1,659
Views
388
CrossRef citations to date
0
Altmetric
Research Article

Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet

, &
Pages 205-240 | Published online: 19 Oct 2008

REFERENCES

  • Aarons S., Abbas A., Adams C., Fenton A., O'Gara F.. 2000. A regulatory RNA (PrrB RNA) modulates expression of secondary metabolite genes in Pseudomonas fluorescens F113. J. Bacteriol.. 182: 3913, [PUBMED], [INFOTRIEVE]
  • Alexandre G., Bally R.. 1999. Emergence of a laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol. Lett.. 174: 371, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Alexandre G., Zhulin I. B.. 2001. More than one way to sense chemicals. J. Bacteriol.. 183: 4681, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Alexandre G., Greer S. E., Zhulin I. B.. 2000. Energy taxis is the dominant behavior in Azospirillum brasilense. J. Bacteriol.. 182: 6042, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Alexandre G., Jacoud D., Faure D., Bally R.. 1996. Population dynamics of a motile and non-motile Azospirillum lipoferum strain during rice colonization and motility variation in the rhizosphere. FEMS Microbiol. Ecol.. 19: 278
  • Alfano J. R., Collmer A.. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death. J. Bacteriol.. 179: 5655, [PUBMED], [INFOTRIEVE]
  • Allaway D., Schofield N. A., Leonard M. E., Gilardoni L., Finan T. M., Poole P. S.. 2001. Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ. Microbiol.. 3: 397, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Amann R., Kuhl M.. 1998. In situ methods for assessment of microorganisms and their activities. Curr. Opin. Microbiol.. 1: 352, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Andersen J. B., Sternberg C., Poulsen L. K., Bjorn S. P., Givskov M., Molin S.. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol.. 64: 2240, [PUBMED], [INFOTRIEVE]
  • Ankenbauer R. G., Nester E. W.. 1990. Sugar-mediated induction of Agrobacterium tumefaciens virulence genes: Structural specificity and activities of monosaccharides. J. Bacteriol.. 172: 6442, [PUBMED], [INFOTRIEVE]
  • Antonyuk L., Fomina O., Kalinina A., Semenov S., Nesmeyanova M., Ignatov V.. 1995. Wheat lectin possibly serves as a signal molecule in the Azospirillum-wheat association. Azospirillum VI and related microorganisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Antoun H., Prevost D.. 2000. PGPR activity of Rhizobium with nonleguminous plants. Proceedings of the fifth International PGPR Workshop, Auburn University Web Site. http://www.ag.auburn.edu/argentina/pdfmanuscripts/antoun.pdf
  • Arsène F., Katupitiya S., Kennedy I. R., Elmerich C.. 1994. Use of lacZ fusions to study the expression of nif genes of Azospirillum brasilense in association with plants. Mol. Plant Microbe Interact.. 7: 748
  • Ashby A. M., Watson M. D., Loake G. J., Shaw C. H.. 1988. Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J. Bacteriol.. 170: 4181, [PUBMED], [INFOTRIEVE]
  • Assmus B., Hutzler P., Amann R., Lawrence J. R., Hartmann A.. 1995. In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal lasser microscopy. Appl. Environ. Microbiol.. 61: 1013
  • Ausmees N., Jacobsson K., Lindberg M.. 2001. A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology. 147: 549, [PUBMED], [INFOTRIEVE]
  • Barak R., Nur I., Okon Y., Henis Y.. 1982. Tactic responses of Azospirillum brasilense towards oxygen and organic compounds. Isr. J. Bot.. 31: 229
  • Barber C. E., Tang J. L., Feng J. X., Pan M. Q., Wilson T. J., Slater H., Dow J. M., Williams P., Daniels M. J.. 1997. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol.. 24: 555, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bashan Y., De-Bashan L. E.. 2002. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol.. 68: 2637, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bashan Y., Holguin G.. 1994. Inter-root movement of Azospirillum brasilense and subsequent root colonization of crop and weed seedlings growing in soil. Microb. Ecol.. 29: 269
  • Bashan Y., Holguin G.. 1994. Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Appl. Environ. Microbiol.. 60: 2120
  • Bashan Y., Levanony H.. 1988. Interaction between Azospirillum Cd and wheat root cells during early stages of root colonization. Azospirillum IV: Genetics, Physiology, Ecology, Klingmüller W., Berlin Heidelberg
  • Bashan Y., Levanony H.. 1987. Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J. Gen. Microbiol.. 133: 3473
  • Bashan Y.. 1999. Interactions of Azospirillum spp. in soils: A review. Biol. Fertil. Soils. 29: 246, [CROSSREF]
  • Bashan Y.. 1986. Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. J. Gen. Microbiol.. 132: 3407
  • Bashan Y., Puente M. E., Rodriguez-Mendoza M. N., Holguin G., Toledo G., Ferrera-Cerrato R., Pedrin S.. 1995. Soil parameters which affect the survival of Azospirillum brasilense. Azospirillum VI and related organisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Bashan Y., Puente M. E., Rodriguez-Mendoza M. N., Toledo G., Holguin G., Ferrera-Cerrato R., Pedrin S.. 1995. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl. Environ. Microbiol.. 61: 1938
  • Bassler B. L.. 1999. How bacteria talk to each other: Regulation of gene expression by quorum sensing. Curr. Opin. Microbiol.. 2: 582, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bauer W. D., Caetano-Anolles G.. 1991. Chemotaxis, induced gene expression and competitiveness in the rhizosphere. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Bauer W. D., Robinson J. B.. 2002. Disruption of bacterial quorum sensing by other organisms. Curr. Opin. Biotechnol.. 13: 234, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bayliss C., Bent E., Culham D. E., MacLellan S., Clarke A. J., Brown G. L., Wood J. M.. 1997. Bacterial genetic loci implicated in the Pseudomonas putida GR12–2R3-canola mutualism: Identification of an exudate-inducible sugar transporter. Can. J. Microbiol.. 43: 809, [PUBMED], [INFOTRIEVE]
  • Beare P. A., For R. J., Martin L. W., Lamont I. L.. 2003. Siderophore-mediated cell signalling in Pseudomonas aeruginosa: Divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol. Microbiol.. 47: 195, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Becker D., Stanke R., Fendrik I., Frommer W. B., Vanderleyden J., Kaiser W. M., Hedrich R.. 2002. Expression of the NH(+)(4)-transporter gene LEAMT1; 2 is induced in tomato roots upon association with N(2)-fixing bacteria. Planta. 215: 424, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Becquart-deKozak I., Reuhs B. L., Buffard D., Breda C., Kim J. S., Esnault R., Kondorosi A.. 1997. Role of the K-antigen subgroup of capsular polysaccharides in the early recognition process between Rhizobium meliloti and alfalfa leaves. Mol. Plant Microbe Interact.. 10: 114
  • Bekri M. A., Desair J., Keijers V., Proost P., Searle-vanLeeuwen M., Vanderleyden J., Vande, Broek A.. 1999. Azospirillum irakense produces a novel type of pectate lyase. J. Bacteriol.. 181: 2440, [PUBMED], [INFOTRIEVE]
  • Benizri E., Baudoin E., Guckert A.. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci. Techn.. 11: 557, [CROSSREF]
  • Benizri E., Dedourge O., Dibattista-Leboef C., Piutti S., Nguyen C., Guckert A.. 2002. Effect of maize rhizodeposits on soil microbial community structure. Appl. Soil Ecol.. 21: 261, [CROSSREF]
  • Bergman K., Gulash-Hoffee M., Hovestadt R. E., Larosiliere R. C., Ronco P. G., Su L.. 1988. Physiology of behavioral mutants of Rhizobium meliloti: Evidence for a dual chemotaxis pathway. J. Bacteriol.. 170: 3249, [PUBMED], [INFOTRIEVE]
  • Binns A. N., Thomashow M. F.. 1988. Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol.. 42: 575, [CROSSREF]
  • Bloemberg G. V., Lugtenberg B. J.. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol.. 4: 343, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bloemberg G. V., O'toole G. A., Lugtenberg B. J., Kolter R.. 1997. Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol.. 63: 4543, [PUBMED], [INFOTRIEVE]
  • Bloemberg G. V., Wijfjes A. H., Lamers G. E., Stuurman N., Lugtenberg B. J.. 2000. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities. Mol. Plant Microbe Interact.. 13: 1170, [PUBMED], [INFOTRIEVE]
  • Blumer C., Heeb S., Pessi G., Haas D.. 1999. Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc. Natl. Acad. Sci. USA. 96: 14073, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bohin J. P.. 2000. Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol. Lett.. 186: 11, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bolton G. W., Nester E. W., Gordon M. P.. 1986. Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science. 232: 983, [PUBMED], [INFOTRIEVE]
  • Bottini R., Fulchieri M., Pearce D., Pharis R. P.. 1989. Identification of gibberelins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol.. 90: 45
  • Bowen G. D.. 1991. Microbial dynamics in the rhizosphere: Possible strategies in managing rhizosphere populations. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Braun V., Killmann H.. 1999. Bacterial solutions to the iron-supply problem. Trends Biochem. Sci.. 24: 104, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Bringhurst R. M., Cardon Z. G., Gage D. J.. 2001. Galactosides in the rhizosphere: Utilization by Sinorhizobium meliloti and development of a biosensor. Proc. Natl. Acad. Sci. USA. 98: 4540, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Broughton W. J., Perret X.. 1999. Genealogy of legume-Rhizobium symbioses. Curr. Opin. Plant Biol.. 2: 305, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Broughton W. J., Jabbouri S., Perret X.. 2000. Keys to symbiotic harmony. J. Bacteriol.. 182: 5641, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Buell C. R., Anderson A. J.. 1992. Genetic analysis of the aggA locus involved in agglutination and adherence of Pseudomonas putida, a beneficial fluorescent pseudomonad. Mol. Plant Microbe Interact.. 5: 154, [PUBMED], [INFOTRIEVE]
  • Burdman S., Dulguerova G., Okon Y., Jurkevitch E.. 2001. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol. Plant Microbe Interact.. 14: 555, [PUBMED], [INFOTRIEVE]
  • Burdman S., Jurkevitch E., Schwartsburd B., Okon Y.. 1999. Involvement of outer-membrane proteins in the aggregation of Azospirillum brasilense. Microbiology. 145: 1145, [PUBMED], [INFOTRIEVE]
  • Burdman S., Jurkevitch E., Schwartsburd B., Hampel M., Okon Y.. 1998. Aggregation in Azospirillum brasilense: Effects of chemical and physical factors and involvement of extracellular components. Microbiology. 144: 1989, [PUBMED], [INFOTRIEVE]
  • Burdman S., Jurkevitch E., Soria-Diaz M. E., Serrano A. M., Okon Y.. 2000. Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol. Lett.. 189: 259, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Burdman S., Okon Y., Jurkevitch E.. 2000. Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit. Rev. Microbiol.. 26: 91, [PUBMED], [INFOTRIEVE]
  • Burmolle M., Hansen L. H., Oregaard G., Sorensen S. J.. 2003. Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Microb. Ecol.. 45: 226, [PUBMED], [INFOTRIEVE]
