened in the PROfound study. J Clin Oncol. 2021;39(6_suppl):26–26. doi: 10.1200/JCO.2021.39.6_suppl.26.
  • Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol. 2011;5(4):387–393. doi: 10.1016/j.molonc.2011.07.001.
  • Sokolova AO, Yu EY, Cheng HH. Honing in on PARPi response in prostate cancer: from HR pathway to gene-by-gene granularityparpi in non-BRCA–mutated prostate tumors. Clin Cancer Res. 2020;26(11):2439–2440. doi: 10.1158/1078-0432.CCR-20-0707.
  • Fong PC, Boss DS, Yap TA, et al. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–134. doi: 10.1056/NEJMoa0900212.
  • Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–1708. doi: 10.1056/NEJMoa1506859.
  • Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020;21(1):162–174. doi: 10.1016/S1470-2045(19)30684-9.
  • Stopsack KH. Efficacy of PARP inhibition in metastatic castration-resistant prostate cancer is very different with non-BRCA DNA repair alterations: reconstructing prespecified endpoints for cohort B from the phase 3 PROfound trial of olaparib. Eur Urol. 2021;79(4):442–445. doi: 10.1016/j.eururo.2020.09.024.
  • Abida W, Patnaik A, Campbell D, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol. 2020;38(32):3763–3772. doi: 10.1200/JCO.20.01035.
  • Abida W, Campbell D, Patnaik A, et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 study. Clin Cancer Res. 2020;26(11):2487–2496. doi: 10.1158/1078-0432.CCR-20-0394.
  • Anscher MS, Chang E, Gao X, et al. FDA approval summary: rucaparib for the treatment of patients with deleterious BRCA-mutated metastatic castrate-resistant prostate cancer. Oncologist. 2021;26(2):139–146. doi: 10.1002/onco.13585.
  • Fizazi K, Piulats JM, Reaume MN, et al. Rucaparib or physician’s choice in metastatic prostate cancer. N Engl J Med. 2023;388(8):719–732. doi: 10.1056/NEJMoa2214676.
  • Smith MR, Scher HI, Sandhu S, et al. Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2022;23(3):362–373. doi: 10.1016/S1470-2045(21)00757-9.
  • de Bono JS, Mehra N, Scagliotti GV, et al. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol. 2021;22(9):1250–1264. doi: 10.1016/S1470-2045(21)00376-4.
  • Rudolph J, Jung K, Luger K. Inhibitors of PARP: number crunching and structure gazing. Proc Natl Acad Sci USA. 2022;119(11):e2121979119. doi: 10.1073/pnas.2121979119.
  • Bono JSD, Matsubara N, Penel N, et al. Exploratory gene-by-gene analysis of olaparib in patients (pts) with metastatic castration-resistant prostate cancer (mcrpc): PROfound. J Clin Oncol. 2021;39(6_suppl):126–126. doi: 10.1200/JCO.2021.39.6_suppl.126.
  • Taza F, Holler AE, Fu W, et al. Differential activity of PARP inhibitors in BRCA1- versus BRCA2-altered metastatic castration-resistant prostate cancer. J Clin Oncol Precis Oncol. 2021;5:1200–1220. doi: 10.1200/PO.21.00070.
  • Markowski MC, Antonarakis ES. BRCA1 versus BRCA2 and PARP inhibitor sensitivity in prostate cancer: more different than alike? J Clin Oncol. 2020;38(32):3735–3739. doi: 10.1200/JCO.20.02246.
  • Carreira S, Porta N, Arce-Gallego S, et al. Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. Cancer Discov. 2021;11(11):2812–2827. doi: 10.1158/2159-8290.CD-21-0007.
  • Abida W, Campbell D, Patnaik A, et al. Genomic characteristics associated with clinical activity of rucaparib in patients (pts) with BRCA1 or BRCA2 (BRCA)-mutated metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38(6_suppl):178–178. doi: 10.1200/JCO.2020.38.6_suppl.178.
  • Dorff TB, Fizazi K, Laird D, et al. Talapro-1: talazoparib monotherapy in metastatic castration-resistant prostate cancer (mCRPC) with tumor DNA damage response alterations (DDRM)—exploration of germline DDR alteration landscape and potential associations with antitumor activity. J Clin Oncol. 2022;40(6_suppl):157–157. doi: 10.1200/JCO.2022.40.6_suppl.157.
  • Lotan TL, Kaur HB, Salles DC, et al. Homologous recombination deficiency (HRD) score in germline BRCA2- versus ATM-altered prostate cancer. Mod Pathol. 2021;34(6):1185–1193. doi: 10.1038/s41379-020-00731-4.
