579
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Mechanisms Involved in Cardiac Sensitization by Volatile Anesthetics: General Applicability to Halogenated Hydrocarbons?

Pages 773-803 | Published online: 24 Nov 2008

REFERENCES

  • M. H. Abraham, W. R. Lieb, and N. P. Franks. (1991). Role of hydrogen bonding in general anesthesia. J. Pharm. Sci. 80:719–724.
  • J. Adir, D. A. Blake, and G. M. Mergner. (1975). Pharmacokinetics of fluorocarbon 11 and 12 in dogs and humans. J. Clin. Pharmacol. 15:760–770.
  • A. Aguado-Matorras. (1974). Comparative study of myocardial sensitization to norepinephrine under halothane and enflurane anesthesia. Acta Anaesthesiol. Belgica 25:198–205.
  • D. J. Alexander, E. Mortimer, G. D. Dines, S. E. Libretto, and D. N. Mallett. (1995). One-year study in dogs of the toxicity of HFA-134a by inhalation. Inhal. Toxicol. 7:1153–1162.
  • Y. M. Amin, E. B. Thompson, and W. L. Chiou. (1979). Fluorocarbon aerosol propellants XII: Correlation of blood level of trichloromonofluoromethane to cardiovascular and respiratory responses in anesthetized dogs. J. Pharm. Sci. 68:160–163.
  • J. Angerer, B. Schroeder, and R. Heinrich. (1985). Exposure to fluorotrichloromethane (R-11). Int. Arch. Occup. Environ. Health 56:67–72.
  • Z. Annau. (1981). The neurobehavioral toxicity of trichloroethylene. Neurobehav. Toxicol. Teratol. 3:417–424.
  • B. L. Anthony, R. L. Dennison, and R. S. Aronstam. (1989). Disruption of muscarinic receptor-G protein coupling is a general property of liquid volatile anesthetics. Neurosci. Lett. 99:191–196.
  • M. Antti-Poika, J. Heikkilä, and L. Saarinen. (1990). Cardiac arrhythmias during occupational exposure to fluorinated hydrocarbons. Br. J. Ind. Med. 47:138–140.
  • E. P. Anyukhovsky, S. D. Guo, P. Danilo, and M. R. Rosen. (1997). Responses to norepinephrine of normal and “ischemic” canine Purkinje fibers are consistent with activation of different α1-receptor subtypes. J. Cardiovasc. Electrophysiol. 8:658–666.
  • C. Arias, T. Gonzalez, I. Moreno, R. Caballero, E. Delpon, J. Tamargo, and C. Valenzuela. (2003). Effects of propafenone and its main metabolite, 5-hydroxypropafenone, on hERG channels. Cardiovasc. Res. 57:660–669.
  • T. Asai, K. Kusudo, H. Ikeda, M. Takenoshita, and K. Murase. (2002). Effect of halothane on neuronal excitation in the superficial dorsal horn of rat spinal cord slices: Evidence for a presynaptic action. Eur. J. Neurosci. 15:1278–1290.
  • A. Astier, and F. Paraire. (1997). Fatal intoxication with 1,1-dichloro–1-fluoroethane. N. Engl. J. Med. 337:940.
  • J. L. Atlee, and C. E. Malkinson. (1982). Potentiation by thiopental of halothane-epinephrine-induced arrhythmias in dogs. Anesthesiology 57:285–288.
  • A. Azar, H. J. Trochimowicz, J. B. Terrill, and L. S. Mullin. (1973). Blood levels of fluorocarbon related to cardiac sensitization. Am. Ind. Hyg. Assoc. J. 34:102–109.
  • A. Barbuti, S. Ishii, T. Shimizu, R. B. Robinson, and S. J. Feinmark. (2002). Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. Am. J. Physiol. 282:H2024–H2030.
  • M. Bass. (1970). Sudden sniffing death. J. Am. Med. Assoc. 212:2075–2079.
  • P. S. Beck, D. G. Clark, and D. J. Tinston. (1973). The pharmacologic actions of bromochlorodifluoromethane (BCF). Toxicol. Appl. Pharmacol. 24:20–29.
  • M. J. Beckstead, R. Phelan, and S. J. Mihic. (2001). Antagonism of inhalant and volatile anesthetic enhancement of glycine receptor function. J. Biol. Chem. 276:24959–24964.
  • M. J. Beckstead, J. L. Weiner, E. I. Eger, D. H. Gong, and S. J. Mihic. (2000). Glycine and γ -aminobutyric acidA receptor function is enhanced by inhaled drugs of abuse. Mol. Pharmacol. 57:1199–1205.
  • G. Boachie-Ansah, K. A. Kane, and J. R. Parratt. (1989). Cardiac electrophysiological effects of isoprenaline, phenylephrine, and noradrenaline on normal and mildly “ischaemic” sheep Purkinje fibers. J. Cardiovasc. Pharmacol. 13:291–298.