  • Buttner D., Bonas U.. 2002. Getting across-bacterial type III effector proteins on their way to the plant cell. EMBO J.. 21: 5313, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Camacho Carvajal M.M., Wijfjes A. H., Mulders I. H., Lugtenberg B. J., Bloemberg G. V.. 2002. Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonization. Mol. Plant Microbe Interact.. 15: 662
  • Camilli A., Beattie D. T., Mekalanos J. J.. 1994. Use of genetic recombination as a reporter of gene expression. Proc. Natl. Acad. Sci. USA. 91: 2634, [PUBMED], [INFOTRIEVE]
  • Casavant N. C., Beattie G. A., Phillips G. J., Halverson L. J.. 2002. Site-specific recombination-based genetic system for reporting transient or low-level gene expression. Appl. Environ. Microbiol.. 68: 3588, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Castaneda M., Guzman J., Moreno S., Espin G.. 2000. The GacS sensor kinase regulates alginate and poly-beta-hydroxybutyrate production in Azotobacter vinelandii. J. Bacteriol.. 182: 2624, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Castaneda M., Sanchez J., Moreno S., Nunez C., Espin G.. 2001. The global regulators GacA and sigma(S) form part of a cascade that controls alginate production in Azotobacter vinelandii. J. Bacteriol.. 183: 6787, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Castellanos T., Ascencio F., Bashan Y.. 1998. Cell-surface lectins of Azospirillum spp. Curr. Microbiol.. 36: 241, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cha C., Gao P., Chen Y. C., Shaw P. D., Farrand S. K.. 1998. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant Microbe Interact.. 11: 1119, [PUBMED], [INFOTRIEVE]
  • Chabeaud P., de, Groot A., Bitter W., Tommassen J., Heulin T., Achouak W.. 2001. Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J. Bacteriol.. 183: 2117, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Chabot R., Antoun H., Kloepper J. W., Beauchamp C. J.. 1996. Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol.. 62: 2767, [PUBMED], [INFOTRIEVE]
  • Chabot R., Beauchamp C. J., Kloepper J. W., Antoun H.. 1998. Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol. Biochem.. 30: 1615, [CROSSREF]
  • Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C.. 1994. Green fluorescent protein as a marker for gene expression. Science. 263: 802, [PUBMED], [INFOTRIEVE]
  • Chancey S. T., Wood D. W., Pierson L. S., III. 1999. Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl. Environ. Microbiol.. 65: 2294, [PUBMED], [INFOTRIEVE]
  • Chancey S. T., Wood D. W., Pierson E. A., Pierson L. S., III. 2002. Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. Appl. Environ. Microbiol.. 68: 3308, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Chen X., Schauder S., Potier N., Van, Dorsselaer A., Pelczer I., Bassler B. L., Hughson F. M.. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature. 415: 545, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cheng H. P., Walker G. C.. 1998a. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol.. 180: 5183, [PUBMED], [INFOTRIEVE]
  • Cheng H. P., Walker G. C.. 1998b. Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J. Bacteriol.. 180: 20, [PUBMED], [INFOTRIEVE]
  • Chet I., Ordentlich A., Shapira R., Oppenheim A.. 1991. Mechanisms of biocontrol of soil-born plant pathogens by rhizobacteria. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Chin-A-Woeng T. F.C., Bloemberg G. V., Mulders I. H., Dekkers L. C., Lugtenberg B. J.. 2000. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant Microbe Interact.. 13: 1340, [PUBMED], [INFOTRIEVE]
  • Chin-A-Woeng T. F.C., de, Priester W., van de, Bij A. J., Lugtenberg B. J.J.. 1997. Description of the colonization of a gnotobiotic tomato rhizospere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol. Plant Microbe Interact.. 10: 79
  • Chin-A-Woeng T. F.C., van den, Broek D., de, Voer G., van der, Drift K. M., Tuinman S., Thomas-Oates J. E., Lugtenberg B. J., Bloemberg G. V.. 2001. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol. Plant Microbe Interact.. 14: 969, [PUBMED], [INFOTRIEVE]
  • Clarke H. R., Leigh J. A., Douglas C. J.. 1992. Molecular signals in the interactions between plants and microbes. Cell. 71: 191, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cook R. J., Thomashow L. S., Weller D. M., Fuiimoto D., Mazzola M., Bangera G., Kim D.. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. USA. 92: 4197, [PUBMED], [INFOTRIEVE]
  • Cornelis P., Matthijs S.. 2002. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: Not only pyoverdines. Environ. Microbiol.. 4: 787, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Croes C. L., Moens S., Van, Bastelaere E., Vanderleyden J., Michiels K. W.. 1993. The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J. Gen. Microbiol.. 139: 2261
  • Croes C., Van, Bastelaere E., DeClercq E., Eyers M., Vanderleyden J., Michiels K.. 1991. Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid. 26: 83, [PUBMED], [INFOTRIEVE]
  • Currier W. W., Strobel G. A.. 1977. Chemotaxis of Rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots. Science. 196: 434
  • Currier W. W.. 1980. Chemotaxis of a birdsfoot trefoil strain of Rhizobium to simple sugars. FEMS Microbiol. Lett.. 8: 43, [CROSSREF]
  • Czuprynski C. J., Welch R. A.. 1995. Biological effects of RTX toxins: The possible role of lipopolysaccharide. Trends Microbiol.. 3: 480, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dakora F. D., Phillips D. A.. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil. 245: 35, [CROSSREF]
  • Daniels R., De, Vos D. E., Desair J., Raedschelders G., Luyten E., Rosemeyer V., Verreth C., Schoeters E., Vanderleyden J., Michiels J.. 2002. The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J. Biol. Chem.. 277: 462, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Daunert S., Barrett G., Feliciano J. S., Shetty R. S., Shrestha S., Smith-Spencer W.. 2000. Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chem. Rev.. 100: 2705, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Davey M. E., O'toole G. A.. 2000. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev.. 64: 847, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dazzo F. B., Hubbell D. H.. 1975. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Appl. Microbiol.. 30: 1017, [PUBMED], [INFOTRIEVE]
  • De, Bellis P., Ercolani G. L.. Growth interactions during bacterial colonization of seedling rootlets. Appl. Environ. Microbiol.. 67: 1945, 2001, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • De, Coninck K., Horemans S., Randombage S., Vlassak K.. 1988. Occurrence and survival of Azospirillum spp. in temperate regions. Plant Soil. 110: 213
  • De, Mot R., Proost P., Van, Damme J., Vanderleyden J.. 1992. Homology of the root adhesin of Pseudomonas fluorescens OE 28.3 with porin F of P. aeruginosa and P. syringae. Mol. Gen. Genet.. 231: 489, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • de, Rudder K. E., Sohlenkamp C., Geiger O.. 1999. Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. J. Biol. Chem.. 274: 20011, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • de, Weert S., Vermeiren H., Mulders I. H., Kuiper I., Hendrickx N., Bloemberg G. V., Vanderleyden J., De, Mot R., Lugtenberg B. J.. 2002. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe Interact.. 15: 1173, [PUBMED], [INFOTRIEVE]
  • de, Weger L. A., Bloemberg G. V., van, Wezel T., van, Raamsdonk M., Glandorf D. C., van, Vuurde J., Jann K., Lugtenberg B. J.. 1996. A novel cell surface polysaccharide in Pseudomonas putida WCS358, which shares characteristics with Escherichia coli K antigens, is not involved in root colonization. J. Bacteriol.. 178: 1955, [PUBMED], [INFOTRIEVE]
  • de, Weger L. A., van der, Bij A. J., Dekkers L. C., Simons M., Wijffelman C. A., Lugtenberg B. J.J.. 1995. Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol. Ecol.. 17: 221, [CROSSREF]
  • de, Weger L. A., van der, Vlugt C. I., Wijfjes A. H., Bakker P. A., Schippers B., Lugtenberg B.. 1987. Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol.. 169: 2769, [PUBMED], [INFOTRIEVE]
  • Dekkers L. C., Bloemendaal C. J., de, Weger L. A., Wijffelman C. A., Spaink H. P., Lugtenberg B. J.. 1998. A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact.. 11: 45, [PUBMED], [INFOTRIEVE]
  • Dekkers L. C., Mulders I. H., Phoelich C. C., Chin A. W.T., Wijfjes A. H., Lugtenberg B. J.. 2000. The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol. Plant Microbe Interact.. 13: 1177, [PUBMED], [INFOTRIEVE]
  • Dekkers L. C., Phoelich C. C., van der, Fits L., Lugtenberg B. J.. 1998. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc. Natl. Acad. Sci. USA. 95: 7051, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dekkers L. C., van der, Bij A. J., Mulders I. H., Phoelich C. C., Wentwoord R. A., Glandorf D. C., Wijffelman C. A., Lugtenberg B. J.. 1998. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol. Plant Microbe Interact.. 11: 763, [PUBMED], [INFOTRIEVE]
  • Del, Gallo M., Fendrik I.. 1994. The rhizosphere and Azospirillum. Azospirillum/plant associations, Okon Y., Boca Raton, Florida
  • Diaz C. L., Melchers L. S., Hooykaas P. J.J., Lugtenberg B. J.J., Kijne J. W.. 1989. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature. 338: 579, [CROSSREF]
  • Dobbelaere S., Croonenborghs A., Thys A., Vande, Broek A.. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil. 212
  • Dobbelaere S., Croonenborghs A., Thys A., Ptacek D., Vanderleyden J., Dutto P., Labandera-Gonzalez C., Caballero-Mellado J., Francisco Aguirre J., Kapulnik Y., Brener S., Burdman S., Kadouri D., Sarig S., Okon Y.. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Aust. J. Plant Physiol.. 28: 871
  • Dobbelaere S.. 2002. Phytostimulatory effect of Azospirillum, PhD Dissertation. K.U. Leuven, Belgium
  • Döbereiner J., Baldani V. L.D., Reis V. M.. 1995. Endophytic occurence of diazotrophic bacteria in non-leguminous crops. Azospirillum VI and related microorganisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Dong Y. H., Gusti A. R., Zhang Q., Xu J. L., Zhang L. H.. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol.. 68: 1754, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dong Y. H., Wang L. H., Xu J. L., Zhang H. B., Zhang X. F., Zhang L. H.. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 411: 813, [PUBMED], [INFOTRIEVE]
  • Dong Y. H., Xu J. L., Li X. Z., Zhang L. H.. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA. 97: 3526, [PUBMED], [INFOTRIEVE]
  • Dorr J., Hurek T., Reinhold-Hurek B.. 1998. Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol.. 30: 7, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dow M., Newman M. A., von, Roepenack E.. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol.. 38: 241, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Duffy B. K., Defago G.. 2000. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol.. 66: 3142, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Duineveld B. M., Rosado A. S., Van, Elsas J. D., van, Veen J. A.. 1998. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl. Environ. Microbiol.. 64: 4950, [PUBMED], [INFOTRIEVE]