  • Risdon EN, Chau CH, Price DK, et al. PARP inhibitors and prostate cancer: to infinity and beyond BRCA. Oncologist. 2021;26(1):e115–e129. doi: 10.1634/theoncologist.2020-0697.
  • Asim M, Tarish F, Zecchini HI, et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun. 2017;8(1):374. doi: 10.1038/s41467-017-00393-y.
  • Li L, Karanika S, Yang G, et al. Androgen receptor inhibitor–induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017;10(480):eaam7479. doi: 10.1126/scisignal.aam7479.
  • Polkinghorn WR, Parker JS, Lee MX, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013;3(11):1245–1253. doi: 10.1158/2159-8290.CD-13-0172.
  • Fenton SE, Chalmers ZR, Hussain M. PARP inhibition in advanced prostate cancer. Cancer J. 2021;27(6):457–464. doi: 10.1097/PPO.0000000000000560.
  • Schiewer MJ, Knudsen KE. Transcriptional roles of PARP1 in cancer. Mol Cancer Res. 2014;12(8):1069–1080. doi: 10.1158/1541-7786.MCR-13-0672.
  • Schiewer MJ, Goodwin JF, Han S, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012;2(12):1134–1149. doi: 10.1158/2159-8290.CD-12-0120.
  • Pomerantz MM, Spisák S, Jia L, et al. The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer. 2017;123(18):3532–3539. doi: 10.1002/cncr.30808.
  • Saad F, Armstrong A, Thiery-Vuillemin A, et al. 1357O biomarker analysis and updated results from the phase III PROPEL trial of abiraterone (abi) and olaparib (ola) vs abi and placebo (pbo) as first-line (1L) therapy for patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol. 2022;33:s1160. doi: 10.1016/j.annonc.2022.07.1945.
  • Clarke NW, Armstrong AJ, Thiery-Vuillemin A, et al. Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid. 2022;1(9). doi: 10.1056/EVIDoa2200043.
  • Chi KN, Rathkopf D, Smith MR, et al. Niraparib and abiraterone acetate for metastatic castration-resistant prostate cancer. J Clin Oncol. 2023;41(18):3339–3351. doi: 10.1200/JCO.22.01649.
  • Agarwal N, Azad A, Carles J, et al. TALAPRO-2: phase 3 study of talazoparib (TALA) + enzalutamide (ENZA) versus placebo (PBO) + ENZA as first-line (1L) treatment in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2023;41(6_suppl):LBA17–LBA17. doi: 10.1200/JCO.2023.41.6_suppl.LBA17.
  • Rao A, Heller G, Ryan CJ, et al. Alliance a031902 (CASPAR): a randomized, phase (ph) 3 trial of enzalutamide with rucaparib/placebo as novel therapy in first-line metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40(6_suppl):TPS194–TPS194. doi: 10.1200/JCO.2022.40.6_suppl.TPS194.
  • Clarke NW, Armstrong AJ, Thiery-Vuillemin A, et al. Final overall survival (OS) in propel: abiraterone (ABI) and olaparib (OLA) versus abiraterone and placebo (PBO) as first-line (1L) therapy for metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2023;41(6_suppl):LBA16–LBA16. doi: 10.1200/JCO.2023.41.6_suppl.LBA16.
  • Antonarakis ES, Park SH, Goh JC, et al. Pembrolizumab plus olaparib for patients with previously treated and biomarker-unselected metastatic castration-resistant prostate cancer: the randomized, open-label, phase III KEYLYNK-010 trial. J Clin Oncol. 2023;41(22):3839–3850. doi: 10.1200/JCO.23.00233.
  • Quinn Z, Leiby B, Sonpavde G, et al. Phase I study of niraparib in combination with radium-223 for the treatment of metastatic castrate-resistant prostate cancer. Clin Cancer Res. 2023;29(1):50–59. doi: 10.1158/1078-0432.CCR-22-2526.
  • Pan E, Xie W, Ajmera A, et al. A phase I study of combination olaparib and radium-223 in men with metastatic castration-resistant prostate cancer (mCRPC) with bone metastases (COMRADE). Mol Cancer Ther. 2023;22(4):511–518. Apr 3doi: 10.1158/1535-7163.MCT-22-0583.
  • Mota JM, Barnett E, Nauseef JT, et al. Platinum-based chemotherapy in metastatic prostate cancer with DNA repair gene alterations. J Clin Oncol Precis Oncol. 2020;4:355–366. doi: 10.1200/po.19.00346.
  • Slootbeek PH, Duizer ML, van Der Doelen MJ, et al. Impact of DNA damage repair defects and aggressive variant features on response to carboplatin-based chemotherapy in metastatic castration-resistant prostate cancer. Int J Cancer. 2021;148(2):385–395. doi: 10.1002/ijc.33306.