  • M. Böhm, U. Schmidt, P. Gierschik, R. H.G. Schwinger, S. Böhm, and E Erdmann. (1994). Sensitization of adenylate cyclase by halothane in human myocardium and S49 lymphoma wild-type and cyc− cells: Evidence for inactivation of the inhibitory G protein Giα. Mol. Pharmacol. 45:380–389.
  • M. Böhm, U. Schmidt, R. H.G. Schwinger, S. Böhm, and E. Erdmann. (1993). Effects of halothane on β -adrenoceptors and M-cholinoceptors in human myocardium: Radioligand binding and functional studies. J. Cardiovasc. Pharmacol. 21:296–304.
  • Z. J. Bosnjak, F. D. Supan, and N. J. Rusch. (1991). The effects of halothane, enflurane, and isoflurane on calcium current in isolated canine ventricular cells. Anesthesiology 74:340–345.
  • T. Breindahl. (2000). Therapeutic drug monitoring of flecainide in serum using high-performance liquid chromatography and electronspray mass spectrometry. J. Chromatogr. B 746:249–254.
  • W. J. Brock, G. M. Rusch, and H. J. Trochimowicz. (2003). Cardiac sensitization: Methodology and interpretation in risk assessment. Regul. Toxicol. Pharmacol. 38:78–90.
  • W. J. Brock, H. J. Trochimowicz, R. J. Millischer, C. Farr, T. Kawano, and G. M. Rusch. (1995). Acute and subchronic toxicity of 1,1-dichloro-1-fluoroethane (HCFC-141b). Food Chem. Toxicol. 33:483–490.
  • E. Brode, H. Müller-Peltzer, and M. Hollmann. (1988). Comparative pharmacokinetics and clinical pharmacology of propafenone enantiomers after oral administration to man. Methods Find. Exp. Clin. Pharmacol. 10:717–27.
  • B. R. Brown, E. N. Tatum, and J. R. Crout. (1972). The effects of inhalation anesthetics on the uptake and metabolism of 1-3H-norepinephrine in guinea-pig atria. Anesthesiology 36:263–267.
  • J. Buss, H. Neuss, Y. Bilgin, and M. Schlepper. (1985). Malignant ventricular tachyarrhythmias in association with propafenone treatment. Eur. Heart J. 6:424–428.
  • D. S. Calkins, J. J. Degioanni, M. N. Tan, J. R. Davis, and D. L. Pierson. (1993). Human performance and physiological function during a 24-hr exposure to 1% bromotrifluoromethane (halon 1301). Fundam. Appl. Toxicol. 20:240–247.
  • J. A. Campagna, K. W. Miller, and S. A. Forman. (2003). Mechanisms of actions of inhaled anesthetics. N. Engl. J. Med. 348:2110–2124.
  • M. D. Carceles, M. L. Laorden, J. Hernandez, F. S. Miralles, and M. Campos. (1990). Halothane, isoflurane and enflurane potentiate the effect of noradrenaline on ventricular automaticity in the rat heart: evidence of the involvement of both α-or β -adrenoceptors. J. Pharm. Pharmacol. 42:186–190.
  • V. L. Carter, K. C. Back, and D. N. Farrer. (1970). The effect of bromotrifluoromethane on operant behaviour in monkeys. Toxicol. Appl. Pharmacol. 17:648–655.
  • X. Chen, J. S. Cordes, J. A. Bradley, Z. Q. Sun, and J. Zhou. (2006). Use of arterially perfused rabbit ventricular wedge in predicting arrhythmogenic potentials of drugs. J. Pharmacol. Toxicol. Methods 54:261–272.
  • X. D. Chen, M. Yamakage, Y. Yamada, N. Tohse, and A. Mamiki. (2002). Inhibitory effects of volatile anesthetics on currents produced on heterologous expression of KvLQT1 and minK in Xenopus oocytes. Vasc. Pharmacol. 39:33–38.
  • L. S. Chen, S. M. Zhou, M. C. Fishbein, and P. S. Chen. (2007). New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J. Cardiovasc. Electrophysiol. 18:123–127.
  • J. S. Chiou, P. R. Krishna, H. Kamaya, and I. Ueda. (1992). Alcohols dehydrate lipid membranes: an infrared study on hydrogen bonding. Biochim. Biophys. Acta 1110:225–233.
  • Y. H. Chou, J. Wei, and C. Lin. (1991). Halothane inhibits residual fast sodium channels in human atrial muscle. Anesthesiology 75:716–717.
  • L. D. Claborn, and M. Szabuniewicz. (1973). Prevention of chloroform and thiobarbiturate cardiac sensitization to catecholamines in dogs. Am. J. Vet. Res. 34:801–804.