  • Dunn A. K., Handelsman J.. 2002. Toward an understanding of microbial communities through analysis of communication networks. Antonie Van Leeuwenhoek. 81: 565, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dunn A. K., Klimowicz A. K., Handelsman J.. 2003. Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens. Appl. Environ. Microbiol.. 69: 1197, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dylan T., Ielpi L., Stanfield S., Kashyap L., Douglas C., Yanofsky M., Nester E., Helinski D. R., Ditta G.. 1986. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA. 83: 4403
  • Eckert B., Weber O. B., Kirchhof G., Halbritter A., Hartmann A., Hartmann A.. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol.. 51: 17, [PUBMED], [INFOTRIEVE]
  • Elasri M., Delorme S., Lemanceau P., Stewart G., Laue B., Glickmann E., Oger P. M., Dessaux Y.. 2001. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl. Environ. Microbiol.. 67: 1198, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Entcheva P., Phillips D. A., Streit W. R.. 2002. Functional analysis of Sinorhizobium meliloti genes involved in biotin synthesis and transport. Appl. Environ. Microbiol.. 68: 2843, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Eriksson A. R., Andersson R. A., Pirhonen M., Palva E. T.. 1998. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. Mol. Plant Microbe Interact.. 11: 743
  • Errampalli D., Leung K., Cassidy M. B., Kostrzynska M., Blears M., Lee H., Trevors J. T.. 1999. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Methods. 35: 187, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Espinosa-Urgel M., Ramos J. L.. 2001. Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere. Appl. Environ. Microbiol.. 67: 5219, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Espinosa-Urgel M., Kolter R., Ramos J. L.. 2002. Root colonization by Pseudomonas putida: Love at first sight. Microbiology. 148: 341, [PUBMED], [INFOTRIEVE]
  • Espinosa-Urgel M., Salido A., Ramos J. L.. 2000. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol.. 182: 2363, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fan T. W., Lane A. N., Shenker M., Bartley J. P., Crowley D., Higashi R. M.. 2001. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry. 57: 209, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Faure D., Desair J., Keijers V., Bekri M. A., Proost P., Henrissat B., Vanderleyden J.. 1999. Growth of Azospirillum irakense KBC1 on the aryl beta-glucoside salicin requires either salA or salB. J. Bacteriol.. 181: 3003, [PUBMED], [INFOTRIEVE]
  • Faure D., Henrissat B., Ptacek D., Bekri M. A., Vanderleyden J.. 2001. The celA gene, encoding a glycosyl hydrolase family 3 beta-glucosidase in Azospirillum irakense, is required for optimal growth on cellobiosides. Appl. Environ. Microbiol.. 67: 2380, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fedi S., Montaini P., Favilli F.. 1992. Chemotactic response of Azospirillum toward root exudates of C3 and C4 plants. Symbiosis. 13: 101
  • Ferraioli S., Tate R., Caputo E., Lamberti A., Riccio A., Patriarca E. J.. 2001. The Rhizobium etli argC gene is essential for arginine biosynthesis and nodulation of Phaseolus vulgaris. Mol. Plant Microbe Interact.. 14: 250, [PUBMED], [INFOTRIEVE]
  • Ferraioli S., Tate R., Cermola M., Favre R., Iaccarino M., Patriarca E. J.. 2002. Auxotrophic mutant strains of Rhizobium etli reveal new nodule development phenotypes. Mol. Plant Microbe Interact.. 15: 501, [PUBMED], [INFOTRIEVE]
  • Fischer S. E., Miguel M. J., Mori G. B.. 2003. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol. Lett.. 219: 53, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fischer S., Rivarola V., Mori G.. 1999. Saline stress alters the gene expression of Azospirillum brasilense Cd. Microbios. 100: 83
  • Fisher R. F., Long S. R.. 1992. Rhizobium–plant signal exchange. Nature. 357: 655, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Flagan S., Ching W. K., Leadbetter J. R.. 2003. Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl. Environ. Microbiol.. 69: 909, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Flavier A. B., Clough S. J., Schell M. A., Denny T. P.. 1997. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol. Microbiol.. 26: 251, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Forsberg L. S., Reuhs B. L.. 1997. Structural characterization of the K antigens from Rhizobium fredii USDA257: Evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp. J. Bacteriol.. 179: 5366, [PUBMED], [INFOTRIEVE]
  • Fray R. G.. 2002. Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing. Ann. Bot. (Lond). 89: 245
  • Fray R. G., Throup J. P., Daykin M., Wallace A., Williams P., Stewart G. S.A.B., Grierson D.. 1999. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat. Biotechnol.. 17: 1017, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fraysse N., Couderc F., Poinsot V.. 2003. Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur. J. Biochem.. 270: 1365, [PUBMED], [INFOTRIEVE]
  • Fry J., Wood M., Poole P. S.. 2001. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol. Plant Microbe Interact.. 14: 1016, [PUBMED], [INFOTRIEVE]
  • Fuqua C., Parsek M. R., Greenberg E. P.. 2001. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu. Rev. Genet.. 35: 439, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Fuqua C., Winans S. C., Greenberg E. P.. 1996. Census and consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol.. 50: 727, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gal M., Preston G. M., Massey R. C., Spiers A. J., Rainey P. B.. 2003. Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol. Ecol.. 12: 3109, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Galbraith M. P., Feng S. F., Borneman J., Triplett E. W., de, Bruijn F. J., Rossbach S.. 1998. A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology. 144: 2915, [PUBMED], [INFOTRIEVE]
  • Gardener B. B.M., de, Bruijn F. J.. 1998. Detection and isolation of novel rhizopine-catabolizing bacteria from the environment. Appl. Environ. Microbiol.. 64: 4944, [PUBMED], [INFOTRIEVE]
  • Gaworzewska E. T., Carlile M. J.. 1982. Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants. J. Gen. Microbiol.. 128: 1179
  • Ghiglione J. F., Gourbiere F., Potier P., Philippot L., Lensi R.. 2000. Role of respiratory nitrate reductase in ability of Pseudomonas fluorescens YT101 to colonize the rhizosphere of maize. Appl. Environ. Microbiol.. 66: 4012, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Givskov M., de, Nys R., Manefield M., Gram L., Maximilien R., Eberl L., Molin S., Steinberg P. D., Kjelleberg S.. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol.. 178: 6618, [PUBMED], [INFOTRIEVE]
  • Goldmann A., Boivin C., Fleury V., Message B., Lecoeur L., Maille M., Tepfer D.. 1991. Betaine use by rhizosphere bacteria: Genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol. Plant Microbe Interact.. 4: 571, [PUBMED], [INFOTRIEVE]
  • Goldmann A., Lecoeur L., Message B., Delarue M., Schoonejans E., Tepfer D.. 1994. Symbiotic plasmid genes essential to the catabolism of proline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti. FEMS Microbiol. Lett.. 115: 305, [CROSSREF]
  • Gonzalez J. E., Reuhs B. L., Walker G. C.. 1996. Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc. Natl. Acad. Sci. USA. 93: 8636, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gordon D. M., Ryder M. H., Heinrich K., Murphy P. J.. 1996. An experimental test of the rhizopine concept in Rhizobium meliloti. Appl. Environ. Microbiol.. 62: 3991
  • Gottfert M., Grob P., Hennecke H.. 1990. Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc. Natl. Acad. Sci. USA. 87: 2680, [PUBMED], [INFOTRIEVE]
  • Gottfert M., Rothlisberger S., Kundig C., Beck C., Marty R., Hennecke H.. 2001. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol.. 183: 1405, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Gray K. M.. 1997. Intercellular communication and group behavior in bacteria. Trends Microbiol.. 5: 184, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Grayston S. J., Vaughan D., Jones D.. 1997. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol.. 5: 29, [CROSSREF]
  • Grayston S. J., Wang S. Q., Campbell C. D., Edwards A. C.. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem.. 30: 369, [CROSSREF]
  • Grishanin R. N., Chalmina I. I., Zhulin I. B.. 1991. Behaviour of Azospirillum brasilense in a spatial gradient of oxygen and in a redox gradient of an artificial electron acceptor. J. Gen. Microbiol.. 137: 2781
  • Grob P., Michel P., Hennecke H., Gottfert M.. 1993. A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant. Mol. Gen. Genet.. 241: 531, [PUBMED], [INFOTRIEVE]
  • Gu Y.-H., Mazzola M.. 2001. Impact of carbon starvation on stress resistance, survival in soil habitats and biocontrol ability of Pseudomonas putida strain 2C8. Soil Biol. Biochem.. 33: 1155
  • Guntli D., Heeb M., Moënne-Loccoz Y., Defago G.. 1999. Contribution of calystegine catabolic plasmid to competitive colonization of calystegine-producing plants by Sinorhizobium meliloti Rm41. Mol. Ecol.. 8: 855, [CROSSREF]
  • Haas D., Blumer C., Keel C.. 2000. Biocontrol ability of fluorescent pseudomonads genetically dissected: Importance of positive feedback regulation. Curr. Opin. Biotechnol.. 11: 290, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hall P. G., Krieg N. R.. 1983. Swarming of Azospirillum brasilense on solid media. Can. J. Microbiol.. 29: 1592
  • Handelsman J., Stabb E. V.. 1996. Biocontrol of soilborne plant pathogens. Plant Cell. 8: 1855, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Handfield M., Levesque R. C.. 1999. Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiol. Rev.. 23: 69, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hartmann A., Zimmer W.. 1994. Physiology of Azospirillum. Azospirillum/plant associations, Okon Y., Boca Raton
  • Hartmann A.. 1988. Osmoregulatory properties of Azospirillum sp.. Azospirillum IV: Genetics, physiology, ecology, Klingmüller W., Berlin Heidelberg
  • Hartwig U. A., Phillips D. A.. 1991. Release and modification of nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol.. 95: 804
  • Hauwaerts D., Alexandre G., Das S. K., Vanderleyden J., Zhulin I. B.. 2002. A major chemotaxis gene cluster in Azospirillum brasilense and relationships between chemotaxis operons in alpha-proteobacteria. FEMS Microbiol. Lett.. 208: 61, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hawes M. C., Smith L. Y.. 1989. Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J. Bacteriol.. 171: 5668, [PUBMED], [INFOTRIEVE]
  • Hawes M. C.. 1991. Living plant cells released from the root cap: A regulator of microbial populations in the rhizosphere?. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Hawes M. C., Brigham L. A., Wen F., Woo H.-H., Zhu Y.. 1998. Function of root border cells: Pioneers in the rhizosphere. Annu. Rev. Phytopathol.. 36: 311, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hawes M. C., Brigham L. A., Woo H.-H., Zhu Y., Wen F.. 1996. Root border cells. Biology of plant-microbe interactions. Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions, Knoxville, Tennessee, 14–19 July 1996, Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • He S. Y.. 1998. Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol.. 36: 363, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • He X., Chang W., Pierce D. L., Seib L. O., Wagner J., Fuqua C.. 2003. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J. Bacteriol.. 185: 809, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Heeb S., Haas D.. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol. Plant Microbe Interact.. 14: 1351, [PUBMED], [INFOTRIEVE]
