624
Views
73
CrossRef citations to date
0
Altmetric
Research Article

Toxicological Significance of Mechanism-Based Inactivation of Cytochrome P450 Enzymes by Drugs

&
Pages 389-412 | Published online: 10 Oct 2008

REFERENCES

  • Agarwal A., Balla J., Alam J., Croatt A. J., Nath K. A. Induction of heme oxygenase in toxic renal injury: A protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 1995; 48: 1298–1307
  • Agarwal A., Nick H. S. Renal response to tissue injury: Lessons from heme oxygenase-1 GeneAblation and expression. J. Am. Soc. Nephrol. 2000; 11: 965–973
  • Albano E. Free radical mechanisms in immune reactions associated with alcoholic liver disease. Free Radic. Biol. Med. 2002; 32: 110–114
  • Anderson J. R., Nawarskas J. J. Cardiovascular drug–drug interactions. Cardiol. Clin. 2001; 19: 215–234
  • Augusto O., Beilan H. S., Ortiz de Montellano P. R. The catalytic mechanism of cytochrome P-450. Spin-trapping evidence for one-electron substrate oxidation. J. Biol. Chem. 1982; 257: 11288–11295
  • Augusto O., Kunze K. L., Ortiz de Montellano P. R. N-Phenylprotoporphyrin IX formation in the hemoglobin-phenylhydrazine reaction. Evidence for a protein-stabilized iron-phenyl intermediate. J. Biol. Chem. 1982; 257: 6231–6241
  • Awad J. A., Horn J. L., Roberts L. J., 2nd, Franks J. J. Demonstration of halothane-induced hepatic lipid peroxidation in rats by quantification of F2-isoprostanes. Anesthesiology 1996; 84: 910–916
  • Baker M. T., Vasquez M. T., Chiang C. K. Evidence for the stability and cytochrome P450 specificity of the phenobarbital-induced reductive halothane-cytochrome P450 complex formed in rat hepatic microsomes. Biochem. Pharmacol. 1991; 41: 1691–1699
  • Baliga R., Zhang Z., Baliga M., Ueda N., Shah S. V. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 1998a; 53: 394–401
  • Baliga R., Zhang Z., Baliga M., Ueda N., Shah S. V. Role of cytochrome P-450 as a source of catalytic iron in cisplatin-induced nephrotoxicity. Kidney Int. 1998b; 54: 1562–1569
  • Beaune P., Dansette P. M., Mansuy D., Kiffel L., Finck M., Amar C., Leroux J. P., Homberg J. C. Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 551–555
  • Beaune P., Pessayre D., Dansette P., Mansuy D., Manns M. Autoantibodies against cytochromes P450: Role in human diseases. Adv. Pharmacol. 1994; 30: 199–245
  • Beaune P. H., Lecoeur S. Immunotoxicology of the liver: Adverse reactions to drugs. J. Hepatol. 1997; 26: 37–42
  • Bedford T. A., Rowbotham D. J. Cisapride. Drug interactions of clinical significance. Drug Saf. 1996; 15: 167–175
  • Bellingham R. M., Gibbs A. H., de Matteis F., Lian L. Y., Roberts G. C. Determination of the structure of an N-substituted protoporphyrin isolated from the livers of griseofulvin-fed mice. Biochem. J. 1995; 307: 505–512
  • Belloc C., Gauffre A., Andre C., Beaune P. H. Epitope mapping of human CYP1A2 in dihydralazine-induced autoimmune hepatitis. Pharmacogenetics 1997; 7: 181–186
  • Bertelsen K. M., Venkatakrishnan K., Von Moltke L. L., Obach R. S., Greenblatt D. J. Apparent mechanism-based inhibition of human CYP2D6 in vitro by paroxetine: Comparison with fluoxetine and quinidine. Drug Metab. Dispos. 2003; 31: 289–293
  • Bocker R. H., Guengerich F. P. Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 1986; 29: 1596–1603
  • Bornheim L. M., Underwood M. C., Caldera P., Rettie A. E., Trager W. F., Wrighton S. A., Correia M. A. Inactivation of multiple hepatic cytochrome P-450 isozymes in rats by allylisopropylacetamide: mechanistic implications. Mol. Pharmacol. 1987; 32: 299–308
  • Bourdi M., Chen W., Peter R. M., Martin J. L., Buters J. T., Nelson S. D., Pohl L. R. Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem. Res. Toxicol. 1996; 9: 1159–1166
  • Bourdi M., Larrey D., Nataf J., Bernuau J., Pessayre D., Iwasaki M., Guengerich F. P., Beaune P. H. Anti-liver endoplasmic reticulum autoantibodies are directed against human cytochrome P-450IA2. A specific marker of dihydralazine-induced hepatitis. J. Clin. Invest. 1990; 85: 1967–1973
  • Bourdi M., Tinel M., Beaune P. H., Pessayre D. Interactions of dihydralazine with cytochromes P4501A: A possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol. Pharmacol. 1994; 45: 1287–1295
  • Bourrie M., Meunier V., Berger Y., Fabre G. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J. Pharmacol. Exp. Ther. 1996; 277: 321–332
  • Brueggemeier R. W., Hackett J. C., Diaz-Cruz E. S. Aromatase inhibitors in the treatment of breast cancer. Endocr. Rev. 2005; 26: 331–345
  • Buzaleh A. M., del Camen Martinez M., del Carmen Batlle A. M. Relevance of cytochrome P450 levels in the actions of enflurane and isoflurane in mice: studies on the haem pathway. Clin. Exp. Pharmacol. Physiol. 2000; 27: 796–800
  • Chan W. K., Sui Z., Ortiz de Montellano P. R. Determinants of protein modification versus heme alkylation: Inactivation of cytochrome P450 1A1 by 1-ethynylpyrene and phenylacetylene. Chem. Res. Toxicol. 1993; 6: 38–45
  • Chang T. K., Gonzalez F. J., Waxman D. J. Evaluation of triacetyloleandomycin, alpha-naphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch. Biochem. Biophys. 1994; 311: 437–442
  • Cheitlin M. D., Hutter A. M., Jr., Brindis R. G., Ganz P., Kaul S., Russell R. O., Jr., Zusman R. M. ACC/AHA expert consensus document. Use of sildenafil (Viagra) in patients with cardiovascular disease. American College of Cardiology/American Heart Association. J. Am. Coll. Cardiol. 1999; 33: 273–282