  • D. G. Clark, and D. J. Tinston. (1973). Correlation of the cardiac sensitization potential of halogenated hydrocarbons with their physicochemical properties. Br. J. Pharmacol. 49:355–357.
  • D. G. Clark, and D. J. Tinston. (1982). Acute inhalation toxicity of some halogenated and non-halogenated hydrocarbons. Hum. Toxicol. 1:239–247.
  • T. J. Colatsky, C. H. Follmer, and C. F. Starmer. (1990). Channel specificity in antiarrhythmic drug action. Mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation 82:2235–2242.
  • J. H. Coote. (2007). Landmarks in understanding the central nervous control of the cardiovascular system. Exp. Physiol. 92:3–18.
  • A. M. Correa. (1998). Gating kinetics of shaker K+ channels are differentially modified by general anesthetics. Am. J. Physiol. 275:C1009–C1021.
  • P. F. Cranefield. (1977). Action potentials, afterpotentials, and arrhythmias. Circ. Res. 41:415–423.
  • S. L. Cruz, R. L. Balster, and J. J. Woodward. (2000). Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Br. J. Pharmacol. 131:1303–1308.
  • S. Daniels, and E. B. Smith. (1993). Effects of general anaesthetics on ligand-gated ion channels. Br. J. Anaesth. 71:59–64.
  • L. A. Davies, P. M. Hopkins, M. R. Boyett, and S. M. Harrison. (2000). Effects of halothane on the transient outward K+ current in rat ventricular myocytes. Br. J. Pharmacol. 131:223–230.
  • W. Dekant. (1996). Toxicology of chlorofluorocarbon replacements. Environ. Health Perspect. 104 (suppl. 1):75–83.
  • C. Delgado, J. Tamargo, and T. Tejerina. (1985). Electrophysiological effects of propafenone in untreated and propafenone-pretreated guinea-pig atrial and ventricular muscle fibres. Br. J. Pharmacol. 86:765–775.
  • E. Delpon, C. Valenzuela, O. Perez, O. Casis, and J. Tamargo. (1995). Propafenone preferentially blocks the rapidly activating component of delayed rectifier K+ current in guinea-pig ventricular myocytes: Voltage-independent and time-dependent block of the slowly activating component. Circ. Res. 76:223–235.
  • J. E. Dildy-Mayfield, E. I. Eger, and R. A. Harris. (1996). Anesthetics produce subunit-selective actions on glutamate receptors. J. Pharmacol. Exp. Ther. 276:1058–1065.
  • C. T. Dollery. (1973). Absorption and fate of isoproterenol and fluorocarbons inhaled from pressurized aerosols. Ann. Allergy 31:25–30.
  • D. L. Downie, F. Vicente-Agullo, A. Campos-Caro, T. J. Bushell, W. R. Lieb, and N. P. Franks. (2002). Determinants of the anesthetic sensitivity of neuronal nicotinic acetylcholine receptors. J. Biol. Chem. 277:10367–10373.
  • D. Duan, B. Fermini, and S. Nattel. (1993). Potassium channel blocking properties of propafenone in rabbit atrial myocytes. J. Pharmacol. Exp. Ther. 264:1113–1123.
  • ECETOC. (1994). 1,1-Dichloro–1-fluoroethane (HCFC-141b). Joint Assess. Commod. Chem. 29:1–46.
  • ECETOC. (1994). Pentafluoroethane (HFC-125). Joint Assess. Commod. Chem. 24:1–35.
  • ECETOC. (1995). Difluoromethane (HFC-32). Joint Assess. Commod. Chem. 32:1–23.
  • ECETOC. (2004). 1-Chloro-1,2,2,2-tetrafluoroethane (HCFC-124). Joint Assess. Commod. Chem. 46:1–52.
  • ECETOC. (2005). 1,1-Dichloro-2,2,2-trifluoroethane (HCFC-123). Joint Assess. Commod. Chem. 47:1–101.
  • ECETOC. (2006). 1,1,1,2-Tetrafluoroethane (HFC-134a). Joint Assess. Commod. Chem. 50:1–79.
  • C. Edling, C. G. Ohlson, G. Ljungkvist, A. Oliv, and B. Söderholm. (1990). Cardiac arrhythmia in refrigerator repairmen exposed to fluorocarbons. Br. J. Ind. Med. 47:207–212.
  • G. M. Egeland, T. F. Bloom, T. M. Schnorr, R. W. Hornung, A. J. Suruda, and K. K. Wille. (1992). Fluorocarbon 113 exposure and cardiac dysrhythmias among aerospace workers. Am. J. Ind. Med. 22:851–857.
  • J. R. Elliott, A. A. Elliott, A. A. Harper, and J. P. Winpenny. (1992). Effects of general anaesthetics on neuronal sodium and potassium channels. Gen. Pharmacol. 23:1005–1011.
