739
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens

, , , , ORCID Icon &
Pages 267-284 | Received 01 Mar 2022, Accepted 26 Oct 2022, Published online: 08 Mar 2023

References

  • Avrahami D, Shai Y. 2004. A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem. 279(13):12277–12285.
  • Bayer AS, Mishra NN, Chen L, Kreiswirth BN, Rubio A, Yang S-J. 2015. Frequency and distribution of single-nucleotide polymorphisms within mprF in methicillin-resistant Staphylococcus aureus clinical isolates and their role in cross-resistance to daptomycin and host defense antimicrobial peptides. Antimicrob Agents Chemother. 59(8):4930–4937.
  • Baym M, Stone LK, Kishony R. 2016. Multidrug evolutionary strategies to reverse antibiotic resistance. Science. 351(6268):aad3292.
  • Betts JW, Phee LM, Hornsey M, Woodford N, Wareham DW. 2014a. In vitro and in vivo activities of tigecycline-colistin combination therapies against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 58(6):3541–3546.
  • Betts JW, Phee LM, Woodford N, Wareham DW. 2014b. Activity of colistin in combination with tigecycline or rifampicin against multidrug-resistant Stenotrophomonas maltophilia. Eur J Clin Microbiol Infect Dis. 33(9):1565–1572.
  • Bierbaum G, Sahl HG. 1987. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol. 169(12):5452–5458.
  • Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 13(1):42–51.
  • Boman HG, Agerberth B, Boman A. 1993. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 61(7):2978–2984.
  • Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 3(3):238–250.
  • Bush K, Bradford PA. 2019. Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat Rev Microbiol. 17(5):295–306.
  • Bush K, Bradford PA. 2020. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 33:e00047-19.
  • Capecchi A, Cai X, Personne H, Köhler T, van Delden C, Reymond J-L. 2021. Machine learning designs non-hemolytic antimicrobial peptides. Chem Sci. 12(26):9221–9232.
  • Cardoso MH, Orozco RQ, Rezende SB, Rodrigues G, Oshiro KGN, Cândido ES, Franco OL. 2019. Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front Microbiol. 10:3097.
  • Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. 2014. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 22(12):686–696.
  • Chiu S-K, Chan M-C, Huang L-Y, Lin Y-T, Lin J-C, Lu P-L, Siu LK, Chang F-Y, Yeh K-M. 2017. Tigecycline resistance among carbapenem-resistant Klebsiella Pneumoniae: clinical characteristics and expression levels of efflux pump genes. PLOS One. 12(4):e0175140.
  • Choi H, Lee DG. 2012. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res Microbiol. 163(6–7):479–486.
  • de Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M, Lu W-Y, Breukink E, Lu W. 2010. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett. 584(8):1543–1548.
  • Dobson AJ, Purves J, Kamysz W, Rolff J. 2013. Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLOS One. 8:e76521.
  • Domalaon R, Okunnu O, Zhanel GG, Schweizer F. 2019. Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant Gram-negative bacilli. J Antibiot. 72(8):605–616.
  • Domalaon R, Zhanel GG, Schweizer F. 2016. Short antimicrobial peptides and peptide scaffolds as promising antibacterial agents. Curr Top Med Chem. 16(11):1217–1230.
  • Dubos RJ. 1939. Studies on a bactericidal agent extracted from a soil bacillus: I. preparation of the agent. Its activity in vitro. J Exp Med. 70:1–10.
  • Fantner GE, Barbero RJ, Gray DS, Belcher AM. 2010. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol. 5(4):280–285.
  • Fischbach MA, Walsh CT. 2009. Antibiotics for emerging pathogens. Science. 325(5944):1089–1093.
  • Fjell CD, Hiss JA, Hancock REW, Schneider G. 2011. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 11(1):37–51.
  • Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. 2021. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev. 50:7820–7880.
  • Giacometti A, Cirioni O, Del Prete MS, Paggi AM, D'Errico MM, Scalise G. 2000. Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria. Peptides. 21(8):1155–1160.
  • Giacometti A, Cirioni O, Kamysz W, D'Amato G, Silvestri C, Licci A, Nadolski P, Riva A, Lukasiak J, Scalise G. 2005. In vitro activity of MSI-78 alone and in combination with antibiotics against bacteria responsible for bloodstream infections in neutropenic patients. Int J Antimicrob Agents. 26(3):235–240.