  • Chen Q., Ngui J. S., Doss G. A., Wang R. W., Cai X., DiNinno F. P., Blizzard T. A., Hammond M. L., Stearns R. A., Evans D. C., Baillie T. A., Tang W. Cytochrome P450 3A4-mediated bioactivation of raloxifene: Irreversible enzyme inhibition and thiol adduct formation. Chem. Res. Toxicol. 2002; 15: 907–914
  • Chiba M., Nishime J. A., Lin J. H. Potent and selective inactivation of human liver microsomal cytochrome P-450 isoforms by L-754,394, an investigational human immune deficiency virus protease inhibitor. J. Pharmacol. Exp. Ther. 1995; 275: 1527–1534
  • Christians U., Jacobsen W., Floren L. C. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar?. Pharmacol. Ther. 1998; 80: 1–34
  • Clot P., Bellomo G., Tabone M., Arico S., Albano E. Detection of antibodies against proteins modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroenterology 1995; 108: 201–207
  • Cole S. P., Whitney R. A., Marks G. S. Ferrochelatase-inhibitory and porphyrin-inducing properties of 3,5-diethoxy-carbonyl-1, 4-dihydro-2,4,6-trimethylpyridine and its analogues in chick embryo liver cells. Mol. Pharmacol. 1981; 20: 395–403
  • Correia M. A., Davoll S. H., Wrighton S. A., Thomas P. E. Degradation of rat liver cytochromes P450 3A after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: Characterization of the proteolytic system. Arch. Biochem. Biophys. 1992; 297: 228–238
  • Correia M. A., Decker C., Sugiyama K., Caldera P., Bornheim L., Wrighton S. A., Rettie A. E., Trager W. F. Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch. Biochem. Biophys. 1987; 258: 436–451
  • Correia M. A., Oritz de Montellano P. R. Inhibition of cytochrome P450 enzymes. Cytochrome P450: Structure, mechanism, and biochemistry, 3rd ed., P. R. Oritz de Montellano. Kluwer, New York 2005; 247–322
  • Correia M. A., Yao K., Wrighton S. A., Waxman D. J., Rettie A. E. Differential apoprotein loss of rat liver cytochromes P450 after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: A case for distinct proteolytic mechanisms?. Arch. Biochem. Biophys. 1992; 294: 493–503
  • Corsini A., Bellosta S., Baetta R., Fumagalli R., Paoletti R., Bernini F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol. Ther. 1999; 84: 413–428
  • Cuttle L., Munns A. J., Hogg N. A., Scott J. R., Hooper W. D., Dickinson R. G., Gillam E. M. Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab. Dispos. 2000; 28: 945–950
  • Dansette P. M., Bertho G., Mansuy D. First evidence that cytochrome P450 may catalyze both S-oxidation and epoxidation of thiophene derivatives. Biochem. Biophys. Res. Commun. 2005; 338: 450–455
  • Davies R., Schuurman A., Barker C. R., Clothier B., Chernova T., Higginson F. M., Judah D. J., Dinsdale D., Edwards R. E., Greaves P., Gant T. W., Smith A. G. Hepatic gene expression in protoporphyic Fech mice is associated with cholestatic injury but not a marked depletion of the heme regulatory pool. Am. J. Pathol. 2005; 166: 1041–1053
  • De Groot H., Noll T. Halothane hepatotoxicity: Relation between metabolic activation, hypoxia, covalent binding, lipid peroxidation and liver cell damage. Hepatology 1983; 3: 601–606
  • De Matteis F. Toxicological aspects of liver heme biosynthesis. Semin. Hematol. 1988; 25: 321–329
  • De Matteis F., Gibbs A. H. Drug-induced conversion of liver haem into modified porphyrins. Evidence for two classes of products. Biochem. J. 1980; 187: 285–288
  • De Matteis F., Gibbs A. H., Farmer P. B., Lamb J. H. Liver production of N-alkylated porphyrins caused in mice by treatment with substituted dihydropyridines. Evidence that the alkyl group on the pyrrole nitrogen atom originates from the drug. FEBS Lett. 1981; 129: 328–331
  • De Matteis F., Gibbs A. H., Holley A. E. Occurrence and biological properties of N-methyl protoporphyrin. Ann. NY Acad. Sci. 1987; 514: 30–40
  • De Matteis F., Gibbs A. H., Martin S. R., Milek R. L. Labelling in vivo and chirality of griseofulvin-derived N-alkylated protoporphyrins. Biochem. J. 1991; 280: 813–816
  • De Matteis F., Gibbs A. H., Smith A. G. Inhibition of protohaem ferro-lyase by N-substituted porphyrins. Structural requirements for the inhibitory effect. Biochem. J. 1980; 189: 645–648
  • de Matteis F., Hollands C., Gibbs A. H., De Sa N., Rizzardini M. Inactivation of cytochrome P-450 and production of N-alkylated porphyrins caused in isolated hepatocytes by substituted dihydropyridines. Structural requirements for loss of haem and alkylation of the pyrrole nitrogen atom. FEBS Lett. 1982; 145: 87–92
  • De Matteis F., Marks G. S. Cytochrome P450 and its interactions with the heme biosynthetic pathway. Can. J. Physiol. Pharmacol. 1996; 74: 1–8
  • Denk H., Eckerstorfer R., Talcott R. E., Schenkman J. B. Alteration of hepatic microsomal enzymes by griseofulvin treatment of mice. Biochem. Pharmacol. 1977; 26: 1125–1130
  • Desta Z., Kerbusch T., Flockhart D. A. Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin. Pharmacol. Ther. 1999; 65: 10–20
  • DeVane C. L., Markowitz J. S., Hardesty S. J., Mundy S., Gill H. S. Fluvoxamine-induced theophylline toxicity. Am. J. Psychiatry. 1997; 154: 1317–1318
  • Dresser G. K., Spence J. D., Bailey D. G. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet. 2000; 38: 41–57
  • Eagling V. A., Tjia J. F., Back D. J. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br. J. Clin. Pharmacol. 1998; 45: 107–114
  • Ekins S., VandenBranden M., Ring B. J., Wrighton S. A. Examination of purported probes of human CYP2B6. Pharmacogenetics 1997; 7: 165–179
  • Eliasson E., Kenna J. G. Cytochrome P450 2E1 is a cell surface autoantigen in halothane hepatitis. Mol. Pharmacol. 1996; 50: 573–582