  • M. K. Ellis, R. Trebilcock, J. L. Naylor, K. Tseung, M. A. Collins, P. M. Hext, and T. Green. (1996). The inhalation toxicology, genetic toxicology, and metabolism of difluoromethane in the rat. Fundam. Appl. Toxicol. 31:243–251.
  • E. A. El-Maghrabi, R. G. Eckenhoff, and H. Shuman. (1992). Saturable binding of halothane to rat brain synaptosomes. Proc. Natl. Acad. Sci. USA 89:4329–4332.
  • H. H. Emmen, E. M.G, Hoogendijk, W. A.A. Klöpping-Ketelaars, H. Muijser, E. Duistermaat, J. C. Ravensberg, D. J. Alexander, D. Borkhataria, G. M. Rusch, and B. Schmit. (2000). Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a° (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3,3-heptafluoropropane) following whole-body exposure. Regul. Toxicol. Pharmacol. 32:22–35.
  • G. L. Engel. (1971). Sudden and rapid death during psychological stress. Folklore or folk wisdom?. Ann. Int. Med. 74:771–782.
  • H. Eskinder, N. J. Rusch, F. D. Supan, J. P. Kampine, and Z. J. Bosnjak. (1991). The effect of volatile anesthetics on L- and T-type calcium channel currents in canine cardiac Purkinje cells. Anesthesiology 74:919–926.
  • H. Eskinder, F. D. Supan, L. A. Turner, J. P. Kampine, and Z. J. Bosnjak. (1993). The effects of halothane and isoflurane on slowly inactivating sodium current in canine cardiac Purkinje cells. Anesth. Analg. 77:32–37.
  • M. D. Esler, M. Alvarenga, G. Lambert, D. Kaye, J. Hastings, G. Jennings, M. Morris, R. Schwarz, and J. Richards. (2004). Cardiac sympathetic nerve biology and brain monoamine turnover in panic disorder. Ann. NY Acad. Sci. 1018:505–514.
  • M. Esler, M. Alvarenga, C. Pier, J. Richards, A. El-Osta, D. Barton, D. Haikerwal, D. Kaye, M. Schlaich, L. Guo, G. Jennings, F. Socratous, and G. Lambert. (2006). The neuronal noradrenaline transporter, anxiety and cardiovascular disease. J. Psychopharmacol. 20 (suppl):60–66.
  • N. A. Estes, H. Garan, and J. N. Ruskin. (1984). Electrophysiologic properties of flecainide acetate. Am. J. Cardiol. 53:26B–29B.
  • L. Fei, J. S. Gill, W. J. McKenna, and J. Camm. (1993). Effects of propafenone on calcium currents in single ventricular myocytes of guinea-pig. Br. J. Pharmacol. 109:178–182.
  • R. J. Flanagan, M. Ruprah, T. J. Meredith, and J. D. Ramsey. (1990). An introduction to the clinical toxicology of volatile substances. Drug Safety 5:359–383.
  • C. H. Follmer, and T. J. Colatsky. (1990). Block of delayed rectifier potassium current, IK, by flecainide and E-4031 in cat ventricular myocytes. Circulation 82:289–293.
  • C. H. Follmer, C. A. Cullinan, and T. J. Colatsky. (1992). Differential block of cardiac delayed rectifier current by class Ic antiarrhythmic drugs: Evidence for open channel block and unblock. Cardiovasc. Res. 26:1121–1130.
  • N. P. Franks, and W. R. Lieb. (1984). Do general anaesthetics act by competitive binding to specific receptors?. Nature 310:599–601.
  • N. P. Franks, and W. R. Lieb. (1988). Volatile general anesthetics activate a novel neuronal K+ current. Nature 333:662–664.
  • N. P. Franks, and W. R. Lieb. (1991). Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 254:427–430.
  • N P Franks, and W. R. Lieb. (1993). Selective actions of volatile general anaesthetics at molecular and cellular levels. Br. J. Anaesth. 71:65–76.
  • N. P. Franks, and W. R. Lieb. (1994). Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614.
  • L. C. Freeman, and W. W. Muir. (1991a). Effects of halothane on impulse propagation in Purkinje fibers and at Purkinje–muscle junctions: Relationship of Vmax to conduction velocity. Anesth. Analg. 72:5–10.
  • L. C. Freeman, and W. W. Muir. (1991b). α -Adrenoceptor stimulation in the presence of halothane: effects on impulse propagation in cardiac Purkinje fibers. Anesth. Analg. 72:11–17.
  • H. Fujikawa, Y. Sato, H. Arakawa, T. Mitsuhashi, K. Minezaki, S. Kuroki, H. Sekiguchi, T. Nakayama, U. Ikeda, and K. Shimada. (1998). Induction of Torsades de Pointes by dobutamine infusion in a patient with idiopathic long QT syndrome. Int. Med. 37:149–152.