  • Cheng HH, Pritchard CC, Boyd T, et al. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur Urol. 2016;69(6):992–995. doi: 10.1016/j.eururo.2015.11.022.
  • Schmid S, Omlin A, Higano C, et al. Activity of platinum-based chemotherapy in patients with advanced prostate cancer with and without DNA repair gene aberrations. JAMA Netw Open. 2020;3(10):e2021692. doi: 10.1001/jamanetworkopen.2020.21692.
  • Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025.
  • Bhattacharyya A, Ear US, Koller BH, et al. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000;275(31):23899–23903. doi: 10.1074/jbc.C000276200.
  • Leal F, García-Perdomo HA. Effectiveness of platinum-based chemotherapy in patients with metastatic prostate cancer: a systematic review and meta-analysis. Clin Genitourin Cancer. 2019;17(3):e627–e644. doi: 10.1016/j.clgc.2019.03.008.
  • Corn PG, Heath EI, Zurita A, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1–2 trial. Lancet Oncol. 2019;20(10):1432–1443. doi: 10.1016/S1470-2045(19)30408-5.
  • Zafeiriou Z, Bianchini D, Chandler R, et al. Genomic analysis of three metastatic prostate cancer patients with exceptional responses to carboplatin indicating different types of DNA repair deficiency. Eur Urol. 2019;75(1):184–192. doi: 10.1016/j.eururo.2018.09.048.
  • Koguchi D, Tabata K-I, Tsumura H, et al. Effect of cisplatin on metastatic castration-resistant prostate cancer with BRCA2 mutation: a case report. Urol Case Rep. 2021;38:101712. doi: 10.1016/j.eucr.2021.101712.
  • Slootbeek PHJ, Kloots ISH, van Oort IM, et al. Cross-resistance between platinum-based chemotherapy and PARP inhibitors in castration-resistant prostate cancer. Cancers (Basel). 2023;15(10):2814. doi: 10.3390/cancers15102814.
  • Carneiro BA, Collier KA, Nagy RJ, et al. Acquired resistance to poly (ADP-ribose) polymerase inhibitor olaparib in BRCA2-associated prostate cancer resulting from biallelic BRCA2 reversion mutations restores both germline and somatic loss-of-function mutations. J Clin Oncol Precis Oncol. 2018;2:PO.17.00176. doi: 10.1200/PO.17.00176.
  • Cheng HH, Salipante SJ, Nelson PS, et al. Polyclonal BRCA2 reversion mutations detected in circulating tumor DNA after platinum chemotherapy in a patient with metastatic prostate cancer. J Clin Oncol Precis Oncol. 2018;2: PO.17.00169. doi: 10.1200/PO.17.00169.
  • Simmons AD, Nguyen M, Pintus E. Polyclonal BRCA2 mutations following carboplatin treatment confer resistance to the PARP inhibitor rucaparib in a patient with mCRPC: a case report. BMC Cancer. 2020;20(1):215. doi: 10.1186/s12885-020-6657-2.
  • Goodall J, Mateo J, Yuan W, et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017;7(9):1006–1017. doi: 10.1158/2159-8290.CD-17-0261.
  • Jacob SL, Kiedrowski LA, Chae YK. The dynamic landscape of BRCA1 reversion mutations from indel to SNV in a patient with ovarian cancer treated with PARP-inhibitors and immunotherapy. Heliyon. 2020;6(5):e03841. doi: 10.1016/j.heliyon.2020.e03841.
  • Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451(7182):1111–1115. doi: 10.1038/nature06548.
  • Wang Y, Bernhardy AJ, Cruz C, et al. The BRCA1-δ11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to PARP inhibition and cisplatin. Cancer Res. 2016;76(9):2778–2790. doi: 10.1158/0008-5472.CAN-16-0186.
  • Loehr A, Hussain A, Patnaik A, et al. Emergence of BRCA reversion mutations in patients with metastatic castration-resistant prostate cancer after treatment with rucaparib. Eur Urol. 2023;83(3):200–209. doi: 10.1016/j.eururo.2022.09.010.
  • Urtishak K, Attard G, Kanno T, et al. High prevalence and heterogeneity of emergence of BRCA reversion mutations at progression on niraparib treatment in BRCA-mutant metastatic castration-resistant prostate cancer (mCRPC) patients. Cancer Res. 2022;82(12_Supplement):4133–4133. doi: 10.1158/1538-7445.AM2022-4133.
  • Vandekerkhove G. BRCA reversion mutations in metastatic castration-resistant prostate cancer. Eur Urol. 2023;83(3):210–211. doi: 10.1016/j.eururo.2022.09.031.
  • van Wilpe S, Tolmeijer SH, Koornstra RH, et al. Homologous recombination repair deficiency and implications for tumor immunogenicity. Cancers (Basel). 2021;13(9):2249. doi: 10.3390/cancers13092249.