  • Eliasson E., Stal P., Oksanen A., Lytton S. Expression of autoantibodies to specific cytochromes P450 in a case of disulfiram hepatitis. J. Hepatol. 1998; 29: 819–825
  • Ernest C. S., 2nd, Hall S. D., Jones D. R. Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J. Pharmacol. Exp. Ther. 2005; 312: 583–591
  • Ferrara R., Tolando R., King L. J., Manno M. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital-and pyridine-induced rat liver microsomes. Toxicol. Appl. Pharmacol. 1997; 143: 420–428
  • Gamble J. T., Dailey H. A., Marks G. S. N-Methylprotoporphyrin is a more potent inhibitor of recombinant human than of recombinant chicken ferrochelatase. Drug Metab. Dispos. 2000; 28: 373–375
  • Gamble J. T., Nakatsu K., Marks G. S. Comparison of the formation of N-alkylprotoporphyrin IX after interaction of porphyrinogenic xenobiotics with single cDNA-expressed human P450 enzymes in microsomes prepared from baculovirus-infected insect cells and human lymphoblastoid cell lines. Drug Metab. Dispos. 2003; 31: 202–205
  • Gant T. W., Baus P. R., Clothier B., Riley J., Davies R., Judah D. J., Edwards R. E., George E., Greaves P., Smith A. G. Gene expression profiles associated with inflammation, fibrosis, and cholestasis in mouse liver after griseofulvin. EHP Toxicogenomics 2003; 111: 37–43
  • Gorman N., Ross K. L., Walton H. S., Bement W. J., Szakacs J. G., Gerhard G. S., Dalton T. P., Nebert D. W., Eisenstein R. S., Sinclair J. F., Sinclair P. R. Uroporphyria in mice: Thresholds for hepatic CYP1A2 and iron. Hepatology 2002; 35: 912–921
  • Griem P., Wulferink M., Sachs B., Gonzalez J. B., Gleichmann E. Allergic and autoimmune reactions to xenobiotics: How do they arise?. Immunol. Today 1998; 19: 133–141
  • Gruchalla R. S. Drug metabolism, danger signals, and drug-induced hypersensitivity. J. Allergy Clin. Immunol. 2001; 108: 475–488
  • Guengerich F. P. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem. Res. Toxicol. 1990; 3: 363–371
  • Guengerich F. P., Kim D. H., Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol. 1991; 4: 168–179
  • Ha-Duong N. T., Dijols S., Macherey A. C., Goldstein J. A., Dansette P. M., Mansuy D. Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry 2001; 40: 12112–12122
  • Halpert J. R. Structural basis of selective cytochrome P450 inhibition. Annu. Rev. Pharmacol. Toxicol. 1995; 35: 29–53
  • Halpert J. R., Guengerich F. P., Bend J. R., Correia M. A. Selective inhibitors of cytochromes P450. Toxicol. Appl. Pharmacol. 1994; 125: 163–175
  • Handley D. A., Magnetti A., Higgins A. J. Therapeutic advantages of third generation antihistamines. Expert Opin. Investig. Drugs 1998; 7: 1045–1054
  • He K., Falick A. M., Chen B., Nilsson F., Correia M. A. Identification of the heme adduct and an active site peptide modified during mechanism-based inactivation of rat liver cytochrome P450 2B1 by secobarbital. Chem. Res. Toxicol. 1996; 9: 614–622
  • He K., Iyer K. R., Hayes R. N., Sinz M. W., Woolf T. F., Hollenberg P. F. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 1998; 11: 252–259
  • He K., Woolf T. F., Hollenberg P. F. Mechanism-based inactivation of cytochrome P-450–3A4 by mifepristone (RU486). J. Pharmacol. Exp. Ther. 1999; 288: 791–797
  • Herman R. J. Drug interactions and the statins. CMAJ 1999; 161: 1281–1286
  • Holley A. E., Frater Y., Gibbs A. H., De Matteis F., Lamb J. H., Farmer P. B., Naylor S. Isolation of two N-monosubstituted protoporphyrins, bearing either the whole drug or a methyl group on the pyrrole nitrogen atom, from liver of mice given griseofulvin. Biochem. J. 1991; 274: 843–848
  • Homberg J. C., Andre C., Abuaf N. A new anti-liver-kidney microsome antibody (anti-LKM2) in tienilic acid-induced hepatitis. Clin. Exp. Immunol. 1984; 55: 561–570
  • Jang G. R., Benet L. Z. Antiprogestin-mediated inactivation of cytochrome P450 3A4. Pharmacology 1998; 56: 150–157
  • Jean P., Lopez-Garcia P., Dansette P., Mansuy D., Goldstein J. L. Oxidation of tienilic acid by human yeast-expressed cytochromes P-450 2C8, 2C9, 2C18 and 2C19. Evidence that this drug is a mechanism-based inhibitor specific for cytochrome P-450 2C9. Eur. J. Biochem. 1996; 241: 797–804
  • Jones D. R., Gorski J. C., Hamman M. A., Mayhew B. S., Rider S., Hall S. D. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J. Pharmacol. Exp. Ther. 1999; 290: 1116–1125
  • Kalgutkar A. S., Vaz A. D., Lame M. E., Henne K. R., Soglia J., Zhao S. X., Abramov Y. A., Lombardo F., Collin C., Hendsch Z. S., Hop C. E. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab. Dispos. 2005; 33: 243–253
  • Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 2005; 4: 489–499
  • Kassahun K., Pearson P. G., Tang W., McIntosh I., Leung K., Elmore C., Dean D., Wang R., Doss G., Baillie T. A. Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem. Res. Toxicol. 2001; 14: 62–70
  • Kenna J. G. Immunoallergic drug-induced hepatitis: lessons from halothane. J. Hepatol. 1997; 26: 5–12
  • Kent U. M., Juschyshyn M. I., Hollenberg P. F. Mechanism-based inactivators as probes of cytochrome P450 structure and function. Curr. Drug Metab. 2001; 2: 215–243
  • Kent U. M., Mills D. E., Rajnarayanan R. V., Alworth W. L., Hollenberg P. F. Effect of 17-alpha-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: Characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J. Pharmacol. Exp. Ther. 2002; 300: 549–558
  • Khan K. K., He Y. Q., Correia M. A., Halpert J. R. Differential oxidation of mifepristone by cytochromes P450 3A4 and 3A5: Selective inactivation of P450 3A4. Drug Metab. Dispos. 2002; 30: 985–990