  • H. Fujita, T. Ogura, M. Tamagawa, H. Uemura, T. Sato, A. Ishida, M. Imamaki, F. Kimura, M. Miyazaki, and H. Nakaya. (2006). A key role for the subunit SUR2B in the preferential activation of vascular KATP channels by isoflurane. Br. J. Pharmacol. 149:573–580.
  • C. Funck-Brentano, H. K. Kroemer, J. T. Lee, and D. M. Roden. (1990). Propafenone. N. Engl. J. Med. 322:518–525.
  • J. D. Gallagher, S. N. Weindling, G. Anderson, and M. P. Fillinger. (1998). Effects of sevoflurane on QT interval in a patient with congenital long QT syndrome. Anesthesiology 89:1569–1573.
  • R. S. Gomez, and C. Guatimosim. (2003). Mechanism of action of volatile anesthetics: Involvement of intracellular calcium signaling. Curr. Drug Targets CNS Neurol. Disord. 2:123–129.
  • A. O. Grant, and J. Tranquillo. (2007). Action potential and QT prolongation not sufficient to cause Torsades de Pointes: Role of action potential triangulation. J. Cardiovasc. Electrophysiol. 18:204–205.
  • A. Groppi, A. Polettini, P. Lunetta, G. Achille, and M. Montagna. (1994). A fatal case of trichlorofluoromethane (Freon 11) poisoning. Tissue distribution study by gas chromatography-mass spectrometry. J. Forens. Sci. 39:871–876.
  • M. Gruss, T. J. Bushell, D. P. Bright, W. R. Lieb, A. Mathie, and N. P. Franks. (2004). Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol. Pharmacol. 65:443–452.
  • S. Gunnare, L. Ernstgard, B. Sjögren, and G. Johanson. (2006). Toxicokinetics of 1,1,1,2-tetrafluoroethane (HFC–134a) in male volunteers after experimental exposure. Toxicol. Lett. 167:54–65.
  • D. Guo, X. J. Zhao, Y. Wu, T. X. Liu, P. R. Kowey, and G. X. Yan. (2007). L-type calcium current reactivation contributes to arrhythmogenesis associated with action potential triangulation. J. Cardiovasc. Electrophysiol. 18:196–203.
  • R. L. Hamlin, C. A. Cruze, S. W. Mittelstadt, A. Kijtawornrat, B. W. Keene, B. M. Roche, T. Nakayama, H. Nakayama, D. M. Hamlin, and T. Arnold. (2004). Sensitivity and specificity of isolated perfused guinea-pig heart to test for drug-induced lengthening of QTc. J. Pharmacol. Toxicol. Methods 49:15–23.
  • J. C. Hancox, and J. S. Mitcheson. (1997). Inhibition of L-type calcium current by propafenone in single myocytes isolated from the rabbit atrioventricular node. Br. J. Pharmacol. 121:7–14.
  • P. Hantson, O. Vandenplas, A. Dive, and P. Mahieu. (1990). Trichloroethylene and cardiac toxicity: report of two consecutive cases. Acta Clin. Belg. 45:34–37.
  • Goodman & Gilman's The Pharmacological Basis of Therapeutics J. G. Hardman, A. Goodman-Gilman, and L. E. Limbird. McGraw-Hill, New York, (1995).
  • D. W. Harron, and R. N. Brogden. (1987). Propafenone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in the treatment of arrhythmias. Drugs 34:617–647.
  • K. Hashimoto, and K. Hashimoto. (1972). The mechanism of sensitization of the ventricle to epinephrine by halothane. Am. Heart J. 83:652–658.
  • Y. Hayashi, K. Sumikawa, A. Yamatodani, C. Tashiro, H. Wada, and I. Yoshiya. (1989). Myocardial sensitization by thiopental to arrhythmogenic action of epinephrine in dogs. Anesthesiology 71:929–935.
  • Y. Hayashi, K. Sumikawa, A. Yamatodani, T. Kamibayashi, M. Kuro, and I. Yoshiya. (1991). Myocardial epinephrine sensitization with subanesthetic concentrations of halothane in dogs. Anesthesiology 74:134–137.
  • A. R. Hede, B. C. Berglund, and C. Post. (1987). Trichloroethylene and halothane inhibit uptake and metabolism of 5-hydroxytryptamine in rat lung slices. Pharmacol. Toxicol. 61:191–194.
  • A. R. Hede, and C. Post. (1982). Trichloroethylene and halothane inhibit uptake of 5-hydroxytryptamine in the isolated perfused rat lung. Biochem. Pharmacol. 31:353–358.
  • K. J. Hellestrand, R. S. Bexton, A. W. Nathan, R. A. Spurrell, and A. J. Camm. (1982). Acute electrophysiological effects of flecainide acetate on cardiac conduction and refractoriness in man. Br. Heart J. 48:140–148.