  • Boyiadzis MM, Kirkwood JM, Marshall JL, et al. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J Immunother Cancer. 2018;6(1):1–7.
  • Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–1894. doi: 10.1200/JCO.2014.56.2736.
  • Elia AR, Caputo S, Bellone M. Immune checkpoint-mediated interactions between cancer and immune cells in prostate adenocarcinoma and melanoma. Front Immunol. 2018;9:1786. doi: 10.3389/fimmu.2018.01786.
  • Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–712. doi: 10.1016/S1470-2045(14)70189-5.
  • Beer TM, Kwon ED, Drake CG, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35(1):40–47. doi: 10.1200/JCO.2016.69.1584.
  • Antonarakis ES, Piulats JM, Gross-Goupil M, et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J Clin Oncol. 2020;38(5):395–405. doi: 10.1200/JCO.19.01638.
  • Sharma P, Pachynski RK, Narayan V, et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial. Cancer Cell. 2020;38(4):489–499. e3. doi: 10.1016/j.ccell.2020.08.007.
  • Boudadi K, Suzman DL, Anagnostou V, et al. Ipilimumab plus nivolumab and DNA-repair defects in Ar-V7-expressing metastatic prostate cancer. Oncotarget. 2018;9(47):28561–28571. doi: 10.18632/oncotarget.25564.
  • Pantelidou C, Sonzogni O, Taveira MDO, et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 2019;9(6):722–737. doi: 10.1158/2159-8290.CD-18-1218.
  • Corrales L, Glickman Laura H, McWhirter SM, et al. Direct activation of sting in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–1030. doi: 10.1016/j.celrep.2015.04.031.
  • van Wilpe S, Simnica D, Slootbeek P, et al. Homologous recombination repair deficient prostate cancer represents an immunologically distinct subtype. Oncoimmunology. 2022;11(1):2094133. doi: 10.1080/2162402X.2022.2094133.
  • Jenzer M, Keß P, Nientiedt C, et al. The BRCA2 mutation status shapes the immune phenotype of prostate cancer. Cancer Immunol Immunother. 2019;68(10):1621–1633. doi: 10.1007/s00262-019-02393-x.
  • Kaur HB, Vidotto T, Mendes AA, et al. Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunol Immunother. 2022;71(4):943–951. doi: 10.1007/s00262-021-03050-y.
  • Antonarakis ES, Rodriguez JMMP, Gross-Goupil M, et al. Biomarker analysis from the KEYNOTE-199 trial of pembrolizumab in patients (pts) with docetaxel-refractory metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38(15_suppl):5526–5526. doi: 10.1200/JCO.2020.38.15_suppl.5526.
  • Lotan TL, Antonarakis ES. CDK12 deficiency and the immune microenvironment in prostate cancer. Clin Cancer Res. 2021;27(2):380–382. doi: 10.1158/1078-0432.CCR-20-3877.
  • Antonarakis ES, Velho PI, Fu W, et al. CDK12-altered prostate cancer: clinical features and therapeutic outcomes to standard systemic therapies, poly (ADP-ribose) polymerase inhibitors, and PD-1 inhibitors. J Clin Oncol Precis Oncol. 2020;4(4):370–381. doi: 10.1200/po.19.00399.
  • Schweizer MT, Ha G, Gulati R, et al. Cdk12-mutated prostate cancer: clinical outcomes with standard therapies and immune checkpoint blockade. J Clin Oncol Precis Oncol. 2020;4:382–392. ():doi: 10.1200/po.19.00383.
  • Marshall CH, Sokolova AO, McNatty AL, et al. Differential response to olaparib treatment among men with metastatic castration-resistant prostate cancer harboring BRCA1 or BRCA2 versus ATM mutations. Eur Urol. 2019;76(4):452–458. doi: 10.1016/j.eururo.2019.02.002.
  • Su CT, Nizialek E, Berchuck JE, et al. Differential responses to taxanes and PARP inhibitors in ATM-versus BRCA2-mutated metastatic castrate-resistant prostate cancer. Prostate. 2023;83(3):227–236. doi: 10.1002/pros.24454.
  • Rafiei S, Fitzpatrick K, Liu D, et al. ATM loss confers greater sensitivity to ATR inhibition than PARP inhibition in prostate cancer. Cancer Res. 2020;80(11):2094–2100. doi: 10.1158/0008-5472.CAN-19-3126.
  • Jin MH, Oh D-Y. ATM in DNA repair in cancer. Pharmacol Ther. 2019;203:107391. doi: 10.1016/j.pharmthera.2019.07.002.