  • Khan K. K., He Y. Q., Domanski T. L., Halpert J. R. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol. Pharmacol. 2002; 61: 495–506
  • Kharasch E. D., Hankins D., Mautz D., Thummel K. E. Identification of the enzyme responsible for oxidative halothane metabolism: Implications for prevention of halothane hepatitis. Lancet 1996; 347: 1367–1371
  • Kimmett S. M., McNamee J. P., Denofreo R. T., Marks G. S. Evidence for mechanism-based inactivation of rat and chick embryo hepatic cytochrome P4501A and P4503A by dihydropyridines, sydnones, and dihydroquinolines. Biochem. Pharmacol. 1994; 47: 2069–2078
  • Kivisto K. T., Neuvonen P. J., Klotz U. Inhibition of terfenadine metabolism. Pharmacokinetic and pharmacodynamic consequences. Clin. Pharmacokinet. 1994; 27: 1–5
  • Knasmuller S., Parzefall W., Helma C., Kassie F., Ecker S., Schulte-Hermann R. Toxic effects of griseofulvin: Disease models, mechanisms, and risk assessment. Crit. Rev. Toxicol. 1997; 27: 495–537
  • Koenigs L. L., Peter R. M., Hunter A. P., Haining R. L., Rettie A. E., Friedberg T., Pritchard M. P., Shou M., Rushmore T. H., Trager W. F. Electrospray ionization mass spectrometric analysis of intact cytochrome P450: identification of tienilic acid adducts to P450 2C9. Biochemistry 1999; 38: 2312–2319
  • Koenigs L. L., Peter R. M., Thompson S. J., Rettie A. E., Trager W. F. Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxypsoralen. Drug Metab. Dispos. 1997; 25: 1407–1415
  • Koenigs L. L., Trager W. F. Mechanism-based inactivation of P450 2A6 by furanocoumarins. Biochemistry 1998; 37: 10047–10061
  • Koudriakova T., Iatsimirskaia E., Utkin I., Gangl E., Vouros P., Storozhuk E., Orza D., Marinina J., Gerber N. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: Mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab. Dispos. 1998; 26: 552–561
  • Krayenbuhl J. C., Vozeh S., Kondo-Oestreicher M., Dayer P. Drug–drug interactions of new active substances: mibefradil example. Eur. J. Clin. Pharmacol. 1999; 55: 559–565
  • Krieter P. A., van Dyke R. A. Cytochrome P-450 and halothane metabolism. Decrease in rat liver microsomal P-450 in vitro. Chem. Biol. Interact. 1983; 44: 219–235
  • Kumar S., Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett. 2005; 157: 175–188
  • Kunze K. L., Trager W. F. Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline. Chem. Res. Toxicol. 1993; 6: 649–656
  • Lavigne J. A., Nakatsu K., Marks G. S. Identification of human hepatic cytochrome P450 sources of N-alkylprotoporphyrin IX after interaction with porphyrinogenic xenobiotics, implications for detection of xenobiotic-induced porphyria in humans. Drug Metab. Dispos. 2002; 30: 788–794
  • Lecoeur S., Andre C., Beaune P. H. Tienilic acid-induced autoimmune hepatitis: anti-liver and-kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol. Pharmacol. 1996; 50: 326–333
  • Lecoeur S., Bonierbale E., Challine D., Gautier J. C., Valadon P., Dansette P. M., Catinot R., Ballet F., Mansuy D., Beaune P. H. Specificity of in vitro covalent binding of tienilic acid metabolites to human liver microsomes in relationship to the type of hepatotoxicity: Comparison with two directly hepatotoxic drugs. Chem. Res. Toxicol. 1994; 7: 434–442
  • Leeder J. S., Gaedigk A., Lu X., Cook V. A. Epitope mapping studies with human anti-cytochrome P450 3A antibodies. Mol. Pharmacol. 1996; 49: 234–243
  • Leeder J. S., Lu X., Timsit Y., Gaedigk A. Non-monooxygenase cytochromes P450 as potential human autoantigens in anticonvulsant hypersensitivity reactions. Pharmacogenetics 1998; 8: 211–225
  • Leeder J. S., Riley R. J., Cook V. A., Spielberg S. P. Human anti-cytochrome P450 antibodies in aromatic anticonvulsant-induced hypersensitivity reactions. J. Pharmacol. Exp. Ther. 1992; 263: 360–367
  • Levy R. H., Thummel K. E., Trager W. F., Hansten P. D., Eichelbaum M. Metabolic drug interactions. Lippincott Williams & Wilkins, Philadelphia 2000
  • Lightning L. K., Jones J. P., Friedberg T., Pritchard M. P., Shou M., Rushmore T. H., Trager W. F. Mechanism-based inactivation of cytochrome P450 3A4 by L-754,394. Biochemistry 2000; 39: 4276–4287
  • Lillibridge J. H., Liang B. H., Kerr B. M., Webber S., Quart B., Shetty B. V., Lee C. A. Characterization of the selectivity and mechanism of human cytochrome P450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab. Dispos. 1998; 26: 609–616
  • Lim H. K., Duczak N., Jr, Brougham L., Elliot M., Patel K., Chan K. Automated screening with confirmation of mechanism-based inactivation of CYP3A4, CYP2C9, CYP2C19, CYP2D6 and CYP1A2 in pooled human liver microsomes. Drug Metab. Dispos. 2005; 33: 1211–1219
  • Lin H. L., Kent U. M., Hollenberg P. F. Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: Evidence for heme destruction and covalent binding to protein. J. Pharmacol. Exp. Ther. 2002; 301: 160–167
  • Lin H. L., Kent U. M., Hollenberg P. F. The grapefruit juice effect is not limited to cytochrome P450 (P450) 3A4: Evidence for bergamottin-dependent inactivation, heme destruction, and covalent binding to protein in P450s 2B6 and 3A5. J. Pharmacol. Exp. Ther. 2005; 313: 154–164
  • Lindstrom T. D., Hanssen B. R., Wrighton S. A. Cytochrome P-450 complex formation by dirithromycin and other macrolides in rat and human livers. Antimicrob. Agents Chemother. 1993; 37: 265–269
  • Liu H., Baliga M., Baliga R. Effect of cytochrome P450 2E1 inhibitors on cisplatin-induced cytotoxicity to renal proximal tubular epithelial cells. Anticancer Res. 2002; 22: 863–868