  • J. Hescheler, M. Halbach, U. Egert, Z. J. Lu, H. Bohlen, B. K. Fleischmann, and M. Reppel. (2004). Determination of electrical properties of ES cell-derived cardiomyocytes using MEAs. J. Electrocardiol. 37 (suppl):110–116.
  • C. Heurteaux, N. Guy, C. Laigle, N. Blondeau, F. Duprat, M. Mazzuca, L. Lang-Lazdunski, C. Widmann, M. Zanzouri, G. Romey, and M. Lazdunski. (2004). TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 23:2684–2695.
  • J. T.Y. Hii, G. Wyse, A. M. Gillis, J. M. Cohen, and L. B. Mitchell. (1991). Propafenone-induced Torsades de Pointes: Cross-reactivity with quinidine. Pacing Clin. Electrophysiol. 14:1568–1570.
  • K. Hirota, Y. Ito, S. Kuze, and Y. Momose. (1992). Effects of halothane on electrophysiologic properties and cyclic adenosine 3′,5′-monophosphate content in isolated guinea-pig hearts. Anesth. Analg. 74:564–569.
  • K. Hirota, Y. Ito, A. Masuda, and Y. Momose. (1989). Effects of halothane on membrane ionic currents in guinea-pig atrial and ventricular myocytes. Acta Anaesthesiol. Scand. 33:239–244.
  • L. M. Hondeghem. (2007). Relative contributions of TRIaD and QT to proarrhythmia. J. Cardiovasc. Electrophysiol. 18:655–657.
  • L. M. Hondeghem, and P. Hoffmann. (2003). Blinded test in isolated female rabbit heart reliably identifies action potential duration prolongation and proarrhythmic drugs: Importance of triangulation, reverse use-dependence, and instability. J. Cardiovasc. Pharmacol. 41:14–24.
  • L. M. Hondeghem, H. R. Lu, K. van Rossem, and F. De Clerck. (2003). Detection of proarrhythmia in the female rabbit heart: Blinded validation. J. Cardiovasc. Electrophysiol. 14:287–294.
  • H. Honjo, T. Watanabe, K. Kamiya, I. Kodama, and J. Toyama. (1989). Effects of propafenone on electrical and mechanical activities of single ventricular myocytes isolated from guinea-pig hearts. Br. J. Pharmacol. 97:731–738.
  • R. Hüneke, J. Fassl, R. Rossaint, and A. Lückhof. (2004). Effects of volatile anesthetics on cardiac ion channels. Acta Anaesthesiol. Scand. 48:547–561.
  • ICH, and ICH guideline S7B (CPMP/ICH/423/02). The nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. (2005) http://www.emea.europa.eu/pdfs/human/ich/042302en.pdf.
  • Y. Ikemoto, A. Yatani, Y. Imoto, and H. Arimura. (1986). Reduction in the myocardial sodium current by halothane and thiamylal. Jpn. J. Physiol. 36:107–121.
  • Z. Jiao, V. R. de Jesus, S. Iravanian, D. P. Campbell, J. Xu, J. A. Vitali, K. Banach, J. Fahrenbach, and S. C. Dudley. (2006). A possible mechanism of halocarbon-induced cardiac sensitization arrhythmias. J. Mol. Cell. Cardiol. 41:698–705.
  • J. S. Johansson. (1998). Fatal intoxication with 1,1-dichloro = 1-fluoroethane. N. Engl. J. Med. 338:201–202.
  • R. R. Johnston, E. I. Eger, and C. Wilson. (1976). A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth. Analg. 55:709–712.
  • P. M. Joksovic, D. A. Bayliss, and S. M. Todorovic. (2005). Different kinetic properties of two T-type Ca2 + currents of rat reticular thalamic neurones and their modulation by ebflurane. J. Physiol. (Lond.) 566:125–142.
  • R. Jurd, M. Arras, S. Lambert, B. Drexler, R. Siegwart, F. Crestani, M. Zaugg, K. E. Vogt, B. Ledermann, B. Antkowiak, and U. Rudolph. (2003). General anesthetic actions in-vivo strongly attenuated by a point mutation in the GABAA receptor β 3 subunit. FASEB J. 17:250–252.
  • G. L. Kamatchi, M. E. Durieux, and C. Lynch. (2001). Differential sensitivity of expressed L-type calcium channels and muscarinic M1 receptors to volatile anesthetics in Xenopus oocytes. J. Pharmacol. Exp. Ther. 297:981–990.
  • K. Kameyama, K. Aono, and K. Kitamura. (1999). Isoflurane inhibits neuronal Ca2 + channels through enhancement of current inactivation. Br. J. Anaesth. 82:402–411.
  • K. Kamiya, R. Kannan, A. Matin-Asgari, and B. N. Singh. (1989). Electrophysiologic effects of flecainide relative to serum and tissue concentrations in rabbits after chronic drug administration. J. Cardiovasc. Pharmacol. 14:25–30.