  • Graf M, Mardirossian M, Nguyen F, Seefeldt AC, Guichard G, Scocchi M, Innis CA, Wilson DN. 2017. Proline-rich antimicrobial peptides targeting protein synthesis. Nat Prod Rep. 34(7):702–711.
  • Grein F, Schneider T, Sahl H-G. 2019. Docking on lipid II-a widespread mechanism for potent bactericidal activities of antibiotic peptides. J Mol Biol. 431(18):3520–3530.
  • Gupta K, Singh S, van Hoek ML. 2015. Short, synthetic cationic peptides have antibacterial activity against Mycobacterium smegmatis by forming pores in membrane and synergizing with antibiotics. Antibiotics. 4(3):358–378.
  • Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 387(10014):176–187.
  • Huang J, Hao D, Chen Y, Xu Y, Tan J, Huang Y, Li F, Chen Y. 2011. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an α-helical antibacterial peptide against bacteria. Peptides. 32(7):1488–1495.
  • Hussain W. 2022. sAMP-PFPDeep: improving accuracy of short antimicrobial peptides prediction using three different sequence encodings and deep neural networks. Brief Bioinform. 23:bbab487.
  • Hyun S, Choi Y, Jo D, Choo S, Park TW, Park SJ, Kim S, Lee S, Park S, Jin SM, et al. 2020. Proline hinged amphipathic alpha-helical peptide sensitizes Gram-negative bacteria to various Gram-positive antibiotics. J Med Chem. 63(23):14937–14950.
  • Imamovic L, Sommer MOA. 2013. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med. 5(204):204ra132.
  • Jahangiri A, Neshani A, Mirhosseini SA, Ghazvini K, Zare H, Sedighian H. 2021. Synergistic effect of two antimicrobial peptides, nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microb Pathog. 150:104700.
  • Jangir PK, Ogunlana L, MacLean RC. 2021. Evolutionary constraints on the acquisition of antimicrobial peptide resistance in bacterial pathogens. Trends Microbiol. 29(12):1058–1061.
  • Jenssen H, Hamill P, Hancock REW. 2006. Peptide antimicrobial agents. Clin Microbiol Rev. 19(3):491–511.
  • Jhong J-H, Yao L, Pang Y, Li Z, Chung C-R, Wang R, Li S, Li W, Luo M, Ma R, et al. 2022. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res. 50(D1):D460–D470.
  • Jiang Z, Vasil AI, Hale JD, Hancock REW, Vasil ML, Hodges RS. 2008. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers. 90(3):369–383.
  • Khara JS, Wang Y, Ke X-Y, Liu S, Newton SM, Langford PR, Yang YY, Ee PLR. 2014. Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin. Biomaterials. 35(6):2032–2038.
  • Kim EY, Rajasekaran G, Shin SY. 2017. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur J Med Chem. 136:428–441.
  • Kintses B, Méhi O, Ari E, Számel M, Györkei Á, Jangir PK, Nagy I, Pál F, Fekete G, Tengölics R, et al. 2019. Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota. Nat Microbiol. 4(3):447–458.
  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A Common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130(5):797–810.
  • Kosowska-Shick K, McGhee PL, Appelbaum PC. 2010. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother. 54(5):1670–1677.
  • Kumaraswamy M, Lin L, Olson J, Sun C-F, Nonejuie P, Corriden R, Döhrmann S, Ali SR, Amaro D, Rohde M, et al. 2016. Standard susceptibility testing overlooks potent azithromycin activity and cationic peptide synergy against MDR Stenotrophomonas maltophilia. J Antimicrob Chemother. 71(5):1264–1269.
  • Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, et al. 2022. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature. 602(7895):135–141.
  • Lázár V, Martins A, Spohn R, Daruka L, Grézal G, Fekete G, Számel M, Jangir PK, Kintses B, Csörgő B, et al. 2018. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol. 3(6):718–731.
  • Lazzaro BP, Zasloff M, Rolff J. 2020. Antimicrobial peptides: application informed by evolution. Science. 368:eaau5480.
  • Lewies A, Du Plessis LH, Wentzel JF. 2019. Antimicrobial peptides: the achilles’ heel of antibiotic resistance? Probiotics Antimicrob Proteins. 11(2):370–381.
  • Lewies A, Wentzel JF, Jordaan A, Bezuidenhout C, Du Plessis LH. 2017. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int J Pharm. 526(1–2):244–253.