  • Liu H., Baliga R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 2003; 63: 1687–1696
  • Lopez-Garcia M. P., Dansette P. M., Mansuy D. Thiophene derivatives as new mechanism-based inhibitors of cytochromes P-450: Inactivation of yeast-expressed human liver cytochrome P-450 2C9 by tienilic acid. Biochemistry 1994; 33: 166–175
  • Lopez Garcia M. P., Dansette P. M., Valadon P., Amar C., Beaune P. H., Guengerich F. P., Mansuy D. Human-liver cytochromes P-450 expressed in yeast as tools for reactive-metabolite formation studies. Oxidative activation of tienilic acid by cytochromes P-450 2C9 and 2C10. Eur. J. Biochem. 1993; 213: 223–232
  • Lytton S. D., Berg U., Nemeth A., Ingelman-Sundberg M. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs. Clin. Exp. Immunol. 2002; 127: 293–302
  • Lytton S. D., Helander A., Zhang-Gouillon Z. Q., Stokkeland K., Bordone R., Arico S., Albano E., French S. W., Ingelman-Sundberg M. Autoantibodies against cytochromes P-4502E1 and P-4503A in alcoholics. Mol. Pharmacol. 1999; 55: 223–233
  • Ma B., Prueksaritanont T., Lin J. H. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab. Dispos. 2000; 28: 125–130
  • Malhotra S., Bailey D. G., Paine M. F., Watkins P. B. Seville orange juice–felodipine interaction: Comparison with dilute grapefruit juice and involvement of furocoumarins. Clin. Pharmacol. Ther. 2001; 69: 14–23
  • Manno M., Cazzaro S., Rezzadore M. The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by halothane. Arch. Toxicol. 1991; 65: 191–198
  • Manno M., De Matteis F., King L. J. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Biochem. Pharmacol. 1988; 37: 1981–1990
  • Manno M., Ferrara R., Cazzaro S., Rigotti P., Ancona E. Suicidal inactivation of human cytochrome P-450 by carbon tetrachloride and halothane in vitro. Pharmacol. Toxicol. 1992; 70: 13–18
  • Manns M. P., Obermayer-Straub P. Cytochromes P450 and uridine triphosphate-glucuronosyltransferases: Model autoantigens to study drug-induced, virus-induced, and autoimmune liver disease. Hepatology 1997; 26: 1054–1066
  • Marini S., Longo V., Zaccaro C., De Matteis F., Gervasi P. G. Selective inactivation of rat and bovine olfactory cytochrome P450 by three haloethanes. Toxicol. Lett. 2001; 124: 83–90
  • Marks G. S., Allen D. T., Johnston C. T., Sutherland E. P., Nakatsu K., Whitney R. A. Suicidal destruction of cytochrome P-450 and reduction of ferrochelatase activity by 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine and its analogues in chick embryo liver cells. Mol. Pharmacol. 1985; 27: 459–465
  • Marks G. S., Goldman D. R., McCluskey S. A., Sutherland E. P., Lyon M. E. The effects of dihydropyridine calcium antagonists on heme biosynthesis in chick embryo liver cell culture. Can. J. Physiol. Pharmacol. 1986; 64: 438–443
  • Marks G. S., McCluskey S. A., Mackie J. E., Riddick D. S., James C. A. Disruption of hepatic heme biosynthesis after interaction of xenobiotics with cytochrome P-450. FASEB J. 1988; 2: 2774–2783
  • Martin J. L., Keegan M. T., Vasdev G. M., Nyberg S. L., Bourdi M., Pohl L. R., Plevak D. J. Fatal hepatitis associated with isoflurane exposure and CYP2A6 autoantibodies. Anesthesiology 2001; 95: 551–553
  • Masubuchi Y., Horie T. Dihydralazine-induced inactivation of cytochrome P450 enzymes in rat liver microsomes. Drug Metab. Dispos. 1998; 26: 338–342
  • Masubuchi Y., Horie T. Mechanism-based inactivation of cytochrome P450s 1A2 and 3A4 by dihydralazine in human liver microsomes. Chem. Res. Toxicol. 1999; 12: 1028–1032
  • Masubuchi Y., Nakano T., Ose A., Horie T. Differential selectivity in carbamazepine-induced inactivation of cytochrome P450 enzymes in rat and human liver. Arch. Toxicol. 2001; 75: 538–543
  • Masubuchi Y., Ose A., Horie T. Diclofenac-induced inactivation of CYP3A4 and its stimulation by quinidine. Drug Metab. Dispos. 2002; 30: 1143–1148
  • Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994; 12: 991–1045
  • Mayhew B. S., Jones D. R., Hall S. D. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab. Dispos. 2000; 28: 1031–1037
  • McConn D. J., 2nd, Lin Y. S., Allen K., Kunze K. L., Thummel K. E. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab. Dispos. 2004; 32: 1083–1091
  • McNamee J. P., Jurima-Romet M., Kobus S. M., Marks G. S. cDNA-expressed human cytochrome P450 isozymes. Inactivation by porphyrinogenic xenobiotics. Drug Metab. Dispos. 1997; 25: 437–441
  • McNamee J. P., Marks G. S. Cytochrome P4503A is the major source of N-vinylprotoporphyrin IX formation after administration of 3-[2-(2,4,6-trimethylphenyl)thioethyl]-4-methylsydnone to untreated and dexamethasone-pretreated rats. Drug Metab. Dispos. 1996; 24: 872–878
  • Michalets E. L., Williams C. R. Drug interactions with cisapride: clinical implications. Clin. Pharmacokinet. 2000; 39: 49–75
  • Minoda Y., Kharasch E. D. Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6). Anesthesiology 2001; 95: 509–514
  • Mullins M. E., Horowitz B. Z., Linden D. H., Smith G. W., Norton R. L., Stump J. Life-threatening interaction of mibefradil and beta-blockers with dihydropyridine calcium channel blockers. JAMA 1998; 280: 157–158
  • Munns A. J., De Voss J. J., Hooper W. D., Dickinson R. G., Gillam E. M. Bioactivation of phenytoin by human cytochrome P450: Characterization of the mechanism and targets of covalent adduct formation. Chem. Res. Toxicol. 1997; 10: 1049–1058
  • Murray M. Mechanisms of the inhibition of cytochrome P-450-mediated drug oxidation by therapeutic agents. Drug Metab. Rev. 1987; 18: 55–81
  • Murray M. Drug-mediated inactivation of cytochrome P450. Clin. Exp. Pharmacol. Physiol. 1997; 24: 465–470