  • J. Kang, W. P. Reynolds, X. L. Chen, J. Ji, H. Wang, and D. E. Rampe. (2006). Mechanisms underlying the QT interval-prolonging effects of sevoflurane and its interactions with other QT-prolonging drugs. Anesthesiology 104:1015–1022.
  • H. S. Karagueuzian, T. Fujimoto, T. Katoh, T. Peter, A. McCullen, and W. J. Mandel. (1982). Suppression of ventricular arrhythmias by propafenone, a new antiarrhythmic agent, during acute myocardial infarction in the conscious dog. A comparative study with lidocaine. Circulation 66:1190–1198.
  • A. N. Katchman, J. Koerner, T. Tosaka, R. L. Woosley, and S. N. Ebert. (2006). Comparative evaluation of hERG currents and QT intervals following challenge with suspected torsadogenic and nontorsadogenic drugs. J. Pharmacol. Exp. Ther. 316:1098–106.
  • D. Katritsis, E. Rowland, S. O'Nunain, C. F. Shakespeare, J. Poloniecki, and A. J. Camm. (1995). Effect of flecainide on atrial and ventricular refractoriness and conduction in patients with normal left ventricle. Implications for possible antiarrhythmic and proarrhythmic mechanisms. Eur. Heart J. 16:1930–1935.
  • R. L. Katz, and G. J. Katz. (1966). Surgical infiltration of pressor drugs and their interaction with volatile anaesthetics. Br. J. Anaesth. 38:712–718.
  • J. D. Kaufman, M. S. Morgan, M. L. Marks, H. L. Greene, and L. Rosenstock. (1992). A study of the cardiac effects of bromochlorodifluoromethane (halon 1211) exposure during exercise. Am. J. Ind. Med. 21:223–233.
  • J. D. Kaufman, M. A. Silverstein, and R. Moure-Eraso. (1994). Atrial fibrillation and sudden death related to occupational solvent exposure. Am. J. Ind. Med. 25:731–735.
  • I. Kawachi, G. A. Colditz, A. Ascherio, E. B. Rimm, E. Giovannucci, M. J. Stampfer, and W. C. Willett. (1994a). Prospective study of phobic anxiety and risk of coronary heart disease in men. Circulation 89:1992–1997.
  • I. Kawachi, D. Sparrow, P. S. Vokonas, and S. T. Weiss. (1994b). Symptoms of anxiety and risk of coronary heart disease. The normative aging study. Circulation 90:2225–2229.
  • T. Kawano, H. J. Trochimowicz, G. Malinverno, and G. M. Rusch. (1995). Toxicological evaluation of 1,1,1,2,2-pentafluoroethane (HFC–125). Fundam. Appl. Toxicol. 28:223–231.
  • K. Keller, G. Meyer-Estorf, O. A. Beck, and H. Hochrein. (1978). Correlation between serum concentration and pharmacological effect on atrioventricular conduction time of the antiarrhythmic drug propafenone. Eur. J. Clin. Pharmacol. 13:17–20.
  • G. S. King, J. E. Smialek, and W. G. Troutman. (1985). Sudden death in adolescents resulting from the inhalation of typewriter correction fluid. J. Am. Med. Assoc. 253:1604–1606.
  • A. Kitamura, W. Marszalec, J. Z. Yeh, and T. Narahashi. (2003). Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J. Pharmacol. Exp. Ther. 304:162–171.
  • M. Kohlhardt, and C. Seifert. (1980). Inhibition of Vmax of the action potential by propafenone and its voltage-, time- and pH-dependence in mammalian ventricular myocardium. Naunyn-Schmiedeberg's Arch. Pharmacol. 315:55–62.
  • H. Konietzko, and I. Elster. (1973). Toxic effects on heart of trichloroethylene. Arch. Toxikol. 31:93–98.
  • A. Koreeda, K. Yonemitsu, S. Mimasaka, Y. Ohtsu, and S. Tsunenari. (2007). An accidental death due to Freon 22 (monochlorodifluoromethane) inhalation in a fishing vessel. Forens. Sci. Int. 168:208–211.
  • M. D. Krasowski, and N. L. Harrison. (1999). General anaesthetic actions on ligand-gated ion channels. Cell. Mol. Life Sci. 55:1278–1303.
  • T. Kubota, and A. Miyata. (2005). Acute inhalational exposure to chlorodifluoromethane (Freon-22): A report of 43 cases. Clin. Toxicol. 43:305–308.
  • E. Kuenszberg, A. Loeckinger, A. Kleinsasser, K. H. Lindner, F. Puehringer, and C. Hoermann. (2000). Sevoflurane progressively prolongs the QT interval in unpremedicated female adults. Eur. J. Anaesthesiol. 17:662–664.
  • A. H. Kulier, L. A. Turner, S. Vodanovic, S. Contney, D. A. Lathrop, and Z. J. Bosnjak. (2000). Multiple agents potentiate α1-adrenoceptor-induced conduction depression in canine cardiac Purkinje fibers. Anesthesiology 92:1713–1721.