  • Yap TA, Tan DSP, Terbuch A, et al. First-in-human trial of the oral ataxia telangiectasia and RAD3-related (ATR) inhibitor Bay 1895344 in patients with advanced solid tumors. Cancer Discov. 2021;11(1):80–91. doi: 10.1158/2159-8290.CD-20-0868.
  • Mei L, Zhang J, He K, et al. Ataxia telangiectasia and RAD3-related inhibitors and cancer therapy: where we stand. J Hematol Oncol. 2019;12(1):43. doi: 10.1186/s13045-019-0733-6.
  • Plummer ER, Kristeleit RS, Cojocaru E, et al. A first-in-human phase I/II trial of SRA737 (a Chk1 inhibitor) in subjects with advanced cancer. J Clin Oncol. 2019;37(15_suppl):3094–3094. doi: 10.1200/JCO.2019.37.15_suppl.3094.
  • Steinberger AE, Cotogno P, Ledet EM, et al. Exceptional duration of radium-223 in prostate cancer with a BRCA2 mutation. Clin Genitourin Cancer. 2017;15(1):e69–e71. doi: 10.1016/j.clgc.2016.09.001.
  • van der Doelen MJ, Velho PI, Slootbeek PH, et al. Impact of DNA damage repair defects on response to radium-223 and overall survival in metastatic castration-resistant prostate cancer. Eur J Cancer. 2020;136:16–24. doi: 10.1016/j.ejca.2020.05.001.
  • Liu AJ, Kosiorek HE, Ueberroth BE, et al. The impact of genetic aberrations on response to radium-223 treatment for castration-resistant prostate cancer with bone metastases. Prostate. 2022;82(12):1202–1209. doi: 10.1002/pros.24375.
  • Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-targeted alpha-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57(12):1941–1944. doi: 10.2967/jnumed.116.178673.
  • Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57(8):1170–1176. doi: 10.2967/jnumed.115.171397.
  • Sartor O, De Bono J, Chi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–1103. doi: 10.1056/NEJMoa2107322.
  • Seifert R, Seitzer K, Herrmann K, et al. Analysis of PSMA expression and outcome in patients with advanced prostate cancer receiving (177)Lu-PSMA-617 radioligand therapy. Theranostics. 2020;10(17):7812–7820. doi: 10.7150/thno.47251.
  • Paschalis A, Sheehan B, Riisnaes R, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76(4):469–478. doi: 10.1016/j.eururo.2019.06.030.
  • Crumbaker M, Emmett L, Horvath LG, et al. Exceptional response to 177lutetium prostate-specific membrane antigen in prostate cancer harboring DNA repair defects. J Clin Oncol Precis Oncol. 2019;3:1–5. doi: 10.1200/PO.18.00237.
  • Privé BM, Slootbeek PH, Laarhuis BI, et al. Impact of DNA damage repair defects on response to PSMA radioligand therapy in metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis. 2022;25(1):71–78. doi: 10.1038/s41391-021-00424-2.
  • Haberkorn U, Giesel F, Morgenstern A, et al. The future of radioligand therapy: Α, β, or both? J Nucl Med. 2017;58(7):1017–1018. doi: 10.2967/jnumed.117.190124.
  • Jensen K, Konnick EQ, Schweizer MT, et al. Association of clonal hematopoiesis in DNA repair genes with prostate cancer plasma cell-free DNA testing interference. JAMA Oncol. 2021;7(1):107–110. Jan 1doi: 10.1001/jamaoncol.2020.5161.
  • Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science. 2019;366(6465):eaan4673. doi: 10.1126/science.aan4.
  • Chi KN, Barnicle A, Sibilla C, et al. Detection of BRCA1, BRCA2, and ATM alterations in matched tumor tissue and circulating tumor DNA in patients with prostate cancer screened in PROfound. Clin Cancer Res. 2023;29(1):81–91. doi: 10.1158/1078-0432.CCR-22-0931.
  • Li G-M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85–98. doi: 10.1038/cr.2007.115.
  • Baretti M, Le DT. DNA mismatch repair in cancer. Pharmacol Ther. 2018;189:45–62. doi: 10.1016/j.pharmthera.2018.04.004.
  • Ligtenberg MJL, Kuiper RP, Chan TL, et al. Heritable somatic methylation and inactivation of MSH2 in families with lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet. 2009;41(1):112–117. doi: 10.1038/ng.283.
  • Bancroft EK, Page EC, Brook MN, et al. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol. 2021;22(11):1618–1631. doi: 10.1016/S1470-2045(21)00522-2.
  • Møller P, Seppälä TT, Bernstein I, et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the prospective lynch syndrome database. Gut. 2018;67(7):1306–1316. doi: 10.1136/gutjnl-2017-314057.