  • Heeb S., Blumer C., Haas D.. 2002. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J. Bacteriol.. 184: 1046, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Heinrich D., Hess D.. 1984. Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants. Can. J. Microbiol.. 31: 26
  • Heinrich K., Gordon D. M., Ryder M. H., Murphy P. J.. 1999. A rhizopine strain of Sinorhizobium meliloti remains at a competitive nodulation advantage after an extended period in the soil. Soil Biol. Biochem.. 31: 1063, [CROSSREF]
  • Henderson I. R., Owen P., Nataro J. P.. 1999. Molecular switches-the ON and OFF of bacterial phase variation. Mol. Microbiol.. 33: 919, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Heulin T., Guckert A., Balandreau J.. 1987. Stimulation of root exudation of rice seedlings by Azospirillum strains: Carbon budget under gnotobiotic conditions. Biol. Fertil. Soils. 4: 9
  • Hirsch A. M., Lum M. R., Downie J. A.. 2001. What makes the rhizobia-legume symbiosis so special?. Plant Physiol.. 127: 1484, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hirsch A. M.. 1999. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol.. 2: 320, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Hirsch P. R.. 1979. Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J. Gen. Microbiol.. 113: 219
  • Hogg B., Davies A. E., Wilson K. E., Bisseling T., Downie J. A.. 2002. Competitive nodulation blocking of cv. Afghanistan pea is related to high levels of nodulation factors made by some strains of Rhizobium leguminosarum bv. viciae. Mol. Plant Microbe Interact.. 15: 60
  • Holden M. T., Ram C. S., de, Nys R., Stead P., Bainton N. J., Hill P. J., Manefield M., Kumar N., Labatte M., England D., Rice S., Givskov M., Salmond G. P., Stewart G. S., Bycroft B. W., Kjelleberg S., Williams P.. 1999. Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol. Microbiol.. 33: 1254, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Holguin G., Patten C. L., Glick B. R.. 1999. Genetics and molecular biology of Azospirillum. Biol. Fertil. Soils. 29: 10, [CROSSREF]
  • Honma M. A., Asomaning M., Ausubel F. M.. 1990. Rhizobium meliloti nodD genes mediate host-specific activation of nodABC. J. Bacteriol.. 172: 901, [PUBMED], [INFOTRIEVE]
  • Hungria M., Stacey G.. 1997. Molecular signals exchanged between host plants and rhizobia: Basic aspects and potential application in agriculture. Soil Biol. Biochem.. 29: 819, [CROSSREF]
  • Hurek T., Reinhold-Hurek B.. 2003. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J. Biotechnol.. 106: 169, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ignatov V., Stadnik G., Iosipenko O., Selivanov N., Iosipenko A., Sergeeva E.. 1995. Interactions between partners in the association “wheat-Azospirillum brasilense Sp245”. Azospirillum VI and related microorganisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Jaeger C. H.I., Lindow S. E., Miller W., Clark E., Firestone M. K.. 1999. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl. Environ. Microbiol.. 65: 2685, [PUBMED], [INFOTRIEVE]
  • Jayaraman V., Das H. R.. 1998. Interaction of peanut root lectin (PRA II) with rhizobial lipopolysaccharides. Biochim. Biophys. Acta. 1381: 7, [PUBMED], [INFOTRIEVE]
  • Jetiyanon K., Kloepper J. W.. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control. 24: 285, [CROSSREF]
  • Jimenez-Zurdo J. I., Garcia-Rodriguez F. M., Toro N.. 1997. The Rhizobium meliloti putA gene: Its role in the establishment of the symbiotic interaction with alfalfa. Mol. Microbiol.. 23: 85, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Jimenez-Zurdo J. I., van, Dillewijn P., Soto M. J., de, Felipe M. R., Olivares J., Toro N.. 1995. Characterization of a Rhizobium meliloti proline dehydrogenase mutant altered in nodulation efficiency and competitiveness on alfalfa roots. Mol. Plant Microbe Interact.. 8: 492, [PUBMED], [INFOTRIEVE]
  • Jofré E., Fischer S., Rivarola V., Balegno H., Mori G.. 1998. Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can. J. Microbiol.. 44: 416, [CROSSREF]
  • Joyner D. C., Lindow S. E.. 2000. Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology. 146: 2435, [PUBMED], [INFOTRIEVE]
  • Kadouri D., Burdman S., Jurkevitch E., Okon Y.. 2002. Identification and isolation of genes involved in poly(beta-hydroxybutyrate) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. Appl. Environ. Microbiol.. 68: 2943, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kadouri D., Jurkevitch E., Okon Y.. 2003. Involvement of the reserve material poly-beta-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl. Environ. Microbiol.. 69: 3244, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Karpati E., Kiss P., Afsharian M., Marini F., Buglioni S., Fendrik I., Del, Gallo M.. 1995. Molecular study of the interaction of Azospirillum lipoferum with wheat germ agglutinin. Azospirillum VI and related microorganisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Heidelberg Berlin
  • Karpati E., Kiss P., Ponyi T., Fendrik I., de, Zamaroczy M., Orosz L.. 1999. Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation. J. Bacteriol.. 181: 3949, [PUBMED], [INFOTRIEVE]
  • Kennedy A. C.. 1998. The rhizosphere and spermosphere. Principles and applications of soil microbiology, Sylvia D. M., Fuhrmann J. J., Hartel P. G., Zuberer D. A., , New Jersey
  • Khammas K. M., Kaiser P.. 1991. Characterization of a pectinolytic activity in Azospirillum irakense. Plant Soil. 137: 75
  • Khammas K. M., Ageron E., Grimont P. A., Kaiser P.. 1989. Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol.. 140: 679, [PUBMED], [INFOTRIEVE]
  • Kijne J. W., Smit G., Diaz C. L., Lugtenberg B. J.. 1988. Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips. J. Bacteriol.. 170: 2994, [PUBMED], [INFOTRIEVE]
  • Kim H., Farrand S. K.. 1997. Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84,. J. Bacteriol.. 179: 7559, [PUBMED], [INFOTRIEVE]
  • Kim H., Farrand S. K.. 1998. Opine catabolic loci from Agrobacterium plasmids confer chemotaxis to their cognate substrates. Mol. Plant Microbe Interact.. 11: 131, [PUBMED], [INFOTRIEVE]
  • Kim Y. C., Miller C. D., Anderson A. J.. 2000. Superoxide dismutase activity in Pseudomonas putida affects utilization of sugars and growth on root surfaces. Appl. Environ. Microbiol.. 66: 1460, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kimmel S., Reinhold-Hurek B., Fendrik I., Niemann E.-G.. 1990. Contribution of chemotaxis and aerotaxis to the establishment of Azospirillum in the rhizosphere. Symbiosis. 9: 195
  • King N. D., Hojnacki D., O'Brian M. R.. 2000. The Bradyrhizobium japonicum proline biosynthesis gene proC is essential for symbiosis. Appl. Environ. Microbiol.. 66: 5469, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kloepper J. W., Zablotowicz R. M., Tipping E. M., Lifshitz R.. 1991. Plant growth promotion mediated by bacterial rhizosphere colonizers. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Knee E. M., Gong F. C., Gao M., Teplitski M., Jones A. R., Foxworthy A., Mort A. J., Bauer W. D.. 2001. Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol. Plant Microbe Interact.. 14: 775, [PUBMED], [INFOTRIEVE]
  • Koch B., Nielsen T. H., Sorensen D., Andersen J. B., Christophersen C., Molin S., Givskov M., Sorensen J., Nybroe O.. 2002. Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl. Environ. Microbiol.. 68: 4509, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Koch B., Worm J., Jensen L. E., Hojberg O., Nybroe O.. 2001. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil. Appl. Environ. Microbiol.. 67: 3363, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kohler S., Belkin S., Schmid R. D.. 2000. Reporter gene bioassays in environmental analysis. Fresenius. J. Anal. Chem.. 366: 769, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kowalchuk G. A., Buma D. S., de, Boer W., Klinkhamer P. G., van, Veen J. A.. 2002. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek. 81: 509, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kraffczyk I., Trolldenier G., Beringer H.. 1984. Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem.. 16: 315
  • Kragelund L., Nybroe O.. 1996. Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 (pJP4) during colonization of barley roots. FEMS Microbiol. Ecol.. 20: 41
  • Kragelund L., Hosbond C., Nybroe O.. 1997. Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl. Environ. Microbiol.. 63: 4920, [PUBMED], [INFOTRIEVE]
  • Kuiper I., Bloemberg G. V., Lugtenberg B. J.. 2001. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant Microbe Interact.. 14: 1197, [PUBMED], [INFOTRIEVE]
  • Kuiper I., Bloemberg G. V., Noreen S., Thomas-Oates J. E., Lugtenberg B. J.. 2001. Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact.. 14: 1096, [PUBMED], [INFOTRIEVE]
  • Kuiper I., Kravchenko L. V., Bloemberg G. V., Lugtenberg B. J.. 2002. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol. Plant Microbe Interact.. 15: 734, [PUBMED], [INFOTRIEVE]
  • Kuzyakov Y.. 2002. Review: Factors affecting rhizosphere priming effects. J. Plant Nutr. Soil Sci.. 165: 382, [CROSSREF]
  • Laeremans T., Vanderleyden J.. 1998. Review: Infection and nodulation signalling in Rhizobium-Phaseolus vulgaris symbiosis. World J. Microbiol. Biotechnol.. 14: 787, [CROSSREF]
  • Lam S. T., Ellis D. M., Ligon J. M.. 1991. Genetic approaches for studying rhizosphere colonization. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Lambrecht M., Okon Y., Vande, Broek A., Vanderleyden J.. 2000. Indole-3-acetic acid: A reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol.. 8: 298, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lambrecht M.. 1999. Rhizosphere signalling molecules altering gene expression in Azospirillum brasilense: Indole-3-acetic acid and sugars, PhD Dissertation. K.U. Leuven, Belgium
  • Lamont I. L., Beare P. A., Ochsner U., Vasil A. I., Vasil M. L.. 2002. Siderophore-mediated signalling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A.. 99: 7072, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Langlois P., Bourassa S., Poirier G. G., Beaulieu C.. 2003. Identification of Streptomyces coelicolor proteins that are differentially expressed in the presence of plant material. Appl. Environ. Microbiol.. 69: 1884, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Laue B. E., Jiang Y., Chhabra S. R., Jacob S., Stewart G. S., Hardman A., Downie J. A., O'Gara F., Williams P.. 2000. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology. 146: 2469, [PUBMED], [INFOTRIEVE]