  • Murray M., Reidy G. F. Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents. Pharmacol. Rev. 1990; 42: 85–101
  • Nakahira K., Takahashi T., Shimizu H., Maeshima K., Uehara K., Fujii H., Nakatsuka H., Yokoyama M., Akagi R., Morita K. Protective role of heme oxygenase-1 induction in carbon tetrachloride-induced hepatotoxicity. Biochem. Pharmacol. 2003; 66: 1091–1105
  • Nataf J., Bernuau J., Larrey D., Guillin M., Rueff B., Benhamou J.-P. A new anti-liver microsome antibody: a specific marker of dihydralazine-induced hepatitis. Gastroenterology 1986; 90: 1751
  • Newton D. J., Wang R. W., Lu A. Y. Cytochrome P450 inhibitors. Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab. Dispos. 1995; 23: 154–158
  • O'Donnell J. P., Dalvie D. K., Kalgutkar A. S., Obach R. S. Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab. Dispos. 2003; 31: 1369–1377
  • Obermayer-Straub P., Manns M. P. Cytochromes P450 and UDP-glucuronosyl-transferases as hepatocellular autoantigens. Baillieres Clin. Gastroenterol. 1996; 10: 501–532
  • Odaka Y., Takahashi T., Yamasaki A., Suzuki T., Fujiwara T., Yamada T., Hirakawa M., Fujita H., Ohmori E., Akagi R. Prevention of halothane-induced hepatotoxicity by hemin pretreatment: protective role of heme oxygenase-1 induction. Biochem. Pharmacol. 2000; 59: 871–880
  • Ohyama K., Nakajima M., Suzuki M., Shimada N., Yamazaki H., Yokoi T. Inhibitory effects of amiodarone and its N-deethylated metabolite on human cytochrome P450 activities: Prediction of in vivo drug interactions. Br. J. Clin. Pharmacol. 2000; 49: 244–253
  • Ono S., Hatanaka T., Hotta H., Satoh T., Gonzalez F. J., Tsutsui M. Specificity of substrate and inhibitor probes for cytochrome P450s: Evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica 1996; 26: 681–693
  • Oritz de Montellano P. R., Correia M. A. Suicidal destruction of cytochrome P-450 during oxidative drug metabolism. Annu. Rev. Pharmacol. Toxicol. 1983; 23: 481–503
  • Ortiz de Montellano P. R., Beilan H. S., Kunze K. L. N-Alkylprotoporphyrin IX formation in 3,5-dicarbethoxy-1,4-dihydrocollidine-treated rats. Transfer of the alkyl group from the substrate to the porphyrin. J. Biol. Chem. 1981; 256: 6708–6713
  • Ortiz de Montellano P. R., Grab L. A. Inactivation of cytochrome P-450 during catalytic oxidation of a 3-[(arylthio)ethyl]sydnone: N-Vinyl heme formation via insertion into the iron–nitrogen bond. J. Aml. Chem. Soc. 1986; 108: 5584–5589
  • Ortiz de Montellano P. R., Komives E. A. Branchpoint for heme alkylation and metabolite formation in the oxidation of arylacetylenes by cytochrome P-450. J. Biol. Chem. 1985; 260: 3330–3336
  • Ortiz de Montellano P. R., Mico B. A. Destruction of cytochrome P-450 by ethylene and other olefins. Mol. Pharmacol. 1980; 18: 128–135
  • Paakkari I. Cardiotoxicity of new antihistamines and cisapride. Toxicol. Lett. 2002; 127: 279–284
  • Paris D. G., Parente T. F., Bruschetta H. R., Guzman E., Niarchos A. P. Torsades de pointes induced by erythromycin and terfenadine. Am. J. Emerg. Med. 1994; 12: 636–638
  • Park B. K., Pirmohamed M., Kitteringham N. R. Role of drug disposition in drug hypersensitivity: A chemical, molecular, and clinical perspective. Chem. Res. Toxicol. 1998; 11: 969–988
  • Patsalos P. N., Froscher W., Pisani F., van Rijn C. M. The importance of drug interactions in epilepsy therapy. Epilepsia 2002; 43: 365–385
  • Periti P., Mazzei T., Mini E., Novelli A. Pharmacokinetic drug interactions of macrolides. Clin. Pharmacokinet. 1992; 23: 106–131
  • Pirmohamed M., Naisbitt D. J., Gordon F., Park B. K. The danger hypothesis—Potential role in idiosyncratic drug reactions. Toxicology 2002; 181–182: 55–63
  • Plosch T., Bloks V. W., Baller J. F., Havinga R., Verkade H. J., Jansen P. L., Kuipers F. Mdr P-glycoproteins are not essential for biliary excretion of the hydrophobic heme precursor protoporphyrin in a griseofulvin-induced mouse model of erythropoietic protoporphyria. Hepatology 2002; 35: 299–306
  • Pohl L. R., Kenna J. G., Satoh H., Christ D., Martin J. L. Neoantigens associated with halothane hepatitis. Drug Metab. Rev. 1989; 20: 203–217
  • Pohl L. R., Satoh H., Christ D. D., Kenna J. G. The immunologic and metabolic basis of drug hypersensitivities. Annu. Rev. Pharmacol. Toxicol. 1988; 28: 367–387
  • Polasek T. M., Elliot D. J., Lewis B. C., Miners J. O. Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J. Pharmacol. Exp. Ther. 2004; 311: 996–1007
  • Pons C., Dansette P. M., Amar C., Jaouen M., Wolf C. R., Gregeois J., Homberg J. C., Mansuy D. Detection of human hepatitis anti-liver kidney microsomes (LKM2) autoantibodies on rat liver sections is predominantly due to reactivity with rat liver P-450 IIC11. J. Pharmacol. Exp. Ther. 1991; 259: 1328–1334
  • Prueksaritanont T., Ma B., Tang C., Meng Y., Assang C., Lu P., Reider P. J., Lin J. H., Baillie T. A. Metabolic interactions between mibefradil and HMG-CoA reductase inhibitors: An in vitro investigation with human liver preparations. Br. J. Clin. Pharmacol. 1999; 47: 291–298
  • Racha J. K., Rettie A. E., Kunze K. L. Mechanism-based inactivation of human cytochrome P450 1A2 by furafylline: Detection of a 1:1 adduct to protein and evidence for the formation of a novel imidazomethide intermediate. Biochemistry 1998; 37: 7407–7419
  • Rando R. R. Mechanism-based enzyme inactivators. Pharmacol. Rev. 1984; 36: 111–142
  • Rasmussen B. B., Maenpaa J., Pelkonen O., Loft S., Poulsen H. E., Lykkesfeldt J., Brosen K. Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: Potent inhibition by fluvoxamine. Br. J. Clin. Pharmacol. 1995; 39: 151–159