  • Dominguez-Valentin M, Sampson JR, Seppälä TT, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective lynch syndrome database. Genet Med. 2020;22(1):15–25. doi: 10.1038/s41436-019-0596-9.
  • Sedhom R, Antonarakis ES. Clinical implications of mismatch repair deficiency in prostate cancer. Future Oncol. 2019;15(20):2395–2411. doi: 10.2217/fon-2019-0068.
  • Fang B, Wei Y, Zeng H, et al. Prevalence of mismatch repair genes mutations and clinical activity of PD-1 therapy in Chinese prostate cancer patients. Cancer Immunol Immunother. 2023;72(6):1541–1551.
  • Barata P, Agarwal N, Nussenzveig R, et al. Clinical activity of pembrolizumab in metastatic prostate cancer with microsatellite instability high (MSI-H) detected by circulating tumor DNA. J Immunother Cancer. 2020;8(2):e001065. doi: 10.1136/jitc-2020-001065.
  • Sena LA, Fountain J, Isaacsson Velho P, et al. Tumor frameshift mutation proportion predicts response to immunotherapy in mismatch repair-deficient prostate cancer. Oncologist. 2021;26(2):e270–e278. doi: 10.1002/onco.13601.
  • Sokol ES, Jin DX, Fine A, et al. PARP inhibitor insensitivity to BRCA1/2 monoallelic mutations in microsatellite instability-high cancers. J Clin Oncol Precis Oncol. 2022;6:e2100531. doi: 10.1200/PO.21.00531.
  • Gandara DR, Paul SM, Kowanetz M, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441–1448. doi: 10.1038/s41591-018-0134-3.
  • Cai Z, Wang Z, Liu C, et al. Detection of microsatellite instability from circulating tumor DNA by targeted deep sequencing. J Mol Diagn. 2020;22(7):860–870. doi: 10.1016/j.jmoldx.2020.04.210.
  • Willis J, Lefterova MI, Artyomenko A, et al. Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel. Clin Cancer Res. 2019;25(23):7035–7045. doi: 10.1158/1078-0432.CCR-19-1324.
  • Quigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(3):758–769 e9. doi: 10.1016/j.cell.2018.06.039.
  • Culig Z, Santer FR. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 2014;33(2–3):413–427. doi: 10.1007/s10555-013-9474-0.
  • Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15(12):701–711. doi: 10.1038/nrc4016.
  • Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 1995;9(4):401–406. doi: 10.1038/ng0495-401.
  • Sartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med. 2018;378(7):645–657. doi: 10.1056/NEJMra1701695.
  • Beltran H, Yelensky R, Frampton GM, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 2013;63(5):920–926. doi: 10.1016/j.eururo.2012.08.053.
  • Bernard-Tessier A, Mulier G, Nay P, et al. Androgen receptor (AR) mutations in men with metastatic castration-resistant prostate cancer (mCRPC): incidence and natural history. J Clin Oncol. 2023;41(6_suppl):221–221. doi: 10.1200/JCO.2023.41.6_suppl.221.
  • Westaby D, Maza M, Paschalis A, et al. A new old target: androgen receptor signaling and advanced prostate cancer. Annu Rev Pharmacol Toxicol. 2022;62(1):131–153. doi: 10.1146/annurev-pharmtox-052220-015912.
  • Romanel A, Tandefelt DG, Conteduca V, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 2015;7(312):312re10. doi: 10.1126/scitranslmed.aac9511.
  • Waltering KK, Helenius MA, Sahu B, et al. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res. 2009;69(20):8141–8149. doi: 10.1158/0008-5472.CAN-09-0919.
  • Wyatt AW, Azad AA, Volik SV, et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2016;2(12):1598–1606. doi: 10.1001/jamaoncol.2016.0494.
  • Fettke H, Kwan EM, Docanto MM, et al. Combined cell-free DNA and RNA profiling of the androgen receptor: clinical utility of a novel multianalyte liquid biopsy assay for metastatic prostate cancer. Eur Urol. 2020;78(2):173–180. doi: 10.1016/j.eururo.2020.03.044.
  • Tolmeijer SH, Boerrigter E, Schalken JA, et al. A systematic review and meta-analysis on the predictive value of cell-free DNA–based androgen receptor copy number gain in patients with castration-resistant prostate cancer. J Clin Oncol Precis Oncol. 2020;4(4):714–729. doi: 10.1200/PO.20.00084.
  • Watson PA, Chen YF, Balbas MD, et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA. 2010;107(39):16759–16765. doi: 10.1073/pnas.1012443107.
  • Armstrong AJ, Halabi S, Luo J, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol. 2019;37(13):1120–1129. doi: 10.1200/JCO.18.01731.