  • Leadbetter J. R., Greenberg E. P.. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol.. 182: 6921, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lee S. J., Park S. Y., Lee J. J., Yum D. Y., Koo B. T., Lee J. K.. 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol.. 68: 3919, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lenski R. E., Mongold J. A., Sniegowski P. D., Travisano M., Vasi F., Gerrish P. J., Schmidt T. M.. 1998. Evolution of competitive fitness in experimental populations of E. coli: What makes one genotype a better competitor than another?. Antonie Van Leeuwenhoek. 73: 35, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lin Y. H., Xu J. L., Hu J., Wang L. H., Ong S. L., Leadbetter J. R., Zhang L. H.. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol.. 47: 849, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lindow S. E.. 1996. Molecular genetic approaches to assessing bacterial habitat composition, modification, and interactions on leaves. Biology of plant-microbe interactions: Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions Knoxville, Tennessee, 14–19 July 1996, Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • Lithgow J. K., Wilkinson A., Hardman A., Rodelas B., Wisniewski-Dye F., Williams P., Downie J. A.. 2000. The regulatory locus cinRI, Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol.. 37: 81, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lodeiro A. R., Favelukes G.. 1999. Early interactions of Bradyrhizobium japonicum and soybean roots: Specificity in the process of adsorption. Soil Biol. Biochem.. 31: 1405, [CROSSREF]
  • Lodeiro A. R., Lagares A., Martinez E. N., Favelukes G.. 1995. Early interactions of Rhizobium leguminosarum bv. phaseoli and bean roots: Specificity in the process of adsorption and its requirements of Ca2 + and Mg2 + ions., Appl. Environ. Microbiol.. 61: 1571
  • Lodeiro A. R., Lopez-Garcia S. L., Vazquez T. E., Favelukes G.. 2000. Stimulation of adhesiveness, infectivity, and competitiveness for nodulation of Bradyrhizobium japonicum by its pretreatment with soybean seed lectin. FEMS Microbiol. Lett.. 188: 177, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Loh J., Stacey G.. 2003. Nodulation gene regulation in Bradyrhizobium japonicum: A unique integration of global regulatory circuits. Appl. Environ. Microbiol.. 69: 10, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Loh J. T., Yuen-Tsai J. P., Stacey M. G., Lohar D., Welborn A., Stacey G.. 2001. Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol. Microbiol.. 42: 37, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Loh J., Carlson R. W., York W. S., Stacey G.. 2002. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc. Natl. Acad. Sci. USA. 99: 14446, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Loh J., Garcia M., Stacey G.. 1997. NodV and NodW, a second flavonoid recognition system regulating nod gene expression in Bradyrhizobium japonicum. J. Bacteriol.. 179: 3013, [PUBMED], [INFOTRIEVE]
  • Loh J., Garcia M., Yuen J., Stacey G.. 1996. nod gene regulation in Bradyrhizobium japonicum. Biology of plant microbe interactions: Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions Knoxville, Tennessee, 14–19 July 1996, Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • Loh J., Lohar D. P., Andersen B., Stacey G.. 2002. A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J. Bacteriol.. 184: 1759, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lohrke S. M., Dery P. D., Li W., Reedy R., Kobayashi D. Y., Roberts D. R.. 2002. Mutation of rpiA, Enterobacter cloacae decreases seed and root colonization and biocontrol of damping-off caused by Pythium ultimum on cucumber. Mol. Plant Microbe Interact.. 15: 817, [PUBMED], [INFOTRIEVE]
  • Loper J. E., Buyer J. S.. 1991. Siderophores in microbial interactions on plant surfaces. Mol. Plant Microbe Interact.. 14: 5
  • Loper J. E., Henkels M. D.. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol.. 63: 99, [PUBMED], [INFOTRIEVE]
  • Loper J. E., Henkels M. D.. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol.. 65: 5357, [PUBMED], [INFOTRIEVE]
  • Lopez-de-Victoria G., Lovell C. R.. 1993. Chemotaxis of Azospirillum species to aromatic compounds. Appl. Environ. Microbiol.. 59: 2951
  • Lugtenberg B. J., Dekkers L. C.. 1999. What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol.. 1: 9, [CROSSREF]
  • Lugtenberg B. J.J., Dekkers L., Bloemberg G. V.. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol.. 39: 461, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lugtenberg B. J., Chin A. W.T., Bloemberg G. V.. 2002. Microbe-plant interactions: Principles and mechanisms. Antonie Van Leeuwenhoek. 81: 373, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lugtenberg B. J., Kravchenko L. V., Simons M.. 1999. Tomato seed and root exudate sugars: Composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol.. 1: 439, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lugtenberg B., van der, Bij A., Bloemberg G., Chin A. W.T., Dekkers L., Kravchenko L., Mulders I., Phoelich C., Simons M., Spaink H., Tikhonovich I., de, Weger L., Wijffelman C.. 1996. Molecular basis of rhizosphere colonization by Pseudomonas bacteria. Biology of plant-microbe interactions. Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions, Knoxville, Tennessee, 14–19 July 1996., Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • Luyten E., Vanderleyden J.. 2000. Survey of genes identified in Sinorhizobium meliloti spp., necessary for the development of an efficient symbiosis. Eur. J. Soil Biol.. 36: 1, [CROSSREF]
  • Lynch J. M., Whipps J. M.. 1990. Substrate flow in the rhizosphere. Plant Soil. 129: 1
  • Maccio D., Fabra A., Castro S.. 2002. Acidity and calcium interaction affect the growth of Bradyrhizobium sp., and the attachment to peanut roots. Soil Biol. Biochem.. 34: 201, [CROSSREF]
  • Magalhães F. M., Baldani J. I., Souto S. M., Döbereiner J., Döbereiner J.. 1984. A new acid-tolerant Azospirillum species. An. Acad. Brasil. Cienc.. 55: 417
  • Mandimba G., Heulin T., Bally R., Guckert A., Balandreau J.. 1986. Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant Soil. 90: 129
  • Manefield M., de, Nys R., Kumar N., Read R., Givskov M., Steinberg P., Kjelleberg S.. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology. 145: 283, [PUBMED], [INFOTRIEVE]
  • Manefield M., Rasmussen T. B., Henzter M., Andersen J. B., Steinberg P., Kjelleberg S., Givskov M.. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 148: 1119, [PUBMED], [INFOTRIEVE]
  • Manefield M., Welch M., Givskov M., Salmond G. P., Kjelleberg S.. 2001. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett.. 205: 131, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mansouri H., Petit A., Oger P., Dessaux Y.. 2002. Engineered rhizosphere: The trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl. Environ. Microbiol.. 68: 2562, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Marchal K., Vanderleyden J.. 2000. The O2-paradox of Azospirillum. Biol. Fertil. Soils. 30: 363, [CROSSREF]
  • Marie C., Broughton W. J., Deakin W. J.. 2001. Rhizobium type III secretion systems: Legume charmers or alarmers? Curr. Opin. Plant Biol.. 4: 336, [CROSSREF]
  • Marini F., Speranza S., Del, Gallo M.. 1995. Influence of the carbon substrate on the composition of the exocellular polysaccharides by Azospirillum brasilense. Azospirillum VI and related microorganisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Marketon M. M., Glenn S. A., Eberhard A., Gonzalez J. E.. 2003. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol.. 185: 325, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mathesius U., Mulders S., Gao M., Teplitski M., Caetano-Anolles G., Rolfe B. G., Bauer W. D.. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA. 100: 1444, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Matora L. Y., Serebrennikova O. B., Shchyogolev S. Y.. 2001. Structural effects of the Azospirillum lipopolysaccharides in cell suspensions. Biomacromolecules. 2: 402, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Matora L., Solovova G., Serebrennikova O., Selivanov N.. 1995. Immunological properties of Azospirillum cell surface: The structure of carbohydrate antigens and evaluation of their involvement in bacteria-plant contact interactions. Azospirillum VI and related organisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Matthysse A. G., McMahan S.. 1998. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants, Appl. Environ. Microbiol.. 64: 2341
  • Matthysse A. G., McMahan S.. 2001. The effect of the Agrobacterium tumefaciens attR mutation on attachment and root colonization differs between legumes and other dicots, Appl. Environ. Microbiol.. 67: 1070, [CROSSREF]
  • Matthysse A. G.. 1983. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacteriol.. 154: 906, [PUBMED], [INFOTRIEVE]
  • Matthysse A. G., Yarnall H. A., Young N.. 1996. Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J. Bacteriol.. 178: 5302, [PUBMED], [INFOTRIEVE]
  • Mazzola M., White F. F.. 1994. A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production. J. Bacteriol.. 176: 1374, [PUBMED], [INFOTRIEVE]
  • Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S., III. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol.. 58: 2616, [PUBMED], [INFOTRIEVE]
  • McBride M. J.. 2001. Bacterial gliding motility: Multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol.. 55: 49, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • McClure N. C., Ahmadi A. R., Clare B. G.. 1998. Construction of a range of derivatives of the biological control strain Agrobacterium rhizogenes K84: A study of factors involved in biological control of crown gall disease. Appl. Environ. Microbiol.. 64: 3977, [PUBMED], [INFOTRIEVE]
  • Michiels K., Croes C. L., Vanderleyden J.. 1991. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol.. 137: 2241
  • Michiels K., Vanderleyden J., Elmerich C.. 1994. Genetics and molecular biology of Azospirillum. Azospirillum/plant associations, Okon Y., Boca Raton, Florida
  • Michiels K., Vanderleyden J., Van, Gool A. 1989. Azospirillum-plant root associations: A review. Biol. Fertil. Soils. 8: 356, [CROSSREF]
  • Miller C. D., Kim Y. C., Anderson A. J.. 1997. Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida. J. Bacteriol.. 179: 5241, [PUBMED], [INFOTRIEVE]
  • Miller K. J., Wood J. M.. 1996. Osmoadaptation by rhizosphere bacteria. Annu. Rev. Microbiol.. 50: 101, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Miller W. G., Brandl M. T., Quinones B., Lindow S. E.. 2001. Biological sensor for sucrose availability: Relative sensitivities of various reporter genes. Appl. Environ. Microbiol.. 67: 1308, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Milner J. L., Silo-Suh L., Lee J. C., He H., Clardy J., Handelsman J.. 1996. Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol.. 62: 3061, [PUBMED], [INFOTRIEVE]
  • Milner J. L., Stohl E. A., Handelsman J.. 1996. Zwittermicin A resistance gene from Bacillus cereus. J. Bacteriol.. 178: 4266, [PUBMED], [INFOTRIEVE]
  • Minic Z., Brown S., De, Kouchkovsky Y., Schultze M., Staehelin C.. 1998. Purification and characterization of a novel chitinase-lysozyme, of another chitinase, both hydrolysing Rhizobium meliloti Nod factors, and of a pathogenesis-related protein from Medicago sativa roots. Biochem. J.. 332: 329, [PUBMED], [INFOTRIEVE]