  • Richter T., Murdter T. E., Heinkele G., Pleiss J., Tatzel S., Schwab M., Eichelbaum M., Zanger U. M. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J. Pharmacol. Exp. Ther. 2004; 308: 189–197
  • Riddick D. S., Marks G. S. Irreversible binding of heme to microsomal protein during inactivation of cytochrome P450 by 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine. Biochem. Pharmacol. 1990; 40: 1915–1921
  • Riddick D. S., Park S. S., Gelboin H. V., Marks G. S. Effects of a series of 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine on the major inducible cytochrome P-450 isozymes of rat liver. Mol. Pharmacol. 1989; 35: 626–634
  • Robin M. A., Le Roy M., Descatoire V., Pessayre D. Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug-induced hepatitis. J. Hepatol. 1997; 26: 23–30
  • Robin M. A., Maratrat M., Le Roy M., Le Breton F. P., Bonierbale E., Dansette P., Ballet F., Mansuy D., Pessayre D. Antigenic targets in tienilic acid hepatitis. Both cytochrome P450 2C11 and 2C11-tienilic acid adducts are transported to the plasma membrane of rat hepatocytes and recognized by human sera. J. Clin. Invest. 1996; 98: 1471–1480
  • Rodrigues A. D. Drug–drug interactions. Marcel Dekker, New York 2002
  • Safirstein R., Winston J., Goldstein M., Moel D., Dikman S., Guttenplan J. Cisplatin nephrotoxicity. Am. J. Kidney Dis. 1986; 8: 356–367
  • Sahali-Sahly Y., Balani S. K., Lin J. H., Baillie T. A. In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Chem. Res. Toxicol. 1996; 9: 1007–1012
  • Sai Y., Dai R., Yang T. J., Krausz K. W., Gonzalez F. J., Gelboin H. V., Shou M. Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica 2000; 30: 327–343
  • Salonpaa P., Kottari S., Pelkonen O., Raunio H. Regulation of CYP 2 A 5 induction by porphyrinogenic agents in mouse primary hepatocytes. Naunyn. Schmiedebergs Arch. Pharmacol. 1997; 355: 8–13
  • Salonpaa P., Krause K., Pelkonen O., Raunio H. Up-regulation of CYP2A5 expression by porphyrinogenic agents in mouse liver. Naunyn. Schmiedebergs Arch. Pharmacol. 1995; 351: 446–452
  • Schaaf G. J., Maas R. F., de Groene E. M., Fink-Gremmels J. Management of oxidative stress by heme oxygenase-1 in cisplatin-induced toxicity in renal tubular cells. Free Radical Res. 2002; 36: 835–843
  • Schmiedlin-Ren P., Edwards D. J., Fitzsimmons M. E., He K., Lown K. S., Woster P. M., Rahman A., Thummel K. E., Fisher J. M., Hollenberg P. F., Watkins P. B. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab. Dispos. 1997; 25: 1228–1233
  • Screnci D., McKeage M. J. Platinum neurotoxicity: Clinical profiles, experimental models and neuroprotective approaches. J. Inorg. Biochem. 1999; 77: 105–110
  • Seguin B., Uetrecht J. The danger hypothesis applied to idiosyncratic drug reactions. Curr. Opin. Allergy Clin. Immunol. 2003; 3: 235–242
  • Shear N. H., Spielberg S. P. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk. J. Clin. Invest. 1988; 82: 1826–1832
  • Shiraishi F., Curtis L. M., Truong L., Poss K., Visner G. A., Madsen K., Nick H. S., Agarwal A. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal Physiol. 2000; 278: F726–736
  • Silverman R. B. Mechanism-based enzyme inactivation: Chemistry and Enzymology. CRC Press, Boca Raton, FL 1988; Vol. 1
  • Simonsen U. Interactions between drugs for erectile dysfunction and drugs for cardiovascular disease. Int. J. Impot. Res. 2002; 14: 178–188
  • Smith A. G., De Matteis F. Drugs and the hepatic porphyrias. Clin. Haematol. 1980; 9: 399–425
  • Spina E., Pisani F., Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin. Pharmacokinet. 1996; 31: 198–214
  • Spracklin D. K., Hankins D. C., Fisher J. M., Thummel K. E., Kharasch E. D. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. J. Pharmacol. Exp. Ther. 1997; 281: 400–411
  • Spracklin D. K., Thummel K. E., Kharasch E. D. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Drug Metab. Dispos. 1996; 24: 976–983
  • Sridar C., Kent U. M., Notley L. M., Gillam E. M., Hollenberg P. F. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6. J. Pharmacol. Exp. Ther. 2002; 301: 945–952
  • Sutherland E. P., Marks G. S., Grab L. A., Ortiz de Montellano P. R. Porphyrinogenic activity and ferrochelatase-inhibitory activity of sydnones in chick embryo liver cells. FEBS Lett. 1986; 197: 17–20
  • Tanaka E. Clinically significant pharmacokinetic drug interactions with benzodiazepines. J. Clin. Pharm. Ther. 1999; 24: 347–355
  • Tassaneeyakul W., Birkett D. J., Veronese M. E., McManus M. E., Tukey R. H., Miners J. O. Direct characterization of the selectivity of furafylline as an inhibitor of human cytochromes P450 1A1 and 1A2. Pharmacogenetics 1994; 4: 281–284
  • Tassaneeyakul W., Guo L. Q., Fukuda K., Ohta T., Yamazoe Y. Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch. Biochem. Biophys. 2000; 378: 356–363
  • Tephly T. R., Black K. A., Green M. D., Coffman B. L., Dannan G. A., Guengerich F. P. Effect of the suicide substrate 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine on the metabolism of xenobiotics and on cytochrome P-450 apoproteins. Mol. Pharmacol. 1986; 29: 81–87
  • Tephly T. R., Coffman B. L., Ingall G., Ziet-Har M. S., Goff H. M., Tabba H. D., Smith K. M. Identification of N-methylprotoporphyrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine: Source of the methyl group. Arch. Biochem. Biophys. 1981; 212: 120–126