  • Antonarakis ES, Lu C, Luber B, et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first-and second-line abiraterone and enzalutamide. J Clin Oncol. 2017;35(19):2149–2156. doi: 10.1200/JCO.2016.70.1961.
  • Lu C, Terbuch A, Dolling D, et al. Treatment with abiraterone and enzalutamide does not overcome poor outcome from metastatic castration-resistant prostate cancer in men with the germline homozygous HSD3B1 c.1245C genotype. Ann Oncol. 2020;31(9):1178–1185. doi: 10.1016/j.annonc.2020.04.473.
  • Khalaf DJ, Aragón IM, Annala M, et al. HSD3B1 (1245A > C) germline variant and clinical outcomes in metastatic castration-resistant prostate cancer patients treated with abiraterone and enzalutamide: results from two prospective studies. Ann Oncol. 2020;31(9):1186–1197. doi: 10.1016/j.annonc.2020.06.006.
  • Shiota M, Narita S, Akamatsu S, et al. Association of missense polymorphism in HSD3B1 with outcomes among men with prostate cancer treated with androgen-deprivation therapy or abiraterone. JAMA Netw Open. 2019;2(2):e190115. doi: 10.1001/jamanetworkopen.2019.0115.
  • Arora VK, Schenkein E, Murali R, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155(6):1309–1322. doi: 10.1016/j.cell.2013.11.012.
  • Li J, Alyamani M, Zhang A, et al. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. Elife. 2017;6:e20183. doi: 10.7554/eLife.20183.
  • Spetsieris N, Boukovala M, Patsakis G, et al. Neuroendocrine and aggressive-variant prostate cancer. Cancers (Basel). 2020;12(12):3792. doi: 10.3390/cancers12123792.
  • Aparicio AM, Shen L, Tapia ELN, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res. 2016;22(6):1520–1530. doi: 10.1158/1078-0432.CCR-15-1259.
  • de Wit R, de Bono J, Sternberg CN, et al. Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate cancer. N Engl J Med. 2019;381(26):2506–2518. doi: 10.1056/NEJMoa1911206.
  • Bernard-Tessier A, Utriainen T, Cook N, et al. Impact of activating androgen receptor (AR) mutations on ar sensitivity to alternative ligands and response to ODM-208, a selective, first-in-class CYP11A1 inhibitor, in patients with advanced metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40(16_suppl):5057–5057. doi: 10.1200/JCO.2022.40.16_suppl.5057.
  • Gao X, Burris Iii HA, Vuky J, et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40(6_suppl):17–17. doi: 10.1200/JCO.2022.40.6_suppl.017.
  • Bono JSD, Cook N, Yu EY, et al. First-in-human study of TAS3681, an oral androgen receptor (AR) antagonist with AR and AR splice variant (AR-SV) downregulation activity, in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) refractory to abiraterone (ABI) and/or enzalutamide (ENZ) and chemotherapy (CT). J Clin Oncol. 2021;39(15_suppl):5031–5031. doi: 10.1200/JCO.2021.39.15_suppl.5031.
  • Maurice-Dror C, Le Moigne R, Vaishampayan U, et al. A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 2022;40(2):322–329. doi: 10.1007/s10637-021-01202-6.
  • Parikh M, Liu C, Wu C-Y, et al. Phase IB trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer. Sci Rep. 2021;11(1):6377. doi: 10.1038/s41598-021-85969-x.
  • Schweizer MT, Haugk K, McKiernan JS, et al. A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS One. 2018;13(6):e0198389. doi: 10.1371/journal.pone.0198389.
  • Serritella AV, Shevrin D, Heath EI, et al. Phase I/II trial of enzalutamide and mifepristone, a glucocorticoid receptor antagonist, for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2022;28(8):1549–1559. doi: 10.1158/1078-0432.CCR-21-4049.
  • Jayaram A, Nowakowska K, Mateo J, et al. 72Phase 1-2 study of progesterone receptor (PR) inhibition with extended-release (ER) onapristone (ONA) alone or in combination with abiraterone (AA) in patients (pts) with castration-resistant prostate cancer (CRPC) incorporating plasma DNA analysis to define androgen receptor (AR) status. Ann Oncol. 2017;28:vii30. doi: 10.1093/annonc/mdx513.007.
  • Nakazawa M, Lu C, Chen Y, et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol. 2015;26(9):1859–1865. doi: 10.1093/annonc/mdv282.
  • De Laere B, Oeyen S, Mayrhofer M, et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2019;25(6):1766–1773. doi: 10.1158/1078-0432.CCR-18-1943.
  • Beltran H, Jendrisak A, Landers M, et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin Cancer Res. 2016;22(6):1510–1519. doi: 10.1158/1078-0432.CCR-15-0137.
  • de Bono JS, Scher HI, Montgomery RB, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–6309. doi: 10.1158/1078-0432.CCR-08-0872.