  • Mirleau P., Delorme S., Philippot L., Meyer J., Mazurier S., Lemanceau P.. 2000. Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. FEMS Microbiol. Ecol.. 34: 35, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mirleau P., Philippot L., Corberand T., Lemanceau P.. 2001. Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Appl. Environ. Microbiol.. 67: 2627, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mithofer A.. 2002. Suppression of plant defence in rhizobia-legume symbiosis. Trends Plant Sci.. 7: 440, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Moënne-Loccoz Y., McHugh B., Stephens P. M., Glennon J. D., Dowling D., O'Gara F.. 1996. Rhizosphere competance of fluorescent Pseudomonas sp. B24 genetically modified to utilise additional ferric siderophores. FEMS Microbiol. Ecol.. 19: 215, [CROSSREF]
  • Moens S., Michiels K., Keijers V., Van, Leuven F., Vanderleyden J.. 1995. Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J. Bacteriol.. 177: 5419, [PUBMED], [INFOTRIEVE]
  • Molina L., Constantinescu F., Michel L., Reimmann C., Duffy B., Defago G.. 2003. Degradation of pathogen quorum-sensing molecules by soil bacteria: A preventive and curative biological control mechanism. FEMS Microbiol. Ecol.. 45: 71, [CROSSREF]
  • Mori Mudgett M.B., Staskawicz B. J.. 1998. Protein signalling via type III secretion pathways in phytopathogenic bacteria. Curr. Opin. Microbiol.. 1: 109, [CROSSREF]
  • Murphy P. J., Wexler W., Grzemski W., Rao J. P., Gordon D.. 1995. Rhizopines: Their role in symbiosis and competition. Soil Biol. Biochem.. 27: 525, [CROSSREF]
  • Naeem A., Khan R. H., Vikram H., Akif M.. 2001. Purification of Cajanus cajan root lectin and its interaction with rhizobial lipopolysaccharide as studied by different spectroscopic techniques. Arch. Biochem. Biophys.. 396: 99, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Niehaus K., Baier R., Becker A., Pühler A.. 1996. Symbiotic suppression of the Medicago sativa defense system—the key of Rhizobium meliloti to enter the host plant. Biology of plant microbe interactions: Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions Knoxville, Tennessee, 14–19 July 1996, Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • Noel K. D., Duelli D. M., Neumann V. R.. 1996. Rhizobium etli lipopolysaccharide alterations triggered by host exudate compounds. Biology of plant microbe interactions: Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions Knoxville, Tennessee, 14–19 July 1996, Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • Normander B., Hendriksen N. B., Nybroe O.. 1999. Green fluorescent protein-marked Pseudomonas fluorescens: Localization, viability, and activity in the natural barley rhizosphere. Appl. Environ. Microbiol.. 65: 4646, [PUBMED], [INFOTRIEVE]
  • Notz R., Maurhofer M., Dubach H., Haas D., Defago G.. 2002. Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol.. 68: 2229, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • O'Connell K. P., Goodman R. M., Handelsman J.. 1996. Engineering the rhizosphere: Expressing a bias. Trends Biotechnol.. 14: 83, [CROSSREF]
  • Oger P., Petit A., Dessaux Y.. 1997. Genetically engineered plants producing opines alter their biological environment. Nat. Biotechnol.. 15: 369, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Oke V., Long S. R.. 1999. Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol. Microbiol.. 32: 837, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Okon Y., Itzigsohn R.. 1995. The development of Azospirillum as a commercial inoculant for improving crop yields. Biotech. Adv.. 13: 415, [CROSSREF]
  • Okon Y., Kapulnik Y.. 1986. Development and function of Azospirillum-inoculated roots. Plant Soil. 90: 3
  • Okon Y., Vanderleyden J.. 1997. Root-associated Azospirillum species can stimulate plants. ASM News. 63: 366
  • Okon Y.. 1994; Azospirillum/plant associations. CRC Press, Boca Raton
  • Oliveira R. G.B., Drozdowicz A.. 1988. Are Azospirillum bacteriocins produced and active in soil?. Azospirillum IV: Genetics, physiology, ecology, Klingmüller W., Berlin Heidelberg
  • Oresnik I. J., Pacarynuk L. A., O'Brien S. A.P., Yost C. K., Hynes M. F.. 1998. Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: Evidence for a plant-Inducible rhamnose locus involved in competition for nodulation. Mol. Plant Microbe Interact.. 11: 1175
  • Oresnik I. J., Twelker S., Hynes M. F.. 1999. Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl. Environ. Microbiol.. 65: 2833, [PUBMED], [INFOTRIEVE]
  • O'toole G. A., Kolter R.. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol.. 30: 295, [PUBMED], [INFOTRIEVE]
  • Ovtsyna A. O., Schultze M., Tikhonovich I. A., Spaink H. P., Kondorosi E., Kondorosi A., Staehelin C.. 2000. Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a Nod factor cleaving activity in pea roots but are hydrolyzed in vitro by plant chitinases at different rates. Mol. Plant Microbe Interact.. 13: 799, [PUBMED], [INFOTRIEVE]
  • Parke J. L.. 1991. Root colonization by indigenous and introduced microorganisms. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Parret A. H., De, Mot R.. 2002. Bacteria killing their own kind: Novel bacteriocins of Pseudomonas and other gamma-proteobacteria. Trends Microbiol.. 10: 107, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Parret A. H., De, Mot R.. 2000. Bacteriocin production by rhizosphere-colonizing fluorescent Pseudomonas. Proceedings of the fifth International PGPR Workshop, Auburn University Web Site. http://www.ag.auburn.edu/argentina/pdfmanuscripts/parret.pdf
  • Parret A. H., Schoofs G., Proost P., De, Mot R.. 2003. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J. Bacteriol.. 185: 897, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Pastorelli R., Gori A., Favilli F.. 1995. Adhesion of rhizosphere bacteria to roots of maize and wheat. Azospirillum VI and related microorganisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Pellock B. J., Cheng H. P., Walker G. C.. 2000. Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J. Bacteriol.. 182: 4310, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Peng W. T., Lee Y. W., Nester E. W.. 1998. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J. Bacteriol.. 180: 5632, [PUBMED], [INFOTRIEVE]
  • Pereg-Gerk L., Paquelin A., Gounon P., Kennedy I. R., Elmerich C.. 1998. A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Mol. Plant Microbe Interact.. 11: 177, [PUBMED], [INFOTRIEVE]
  • Perret X., Staehelin C., Broughton W. J.. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev.. 64: 180, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Persello-Cartieaux F., Nussaume L., Robaglia C.. 2003. Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ.. 26: 189, [CROSSREF]
  • Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H.. 1999. Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA. 96: 11229, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Peters N. K., Frost J. W., Long S. R.. 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science. 233: 977, [PUBMED], [INFOTRIEVE]
  • Philippot L., Clays-Josserand A., Lensi R.. 1995. Use of Tn5 mutants to assess the role of the dissimilatory nitrite reductase in the competitive abilities of two Pseudomonas strains in soil. Appl. Environ. Microbiol.. 61: 1426
  • Phillips D. A., Streit W. R.. 1998. Modifying rhizosphere microbial communities to enhance nutrient availability in cropping systems. Field Crop. Res.. 56: 217, [CROSSREF]
  • Phillips D. A., Joseph C. M., Maxwell C. A.. 1992. Trigonelline and stachydrine released from alfalfa seeds activate nodD2 protein in Rhizobium meliloti. Plant Physiol.. 99: 1526
  • Phillips D. A., Joseph C. M., Yang G. P., Martinez-Romero E., Sanborn J. R., Volpin H.. 1999. Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc. Natl. Acad. Sci. USA. 96: 12275, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Phillips D. A., Maxwell C. A., Hartwig U. A., Joseph C. M., Wery J.. 1991. Rhizosphere flavonoids released by alfalfa. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Phillips D. A., Sande E. S., Vriezen J. A.C., de, Bruijn F. J., Le, Rudulier D., Joseph C. M.. 1998. A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl. Environ. Microbiol.. 64: 3954, [PUBMED], [INFOTRIEVE]
  • Pierson L. S.I., Keppenne V. D., Wood D. W.. 1994. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J. Bacteriol.. 176: 3966, [PUBMED], [INFOTRIEVE]
  • Pierson L. S.I., Wood D. W., Pierson E. A.. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol.. 36: 207, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Poole K., McKay G. A.. Iron acquisition and its control in Pseudomonas aeruginosa: Many roads lead to Rome. Front. Biosci.. 8: 661, 2003
  • Poplawsky A. R., Chun W.. 1998. Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Mol. Plant Microbe Interact.. 11: 466, [PUBMED], [INFOTRIEVE]
  • Porteous F., Killham K., Meharg A.. 2000. Use of a lux-marked rhizobacterium as a biosensor to assess changes in rhizosphere C flow due to pollutant stress. Chemosphere. 41: 1549, [PUBMED], [INFOTRIEVE]
  • Preston G. M., Bertrand N., Rainey P. B.. 2001. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol. Microbiol.. 41: 999, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Prikryl Z., Vancura V.. 1980. Root exudates of plants VI. Wheat root exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil. 57: 69
  • Raaijmakers J. M., Van der, Sluis I., Koster M., Bakker P. A.H.M., Weisbeek P. J., Schippers B.. 1995. Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can. J. Microbiol.. 41: 126
  • Raina S., Raina R., Venkatesh T. V., Das H. K.. 1995. Isolation and characterization of a locus from Azospirillum brasilense Sp7 that complements the tumorigenic defect of Agrobacterium tumefaciens chvB mutant. Mol. Plant Microbe Interact.. 8: 322, [PUBMED], [INFOTRIEVE]
  • Rainey P. B., Preston G. M.. 2000. In vivo expression technology strategies: Valuable tools for biotechnology. Curr. Opin. Biotechnol.. 11: 440, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rainey P. B.. 1999. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol.. 1: 243, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ramamoorthy R., Viswanathan R., Raguchander T., Prakasam V., Samiyappan R.. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection. 20: 1, [CROSSREF]
  • Ramos C., Molbak L., Molin S.. 2000. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl. Environ. Microbiol.. 66: 801, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Ramos H. J., Roncato-Maccari L. D., Souza E. M., Soares-Ramos J. R., Hungria M., Pedrosa F. O.. 2002. Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J. Biotechnol.. 97: 243, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rao J. R., Cooper J. E.. 1994. Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J. Bacteriol.. 176: 5409, [PUBMED], [INFOTRIEVE]
  • Rattray E. A., Prosser J. I., Glover L. A., Killham K.. 1995. Characterization of rhizosphere colonization by luminescent Enterobacter cloacae at the population and single-cell levels. Appl. Environ. Microbiol.. 61: 2950, [PUBMED], [INFOTRIEVE]
  • Rediers H., Bonnecarrere V., Rainey P. B., Hamonts K., Vanderleyden J., De, Mot R.. 2003. Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl. Environ. Microbiol.. 69: 6864, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Reinhold B., Hurek T., Fendrik I.. 1985. Strain-specific chemotaxis of Azospirillum spp. J. Bacteriol.. 162: 190, [PUBMED], [INFOTRIEVE]
  • Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kesters K., Thielemans S., De, Ley J.. 1987. Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int. J. Syst. Bacteriol.. 37: 43
  • Reuhs B. L.. 1996. Acidic capsular polysaccharides (K antigens) of Rhizobium. Biology of plant microbe interactions: Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions Knoxville, Tennessee, 14–19 July 1996, Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • Reuhs B. L., Carlson R. W., Kim J. S.. 1993. Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J. Bacteriol.. 175: 3570, [PUBMED], [INFOTRIEVE]
  • Reuhs B. L., Geller D. P., Kim J. S., Fox J. E., Kolli V. S., Pueppke S. G.. 1998. Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl. Environ. Microbiol.. 64: 4930, [PUBMED], [INFOTRIEVE]
  • Reuhs B. L., Kim J. S., Matthysse A. G.. 1997. Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J. Bacteriol.. 179: 5372, [PUBMED], [INFOTRIEVE]
  • Reuhs B. L., Kim J. S., Badgett A., Carlson R. W.. 1994. Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol. Plant Microbe Interact.. 7: 240, [PUBMED], [INFOTRIEVE]
  • Reuhs B. L., Williams M. N., Kim J. S., Carlson R. W., Cote F.. 1995. Suppression of the Fix-phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide. J. Bacteriol.. 177: 4289, [PUBMED], [INFOTRIEVE]
  • Rich J. J., Kinscherf T. G., Kitten T., Willis D. K.. 1994. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J. Bacteriol.. 176: 7468, [PUBMED], [INFOTRIEVE]
  • Riley M. A., Wertz J. E.. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol.. 56: 117, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Roberts D. P., Dery P. D., Yucel I., Buyer J. S.. 2000. Importance of pfkA for rapid growth of Enterobacter cloacae during colonization of crop seeds. Appl. Environ. Microbiol.. 66: 87, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Roberts D. P., Dery P. D., Yucel I., Buyer J., Holtman M. A., Kobayashi D. Y.. 1999. Role of pfkA and general carbohydrate catabolism in seed colonization by Enterobacter cloacae. Appl. Environ. Microbiol.. 65: 2513, [PUBMED], [INFOTRIEVE]
  • Roberts I. S.. 1996. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol.. 50: 285, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Robleto E. A., Borneman J., Triplett E. W.. 1998. Effects of bacterial antibiotic production on rhizosphere microbial communities from a culture-independent perspective. Appl. Environ. Microbiol.. 64: 5020, [PUBMED], [INFOTRIEVE]
  • Robleto E. A., Kmiecik K., Oplinger E. S., Nienhuis J., Triplett E. W.. 1998. Trifolitoxin production increases nodulation competitiveness of Rhizobium etli CE3 under agricultural conditions. Appl. Environ. Microbiol.. 64: 2630, [PUBMED], [INFOTRIEVE]
  • Rodelas B., Gonzalez-Lopez J., Salmeron V., Martinez-Toledo M. V., Pozo C.. 1998. Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv viceae isolated from agricultural soils in Spain. Appl. Soil Ecol.. 8: 51, [CROSSREF]
  • Rodelas B., Lithgow J. K., Wisniewski-Dye F., Hardman A., Wilkinson A., Economou A., Williams P., Downie J. A.. 1999. Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol.. 181: 3816
  • Rodriguez H., Fraga R.. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv.. 17: 319, [CROSSREF]
  • Rodriguez-Herva J. J., Reniero D., Galli E., Ramos J. L.. 1999. Cell envelope mutants of Pseudomonas putida: Physiological characterization and analysis of their ability to survive in soil. Environ. Microbiol.. 1: 479, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rondon M. R., Goodman R. M., Handelsman J.. 1999. The Earth's bounty: Assessing and accessing soil microbial diversity. Trends Biotechnol.. 17: 403, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rosenblueth M., Hynes M. F., Martinez-Romero E.. 1998. Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean-exudate compounds. Mol. Gen. Genet.. 258: 587, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Rovira A. D.. 1959. Root excretions in relation to the rhizosphere effect IV. Influence of plant species, age of plant, light, temperature, and calcium nutrition on exudation. Plant Soil. 11: 53
  • Sadasivan L., Neyra C. A.. 1987. Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J. Bacteriol.. 169: 1670, [PUBMED], [INFOTRIEVE]
  • Sanchez-Contreras M., Martin M., Villacieros M., O'Gara F., Bonilla I., Rivilla R.. 2002. Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J. Bacteriol.. 184: 1587, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sauer K., Camper A. K.. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol.. 183: 6579, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Savka M. A., Dessaux Y., Oger P., Rossbach S.. 2002. Engineering bacterial competitiveness and persistence in the phytosphere. Mol. Plant Microbe Interact.. 15: 866, [PUBMED], [INFOTRIEVE]
  • Schauder S., Shokat K., Surette M. G., Bassler B. L.. 2001. The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol.. 41: 463, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Schell M. A.. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol.. 38: 263, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Schippers B., Bakker A. W., Bakker P. A.H.M., van, Peer R.. 1991. Beneficial and deleterious effects of HCN-producing Pseudomonads on rhizosphere interactions. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Schlaman H. R., Okker R. J., Lugtenberg B. J.. 1992. Regulation of nodulation gene expression by NodD in rhizobia. J. Bacteriol.. 174: 5177, [PUBMED], [INFOTRIEVE]
  • Schloter M., Wiehe W., Assmus B., Steindl H., Becke H., Hoflich G., Hartmann A.. 1997. Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl. Environ. Microbiol.. 63: 2038, [PUBMED], [INFOTRIEVE]
  • Schmidt-Eisenlohr H., Gast A., Baron C.. 2003. Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Appl. Environ. Microbiol.. 69: 1817, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Schripsema J., de, Rudder K. E., van, Vliet T. B., Lankhorst P. P., de, Vroom E., Kijne J. W., van, Brussel A. A.. 1996. Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol.. 178: 366, [PUBMED], [INFOTRIEVE]
  • Semenov A. M., van, Bruggen A. H.C., Zelenev V. V.. 1999. Moving waves of bacterial populations and total organic carbon along roots of wheat. Microb. Ecol.. 37: 116, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sevilla M., Gunapala N., Burris R. H., Kennedy C.. 2001. Enhancement of growth and N content in sugarcane plants inoculated with Acetobacter diazotrophicus. Mol. Plant Microbe Interact.. 14: 358, [PUBMED], [INFOTRIEVE]
  • Simons M., Permentier H. P., de, Weger L. A., Wijffelman C. A., Lugtenberg B. J.J.. 1997. Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact.. 10: 102
  • Simons M., van der, Bij A. J., Brand I., de, Weger L. A., Wijffelman C. A., Lugtenberg B. J.. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant Microbe Interact.. 9: 600, [PUBMED], [INFOTRIEVE]
  • Skerker J. M., Berg H. C.. 2001. Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA. 98: 6901, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Skvortsov I. M., Ignatov V. V.. 1998. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: Properties and the possible role in interaction with plant roots. FEMS Microbiol. Lett.. 165: 223, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Skvortsov I., Konnova S., Makarov O., Prokhorova R., Ignatov V.. 1995. Azospirillum brasilense exopolysaccharide complexes, their possible involvement in bacteria-wheat roots interactions and the suggested nature of these interactions. Azospirillum VI and related microorganisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Sly L. I., Stackebrandt E.. 1999. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int. J. Syst. Bacteriol.. 49: 541
  • Smalla K., Wieland G., Buchner A., Zock A., Parzy J., Kaiser S., Roskot N., Heuer H., Berg G.. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol.. 67: 4742, [PUBMED], [INFOTRIEVE]
  • Smit G., Kijne J. W., Lugtenberg B. J.. 1987. Involvement of both cellulose fibrils and a Ca2 +-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol.. 169: 4294, [PUBMED], [INFOTRIEVE]
  • Smit G., Swart S., Lugtenberg B. J., Kijne J. W.. 1992. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol. Microbiol.. 6: 2897, [PUBMED], [INFOTRIEVE]
  • Song S.-C., Lin L.-P.. 1999. The transition of Rhizobium fredii lipopolysaccharides induced by soybean root exudation. Bot. Bull. Acad. Sinica. 40: 73
  • Southward C. M., Surette M. G.. 2002. The dynamic microbe: Green fluorescent protein brings bacteria to light. Mol. Microbiol.. 45: 1191, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Spaink H. P.. 2000. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol.. 54: 257, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Stachel S. E., Van, Montagu M., Zambryski P.. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature. 318: 624
  • Standing D., Meharg A. A., Killham K.. 2003. A tripartite microbial reporter gene system for real-time assays of soil nutrient status. FEMS Microbiol. Lett.. 220: 35, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Steele H. L., Werner D., Cooper J. E.. 1999. Flavonoids in seed and root exudates of Lotus pedunculatus and their biotransformation by Mesorhizobium loti, Physiol. Plantarum. 107: 251, [CROSSREF]
  • Steenhoudt O., Vanderleyden J.. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol. Rev.. 24: 487, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Steenhoudt O., Keijers V., Okon Y., Vanderleyden J.. 2001. Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245. Arch. Microbiol.. 175: 344, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Steidle A., Sigl K., Schuhegger R., Ihring A., Schmid M., Gantner S., Stoffels M., Riedel K., Givskov M., Hartmann A., Langebartels C., Eberl L.. 2001. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol.. 67: 5761, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Sternberg C., Christensen B. B., Johansen T., Toftgaard N. A., Andersen J. B., Givskov M., Molin S.. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol.. 65: 4108, [PUBMED], [INFOTRIEVE]
  • Streit W. R., Phillips D. A.. 1996. Recombinant Rhizobium meliloti strains with extra biotin synthesis capability. Appl. Environ. Microbiol.. 62: 3333, [PUBMED], [INFOTRIEVE]
  • Streit W. R., Joseph C. M., Phillips D. A.. 1996. Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol. Plant Microbe Interact.. 9: 330, [PUBMED], [INFOTRIEVE]
  • Stuurman N., Bras C. P., Schlaman H. R., Wijfjes A. H., Bloemberg G., Spaink H. P.. 2000. Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants. Mol. Plant Microbe Interact.. 13: 1163, [PUBMED], [INFOTRIEVE]
  • Sundin P.. 1990. Plant root exudates in interaction between plants and soil microorganisms, PhD Dissertation. Lund University, Sweden
  • Surette M. G., Miller M. B., Bassler B. L.. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA. 96: 1639, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Swart S.. 1994. Rhicadhesin-mediated attachment of Rhizobiaceae, PhD Dissertation. Rijksuniversiteit Leiden, The Netherlands