  • Li Q, Cebrián R, Montalbán-López M, Ren H, Wu W, Kuipers OP. 2021. Outer-membrane-acting peptides and lipid II-targeting antibiotics cooperatively kill Gram-negative pathogens. Commun Biol. 4(1):31.
  • Lin L, Nonejuie P, Munguia J, Hollands A, Olson J, Dam Q, Kumaraswamy M, Rivera H, Corriden R, Rohde M, et al. 2015. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant Gram-negative bacterial pathogens. EBioMedicine. 2(7):690–698.
  • Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 22(4):582–610.
  • Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 16(2):161–168.
  • Liu Y, Jia Y, Yang K, Li R, Xiao X, Wang Z. 2020. Antagonizing vancomycin resistance in Enterococcus by surface localized antimicrobial display-derived peptides. ACS Infect Dis. 6(5):761–767.
  • Liu Y, Li R, Xiao X, Wang Z. 2019a. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol. 45(3):301–314.
  • Liu Y, Li R, Xiao X, Wang Z. 2019b. Molecules that inhibit bacterial resistance enzymes. Molecules. 24:43.
  • Liu Y, Shi J, Tong Z, Jia Y, Yang B, Wang Z. 2021a. The revitalization of antimicrobial peptides in the resistance era. Pharmacol Res. 163:105276.
  • Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. 2021b. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics. 11(10):4910–4928.
  • Liu Y, Yang K, Jia Y, Wang Z. 2019c. Repurposing peptidomimetic as potential inhibitor of New Delhi metallo-β-lactamases in Gram-negative bacteria. ACS Infect Dis. 5(12):2061–2066.
  • Livermore DM, Warner M, Mushtaq S. 2013. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 68(10):2286–2290.
  • MacNair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK, Mulvey MR, Brown ED. 2018. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun. 9(1):458.
  • Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, et al. 2020. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 20(9):e216–e230.
  • Mataraci E, Dosler S. 2012. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 56(12):6366–6371.
  • Mirzaei R, Alikhani MY, Arciola CR, Sedighi I, Yousefimashouf R, Bagheri KP. 2022. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed Pharmacother. 147:112670.
  • Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. 2020. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 19(5):311–332.
  • Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399:629–655.
  • Nuding S, Frasch T, Schaller M, Stange EF, Zabel LT. 2014. Synergistic effects of antimicrobial peptides and antibiotics against Clostridium difficile. Antimicrob Agents Chemother. 58(10):5719–5725.
  • Otvos L, Ostorhazi E, Szabo D, Zumbrun SD, Miller LL, Halasohoris SA, Desai PD, Int Veldt SM, Kraus CN. 2018. Synergy between proline-rich antimicrobial peptides and small molecule antibiotics against selected Gram-negative pathogens in vitro and in vivo. Frontiers Chem. 6:309.
  • Overington JP, Al-Lazikani B, Hopkins AL. 2006. How many drug targets are there? Nat Rev Drug Discov. 5(12):993–996.
  • Papareddy P, Kalle M, Sørensen OE, Malmsten M, Mörgelin M, Schmidtchen A. 2013. The TFPI-2 derived peptide EDC34 improves outcome of Gram-negative sepsis. PLOS Pathog. 9(12):e1003803.
  • Park GC, Choi JA, Jang SJ, Jeong SH, Kim C-M, Choi IS, Kang SH, Park G, Moon DS. 2016. In vitro interactions of antibiotic combinations of colistin, tigecycline, and doripenem against extensively drug-resistant and multidrug-resistant Acinetobacter baumannii. Ann Lab Med. 36(2):124–130.
  • Pfalzgraff A, Brandenburg K, Weindl G. 2018. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 9:281.
  • Pirtskhalava M, Amstrong AA, Grigolava M, Chubinidze M, Alimbarashvili E, Vishnepolsky B, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M. 2021. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49(D1):D288–D297.
  • Pletzer D, Mansour SC, Hancock REW. 2018. Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PLOS Pathog. 14(6):e1007084.
  • Radzishevsky IS, Rotem S, Zaknoon F, Gaidukov L, Dagan A, Mor A. 2005. Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides. Antimicrob Agents Chemother. 49(6):2412–2420.
  • Rishi P, Preet Singh A, Garg N, Rishi M. 2014. Evaluation of nisin-β-lactam antibiotics against clinical strains of Salmonella enterica serovar Typhi. J Antibiot. 67(12):807–811.