  • Goldkorn A, Tangen C, Plets M, et al. Baseline circulating tumor cell count as a prognostic marker of PSA response and disease progression in metastatic castrate-sensitive prostate cancer (SWOG S1216). Clin Cancer Res. 2021;27(7):1967–1973. doi: 10.1158/1078-0432.CCR-20-3587.
  • Scher HI, Heller G, Molina A, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol. 2015;33(12):1348–1355. doi: 10.1200/JCO.2014.55.3487.
  • Jayaram A, Wingate A, Wetterskog D, et al. Plasma tumor gene conversions after one cycle abiraterone acetate for metastatic castration-resistant prostate cancer: a biomarker analysis of a multicenter international trial. Ann Oncol. 2021;32(6):726–735. doi: 10.1016/j.annonc.2021.03.196.
  • Heller G, McCormack R, Kheoh T, et al. Circulating tumor cell number as a response measure of prolonged survival for metastatic castration-resistant prostate cancer: a comparison with prostate-specific antigen across five randomized phase III clinical trials. J Clin Oncol. 2018;36(6):572–580. doi: 10.1200/JCO.2017.75.2998.
  • Tolmeijer SH, Boerrigter E, Sumiyoshi T, et al. Early on-treatment changes in circulating tumor DNA fraction and response to enzalutamide or abiraterone in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29(15):2835–2844. doi: 10.1158/1078-0432.CCR-22-2998.
  • Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease. Cell. 2017;170(4):605–635. doi: 10.1016/j.cell.2017.07.029.
  • Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19(5):575–586. doi: 10.1016/j.ccr.2011.04.008.
  • Sweeney C, Bracarda S, Sternberg CN, et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATENTIAL150): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2021;398(10295):131–142. doi: 10.1016/S0140-6736(21)00580-8.
  • Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-MTOR pathway as a pro-survival signaling and resistance-mediating mechanism to therapy of prostate cancer. Int J Mol Sci. 2021;22(20):11088. doi: 10.3390/ijms222011088.
  • Nickols NG, Nazarian R, Zhao SG, et al. MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer Prostatic Dis. 2019;22(4):531–538. doi: 10.1038/s41391-019-0134-5.
  • Fenor MD, Ruiz-Llorente S, Rodríguez-Moreno JF, et al. MEK inhibitor sensitivity in BRAF fusion-driven prostate cancer. Clin Transl Oncol. 2022;24(12):2432–2440. doi: 10.1007/s12094-022-02916-6.
  • Dahut WL, Madan RA, Karakunnel JJ, et al. Phase II clinical trial of cediranib in patients with metastatic castration-resistant prostate cancer. BJU Int. 2013;111(8):1269–1280. doi: 10.1111/j.1464-410X.2012.11667.x.
  • Kaplan AR, Gueble SE, Liu Y, et al. Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Sci Transl Med. 2019;11(492):eaav4508. doi: 10.1126/scitranslmed.aav4508.
  • Antonarakis ES, Park SH, Goh JC, et al. Randomized trial of olaparib with or without cediranib for metastatic castration-resistant prostate cancer: the results from National Cancer Institute 9984. J Clin Oncol. 2023;41 (22 ):3839–3850. doi: 10.1200/JCO.21.02947.
  • Bagheri S, Rahban M, Bostanian F, et al. Targeting protein kinases and epigenetic control as combinatorial therapy options for advanced prostate cancer treatment. Pharmaceutics. 2022;14(3):515. doi: 10.3390/pharmaceutics14030515.
  • Chau V, Madan RA, Aragon-Ching JB. Protein kinase inhibitors for the treatment of prostate cancer. Expert Opin Pharmacother. 2021;22(14):1889–1899. doi: 10.1080/14656566.2021.1925250.
  • Sridhar SS, Joshua AM, Gregg R, et al. A phase II study of GW786034 (pazopanib) with or without bicalutamide in patients with castration-resistant prostate cancer. Clin Genitourin Cancer. 2015;13(2):124–129. doi: 10.1016/j.clgc.2014.06.001.
  • Herberts C, Murtha AJ, Fu S, et al. Activating AKT1 and PIK3CA mutations in metastatic castration-resistant prostate cancer. Eur Urol. 2020;78(6):834–844. Decdoi: 10.1016/j.eururo.2020.04.058.
  • Kwan EM, Rushton MK, Tu W, et al. Prospective ctDNA genotyping for treatment selection in metastatic castration-resistant prostate cancer (mCRPC): the Canadian Cancer Trials Group Phase II PC-BETS Umbrella Study. J Clin Oncol. 2023;41(6_suppl):218–218. doi: 10.1200/JCO.2023.41.6_suppl.218.