  • Swift S., Bainton N. J., Winson M. K.. 1994. Gram-negative bacterial communication by N-acyl homoserine lactones: A universal language?. Trends Microbiol.. 2: 193, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Tarrand J. J., Döbereiner J., Döbereiner J.. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov., Can. J. Microbiol.. 24: 967
  • Tate M. E., Murphy P. J., Roberts W. P., Kerr A.. 1979. Adenine N7-substituent of agrocin 84 determines its bacteriocin-like specificity.,. Nature. 280: 797
  • Tate R., Riccio A., Caputo E., Iaccarino M., Patriarca E. J.. 1999. The Rhizobium etli metZ gene is essential for methionine biosynthesis and nodulation of Phaseolus vulgaris. Mol. Plant Microbe Interact.. 12: 24, [PUBMED], [INFOTRIEVE]
  • Teplitski M., Robinson J. B., Bauer W. D.. 2000. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact.. 13: 637, [PUBMED], [INFOTRIEVE]
  • Thomashow L. S., Weller D. M.. 1991. Role of antibiotics and siderophores in biocontrol of take-all disease of wheat. The rhizosphere and plant growth, Keister D. L., Cregan P. B., Dordrecht
  • Thomashow L. S.. 1996. Biological control of plant root pathogens. Curr. Opin. Biotechnol.. 7: 343, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P.. 2000. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol. Microbiol.. 36: 539, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Thorne S. H., Williams H. D.. 1999. Cell density-dependent starvation survival of Rhizobium leguminosarum bv. phaseoli: Identification of the role of an N-acyl homoserine lactone in adaptation to stationary-phase survival. J. Bacteriol.. 181: 981, [PUBMED], [INFOTRIEVE]
  • Tien T. M., Gaskins M. H., Hubbell D. A.. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol.. 37: 1016
  • Tombolini R., Unge A., Davey M. E., de, Bruijn F. J., Jansson J. K.. 1997. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol.. 22: 17, [CROSSREF]
  • Torsvik V., Ovreas L.. 2002. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol.. 5: 240, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Triplett E. W., Sadowsky M. J.. 1992. Genetics of competition for nodulation of legumes. Annu. Rev. Microbiol.. 46: 399, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Turnbull G. A., Morgan J. A.W., Whipps J. M., Saunders J. R.. 2001a. The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol. Ecol.. 35: 57, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Turnbull G. A., Morgan J. A.W., Whipps J. M., Saunders J. R.. 2001b. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol. Ecol.. 36: 21, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Unge A., Jansson J.. 2001. Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat. Microb. Ecol.. 41: 290, [PUBMED], [INFOTRIEVE]
  • Valdivia R. H., Falkow S.. 1996. Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol.. 22: 367, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Valdivia R. H., Falkow S.. 1998. Flow cytometry and bacterial pathogenesis. Curr. Opin. Microbiol.. 1: 359, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Valdivia R. H., Falkow S.. 1997a. Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 277: 2007, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Valdivia R. H., Falkow S.. 1997b. Probing bacterial gene expression within host cells. Trends Microbiol.. 5: 360, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Van, Bastelaere E., Lambrecht M., Vermeiren H., Van, Dommelen A., Keijers V., Proost P., Vanderleyden J.. 1999. Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol. Microbiol.. 32: 703, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Vanbleu E., Marchal K., Lambrecht M., Mathys V., Vanderleyden J.. 2004. Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition. FEMS Microbiol. Letters. 232(2)165–172. [CROSSREF]
  • Van, Dommelen A., Keijers V., Vanderleyden J., de, Zamaroczy M.. 1998. (Methyl)ammonium transport in the nitrogen-fixing bacterium Azospirillum brasilense. J. Bacteriol.. 180: 2652, [PUBMED], [INFOTRIEVE]
  • van, Loon L. C., Bakker P. A.H.M., Pieterse C. M.J.. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol.. 36: 453, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Van, Overbeek L. S., Van, Elsas J. D.. 1995. Root exudate-induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Appl. Environ. Microbiol.. 61: 890
  • van, Rhijn P., Fujishige N. A., Lim P. O., Hirsch A. M.. 2001. Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol.. 126: 133, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • van, Rhijn P., Goldberg R. B., Hirsch A. M.. 1998. Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene. Plant Cell. 10: 1233, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Vande, Broek A., Vanderleyden J.. 1995. Review: Genetics of the Azospirillum-plant root association. Crit. Rev. Plant Sciences. 14: 445
  • Vande, Broek A., Vanderleyden J.. 1995. The role of bacterial motility, chemotaxis, and attachment in bacteria-plant interactions. Mol. Plant Microbe Interact.. 8: 800
  • Vande, Broek A., Lambrecht M., Vanderleyden J.. 1998. Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology. 144: 2599, [PUBMED], [INFOTRIEVE]
  • Vande, Broek A., Lambrecht M., Eggermont K., Vanderleyden J.. 1999. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J. Bacteriol.. 181: 1338, [PUBMED], [INFOTRIEVE]
  • Vande, Broek A., Michiels J., Van, Gool A., Vanderleyden J.. 1993. Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol. Plant Microbe Interact.. 6: 592
  • Vermeiren H., Willems A., Schoofs G., De, Mot R., Keijers V., Hai W., Vanderleyden J.. 1999. The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst. Appl. Microbiol.. 22: 215, [PUBMED], [INFOTRIEVE]
  • Vesper S. J.. 1987. Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Appl. Environ. Microbiol.. 53: 1397
  • Vilchez S., Molina L., Ramos C., Ramos J. L.. 2000. Proline catabolism by Pseudomonas putida: Cloning, characterization, and expression of the put genes in the presence of root exudates. J. Bacteriol.. 182: 91, [PUBMED], [INFOTRIEVE]
  • Viprey V., Del, Greco A., Golinowski W., Broughton W. J., Perret X.. 1998. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol.. 28: 1381, [PUBMED], [INFOTRIEVE]
  • Visca P., Leoni L., Wilson M. J., Lamont I. L.. 2002. Iron transport and regulation, cell signalling and genomics: Lessons from Escherichia coli and Pseudomonas. Mol. Microbiol.. 45: 1177, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Volpin H., Phillips D. A.. 1998. Respiratory elicitors from Rhizobium meliloti affect intact alfalfa roots. Plant Physiol.. 116: 777, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Waelkens F., Maris M., Verreth C., Vanderleyden J., Van, Gool A.. 1987. Azospirillum DNA shows homology with Agrobacterium chromosomal virulence genes. FEMS Microbiol. Lett.. 43: 241, [CROSSREF]
  • Walker R., Rossall S., Asher M. J.. 2002. Colonization of the developing rhizosphere of sugar beet seedlings by potential biocontrol agents applied as seed treatments. J. Appl. Microbiol.. 92: 228, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Walker T. S., Bais H. P., Grotewold E., Vivanco J. M.. 2003. Root exudation and rhizosphere biology. Plant Physiol.. 132: 44, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wang L. H., He Y., Gao Y., Wu J. E., Dong Y. H., He C., Wang S. X., Weng L. X., Xu J. L., Tay L., Fang R. X., Zhang L. H.. 2004. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol. Microbiol.. 51: 903, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Watnick P., Kolter R.. 2000. Biofilm, city of microbes. J. Bacteriol.. 182: 2675, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Whipps J. M.. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot.. 52: 487, [PUBMED], [INFOTRIEVE]
  • Whitehead N. A., Byers J. T., Commander P., Corbett M. J., Coulthurst S. J., Everson L., Harris A. K., Pemberton C. L., Simpson N. J., Slater H., Smith D. S., Welch M., Williamson N., Salmond G. P.. 2002. The regulation of virulence in phytopathogenic Erwinia species: Quorum sensing, antibiotics and ecological considerations. Antonie Van Leeuwenhoek. 81: 223, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Wilson R. A., Handley B. A., Beringer J. E.. 1997. Bacteriocin production and resistance in a field population of Rhizobium leguminosarum biovar viciae. Soil Biol. Biochem.. 30: 413, [CROSSREF]
  • Winans S. C.. 1991. An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol. Microbiol.. 5: 2345, [PUBMED], [INFOTRIEVE]
  • Wood D. W., Gong F., Daykin M. M., Williams P., Pierson L. S., III. 1997. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. J. Bacteriol.. 179: 7663, [PUBMED], [INFOTRIEVE]
  • Yang C. H., Crowley D. E.. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol.. 66: 345, [PUBMED], [INFOTRIEVE]
  • Yang G., Bhuvaneswari T. V., Joseph C. M., King M. D., Phillips D. A.. 2002. Roles for riboflavin in the Sinorhizobium-alfalfa association. Mol. Plant Microbe Interact.. 15: 456, [PUBMED], [INFOTRIEVE]
  • Yeomans C. V., Porteous F., Paterson E., Meharg A. A., Killham K.. 1999. Assessment of lux-marked Pseudomonas fluorescens for reporting on organic carbon compounds. FEMS Microbiol. Lett.. 176: 79, [CROSSREF]
  • York G. M., Gonzalez J. E., Walker G. C.. 1996. Exopolysaccharides and their role in nodule invasion. Biology of plant microbe interactions: Proceedings of the 8th International Symposium on Molecular Plant-Microbe Interactions Knoxville, Tennessee, 14–19 July 1996, Stacey G., Mullin B., Gresshoff P. M., St. Paul
  • You C. B., Lin M., Fang X. J., Song W.. 1995. Attachment of Alcaligenes to rice roots. Soil Biol. Biochem.. 27: 463, [CROSSREF]
  • Zanker H., von, Lintig J., Schroder J.. 1992. Opine transport genes in the octopine (occ) and nopaline (noc) catabolic regions in Ti plasmids of Agrobacterium tumefaciens. J. Bacteriol.. 174: 841, [PUBMED], [INFOTRIEVE]
  • Zhang L., Murphy P. J., Kerr A., Tate M. E.. 1993. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature. 362: 446, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Zhang Y., Burris R. H., Ludden P. W., Roberts G. P.. 1997. Regulation of nitrogen fixation in Azospirillum brasilense. FEMS Microbiol. Lett.. 152: 195, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Zhu G. Y., Dobbelaere S., Vanderleyden J.. 2002. Use of green fluorescent protein to visualize rice root colonization by Azospirillum irakense and A. brasilense. Funct. Plant Biol.. 29: 1279, [CROSSREF]
  • Zhu Y., Pierson L. S., III, Hawes M. C.. 1997. Induction of microbial genes for pathogenesis and symbiosis by chemicals from root border cells. Plant Physiol.. 115: 1691, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Zhulin I. B., Armitage J. P.. 1992. The role of taxis in the ecology of Azospirillum. Symbiosis. 13: 199
  • Zhulin I. B., Taylor B. L.. 1995. Chemotaxis in plant-associated bacteria: The search for the ecological niche. Azospirillum VI and related organisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg
  • Zhulin I. B., Sarmiento L. E., Taylor B. L.. 1995. Changes in membrane potential upon chemotactic stimulation of Azospirillum brasilense. Azospirillum VI and related organisms: Genetics, physiology, ecology, Fendrik I., Del Gallo M., Vanderleyden J., de, Zamaroczy M., Berlin Heidelberg

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.