  • Rodríguez-Rojas A, Makarova O, Rolff J. 2014. Antimicrobials, stress and mutagenesis. PLOS Pathog. 10(10):e1004445.
  • Rudilla H, Fusté E, Cajal Y, Rabanal F, Vinuesa T, Viñas M. 2016. Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules. 21:1223.
  • Sass V, Schneider T, Wilmes M, Körner C, Tossi A, Novikova N, Shamova O, Sahl H-G. 2010. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun. 78(6):2793–2800.
  • Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M. 2017. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther. 17(6):663–676.
  • Silva L, Araújo MT, Santos K, Nunes APF. 2011. Evaluation of the synergistic potential of vancomycin combined with other antimicrobial agents against methicillin-resistant Staphylococcus aureus and coagulase-negative Staphylococcus spp strains. Mem Inst Oswaldo Cruz. 106(1):44–50.
  • Son SJ, Huang R, Squire CJ, Leung IKH. 2019. MCR-1: a promising target for structure-based design of inhibitors to tackle polymyxin resistance. Drug Discov Today. 24(1):206–216.
  • Song M, Liu Y, Huang X, Ding S, Wang Y, Shen J, Zhu K. 2020. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat Microbiol. 5(8):1040–1050.
  • Soren O, Brinch KS, Patel D, Liu Y, Liu A, Coates A, Hu Y. 2015. Antimicrobial peptide novicidin synergizes with rifampin, ceftriaxone, and ceftazidime against antibiotic-resistant Enterobacteriaceae in vitro. Antimicrob Agents Chemother. 59(10):6233–6240.
  • Spohn R, Daruka L, Lazar V, Martins A, Vidovics F, Grezal G, Mehi O, Kintses B, Szamel M, Jangir PK, et al. 2019. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun. 10(1):4538.
  • Tan P, Fu H, Ma X. 2021. Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today. 39:101229.
  • Tyers M, Wright GD. 2019. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 17:141–155.
  • Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. 2019. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 365:eaaw1944.
  • Van Harten RM, van Woudenbergh E, van Dijk A, Haagsman HP. 2018. Cathelicidins: immunomodulatory antimicrobials. Vaccines. 6:63.
  • Walsh TR, Weeks J, Livermore DM, Toleman MA. 2011. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 11(5):355–362.
  • Wang G, Li X, Wang Z. 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44(D1):D1087–1093.
  • Woods LC, Gorrell RJ, Taylor F, Connallon T, Kwok T, McDonald MJ. 2020. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc Natl Acad Sci U S A. 117(43):26868–26875.
  • Wright GD. 2016. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 24(11):862–871.
  • Wu X, Li Z, Li X, Tian Y, Fan Y, Yu C, Zhou B, Liu Y, Xiang R, Yang L. 2017. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Devel Ther. 11:939–946.
  • Xia Y, Cebrián R, Xu C, Jong A, Wu W, Kuipers OP. 2021. Elucidating the mechanism by which synthetic helper peptides sensitize Pseudomonas aeruginosa to multiple antibiotics. PLOS Pathog. 17(9):e1009909–e1009909.
  • Xian W, Hennefarth MR, Lee MW, Do T, Lee EY, Alexandrova AN, Wong GCL. 2022. Histidine-mediated ion specific effects enable salt tolerance of a pore-forming marine antimicrobial peptide. Angew Chem Int Ed. 61(25):e202108501.
  • Yan J, Bhadra P, Li A, Sethiya P, Qin L, Tai HK, Wong KH, Siu SWI. 2020. Deep-AmPEP30: improve short antimicrobial peptides prediction with deep learning. Mol Ther Nucleic Acids. 20:882–894.
  • Yenugu S, Narmadha G. 2010. The human male reproductive tract antimicrobial peptides of the HE2 family exhibit potent synergy with standard antibiotics. J Pept Sci. 16:337–341.
  • Yu G, Baeder DY, Regoes RR, Rolff J. 2018. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proc Biol Sci. 285:20172687.
  • Zhang Q-Y, Yan Z-B, Meng Y-M, Hong X-Y, Shao G, Ma J-J, Cheng X-R, Liu J, Kang J, Fu C-Y. 2021. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 8:48.
  • Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV. 2019. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Front Cell Infect Microbiol. 9:128.
  • Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. 2022. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev. 42(4):1377–1422.
  • Zusman O, Avni T, Leibovici L, Adler A, Friberg L, Stergiopoulou T, Carmeli Y, Paul M. 2013. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother. 57(10):5104–5111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.