  • Tephly T. R., Gibbs A. H., De Matteis F. Studies on the mechanism of experimental porphyria produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Role of a porphyrin-like inhibitor of protohaem ferro-lyase. Biochem. J. 1979; 180: 241–244
  • Thummel K. E., Wilkinson G. R. In vitro and in vivo drug interactions involving human CYP3A. Annu. Rev. Pharmacol. Toxicol. 1998; 38: 389–430
  • Tinel M., Belghiti J., Descatoire V., Amouyal G., Letteron P., Geneve J., Larrey D., Pessayre D. Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives. Biochem. Pharmacol. 1987; 36: 951–955
  • Uetrecht J. P. New concepts in immunology relevant to idiosyncratic drug reactions: The “danger hypothesis” and innate immune system. Chem. Res. Toxicol. 1999; 12: 387–395
  • Uno S., Dalton T. P., Sinclair P. R., Gorman N., Wang B., Smith A. G., Miller M. L., Shertzer H. G., Nebert D. W. Cyp1a1(-/-) male mice: Protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria. Toxicol. Appl. Pharmacol. 2004; 196: 410–421
  • Upton R. A. Pharmacokinetic interactions between theophylline and other medication (Part I). Clin. Pharmacokinet. 1991; 20: 66–80
  • Urban G., Speerschneider P., Dekant W. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1. Chem. Res. Toxicol. 1994; 7: 170–176
  • van d en, Brekel A. M., Harrington L. Toxic effects of theophylline caused by fluvoxamine. CMAJ 1994; 151: 1289–1290
  • Venkatakrishnan K., von Moltke L. L., Obach R. S., Greenblatt D. J. Drug metabolism and drug interactions: Application and clinical value of in vitro models. Curr. Drug Metab. 2003; 4: 423–459
  • Vergani D., Mieli-Vergani G., Alberti A., Neuberger J., Eddleston A. L., Davis M., Williams R. Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. N. Engl. J. Med. 1980; 303: 66–71
  • Vidali M., Stewart S. F., Rolla R., Daly A. K., Chen Y., Mottaran E., Jones D. E., Leathart J. B., Day C. P., Albano E. Genetic and epigenetic factors in autoimmune reactions toward cytochrome P4502E1 in alcoholic liver disease. Hepatology 2003; 37: 410–419
  • von Rosensteil N. A., Adam D. Macrolide antibacterials. Drug interactions of clinical significance. Drug Safety 1995; 13: 105–122
  • Voorman R. L., Maio S. M., Payne N. A., Zhao Z., Koeplinger K. A., Wang X. Microsomal metabolism of delavirdine: Evidence for mechanism-based inactivation of human cytochrome P450 3A. J. Pharmacol. Exp. Ther. 1998; 287: 381–388
  • Wagener F. A., Volk H. D., Willis D., Abraham N. G., Soares M. P., Adema G. J., Figdor C. G. Different faces of the heme–heme oxygenase system in inflammation. Pharmacol. Rev. 2003; 55: 551–571
  • Wang Y. H., Jones D. R., Hall S. D. Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab. Dispos. 2004; 32: 259–266
  • Wang Y. H., Jones D. R., Hall S. D. Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab. Dispos. 2005; 33: 664–671
  • Weber L. W., Boll M., Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 2003; 33: 105–136
  • Welker H. A., Wiltshire H., Bullingham R. Clinical pharmacokinetics of mibefradil. Clin. Pharmacokinet. 1998; 35: 405–423
  • Westphal J. F. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: An update focused on clarithromycin, azithromycin and dirithromycin. Br. J. Clin. Pharmacol. 2000; 50: 285–295
  • Williams D., Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin. Pharmacokinet. 2002; 41: 343–370
  • Williams M. T., Simonet L. Effects of griseofulvin on enzymes associated with phase I and II of drug metabolism. Biochem. Pharmacol. 1986; 35: 2630–2632
  • Wolkenstein P., Tan C., Lecoeur S., Wechsler J., Garcia-Martin N., Charue D., Bagot M., Beaune P. Covalent binding of carbamazepine reactive metabolites to P450 isoforms present in the skin. Chem. Biol. Interact. 1998; 113: 39–50
  • Wong S. G., Kobus S. M., McNamee J. P., Marks G. S. Gender differences in N-alkyl protoporphyrin IX production in rats after the administration of porphyrinogenic xenobiotics. Drug Metab. Dispos. 1998; 26: 739–744
  • Wong S. G., Lin E. H., Marks G. S. Cytochrome CYP sources of N-alkylprotoporphyrin IX after administration of porphyrinogenic xenobiotics to rats. Drug Metab. Dispos. 1999; 27: 960–965
  • Woosley R. L. Cardiac actions of antihistamines. Annu. Rev. Pharmacol. Toxicol. 1996; 36: 233–252
  • Yamasaki A., Takahashi T., Suzuki T., Fujiwara T., Hirakawa M., Ohmori E., Akagi R. Differential effects of isoflurane and halothane on the induction of heat shock proteins. Biochem. Pharmacol. 2001; 62: 375–382
  • Yao C., Kunze K. L., Kharasch E. D., Wang Y., Trager W. F., Ragueneau I., Levy R. H. Fluvoxamine-theophylline interaction: Gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2. Clin. Pharmacol. Ther. 2001; 70: 415–424
  • Yeo K. R., Yeo W. W. Inhibitory effects of verapamil and diltiazem on simvastatin metabolism in human liver microsomes. Br. J. Clin. Pharmacol. 2001; 51: 461–470
  • Yuan R., Flockhart D. A., Balian J. D. Pharmacokinetic and pharmacodynamic consequences of metabolism-based drug interactions with alprazolam, midazolam, and triazolam. J. Clin. Pharmacol. 1999; 39: 1109–1125
  • Zhao X. J., Jones D. R., Wang Y. H., Grimm S. W., Hall S. D. Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica 2002; 32: 863–878
  • Zhou S., Chan E., Lim L. Y., Boelsterli U. A., Li S. C., Wang J., Zhang Q., Huang M., Xu A. Therapeutic drugs that behave as mechanism-based inhibitors of cytochrome P450 3A4. Curr. Drug Metab. 2004; 5: 415–442
  • Zhou S., Yung Chan S., Cher Goh B., Chan E., Duan W., Huang M., McLeod H. L. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin. Pharmacokinet. 2005; 44: 279–304

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.