  • C. W. Lam, F. W. Weir, K. Williams-Cavender, M. N. Tan, T. J. Galen, and D. L. Pierson. (1993). Toxicokinetics of inhaled bromotrifluoromethane (halon 1301) in human subjects. Fundam. Appl. Toxicol. 20:231–239.
  • Y. Lerman, E. Winkler, M. S. Tirosh, Y. Danon, and S. Almog. (1991). Fatal accidental inhalation of bromochlorodifluoromethane (halon 1211). Hum. Exp. Toxicol. 10:125–128.
  • F. Lesage. (2003). Pharmacology of neuronal background potassium channels. Neuropharmacology 44:1–7.
  • Y. Lessard, J. J. Callec, and G. Paulet. (1980). Action du difluorodichloromethane (FC-12) sur l'activite electrique cardiaque de mammifere au niveau cellulaire. C. R. Seances Soc. Biol. Fil. 174:52–57.
  • Y. Lessard, S. Desbrousses, and G. Paulet. (1977). Arythmie cardiaque chez le chien sous l'action de l'adrenaline et du difluorodichloromethane (FC-12). C. R. Seances Soc. Biol. Fil. 171:1270–1282.
  • Y. Lessard, and G. Paulet. (1985). Mechanism of liposoluble drugs and general anesthetics membrane action: Action of difluorodichloromethane (FC-12) on different types of cardiac fibers isolated from sheep hearts. Cardiovasc. Res. 19:465–473.
  • Y. Lessard, and G. Paulet. (1986). A proposed mechanism for cardiac sensitization: Electrophysiological study of effects of difluorodichloromethane and adrenaline on different types of cardiac preparations isolated from sheep hearts. Cardiovasc. Res. 20:807–815.
  • A. M. Linden, M. I. Aller, E. Leppä, O. Vekovischeva, T. Aitta-aho, M. L. Veale, A. Mathie, P. Rosenberg, W. Wisden, and E. R. Korpi. (2006). The in-vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the α2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J. Pharmacol. Exp. Ther. 317:615–626.
  • R. Lingamaneni, and H. C. Hemmings. (2003). Differential interaction of anaesthetics and antiepileptic drugs with neuronal Na+ channels, Ca2 + channels, and GABAA receptors. Br. J. Anaesth. 90:199–211.
  • B. Lown, and M. Wolf. (1971). Approaches to sudden death from coronary heart disease. Circulation 44:130–142.
  • H. K. Lui, G. Lee, P. Dietrich, R. I. Low, and D. T. Mason. (1982). Flecainide-induced QT prolongation and ventricular tachycardia. Am. Heart J. 103:567–569.
  • G. S. Lysko, J. L. Robinson, R. Casto, and R. A. Ferrone. (1994). The stereospecific effects of isoflurane isomers in-vivo. Eur. J. Pharmacol. 263:25–29.
  • G. Malfatto, A. Zaza, M. Forster, B. Sodowick, P. Danilo, and M. R. Rosen. (1988). Electrophysiologic, inotropic and antiarrhythmic effects of propafenone, 5-hydroxypropafenone and N-depropylpropafenone. J. Pharmacol. Exp. Ther. 246:419–426.
  • M. Maze, and C. M. Smith. (1983). Identification of receptor mechanism mediating epinephrine-induced arrhythmias during halothane anesthesia in the dog. Anesthesiology 59:322–326.
  • T. S. McDowell, J. J. Pancrazio, P. Q. Barrett, and C. Lynch. (1999). Volatile anesthetic sensitivity of T-type calcium currents in various cell types. Anesth. Analg. 88:168–173.
  • J. Mergenthaler, W. Haverkamp, A. Hüttenhofer, B. V. Skryabin, U. Musshoff, M. Borggrefe, E. J. Speckmann, G. Breithardt, and M. Madeja. (2001). Blocking effects of the antiarrhythmic drug propafenone on the hERG potassium channel. Naunyn-Schmiedeberg's Arch. Pharmacol. 363:472–480.
  • S. Metz, and M. Maze. (1985). Halothane concentration does not alter the threshold for epinephrine-induced arrhythmias in dogs. Anesthesiology 62:470–474.
  • T. Meyer, K. H. Boven, E. Günther, and M. Fejtl. (2004). Micro-electrode arrays in cardiac safety pharmacology. A novel tool to study QT interval prolongation. Drug Safety 27:763–772.
  • S. J. Mihic, Q. Ye, M. J. Wick, V. V. Koltchine, M. D. Krasowski, S. E. Finn, M. P. Mascia, C. F. Valenzuela, K. K. Hanson, E. P. Greenblatt, R. A. Harris, and N. L. Harrison. (1997). Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385–389.
  • P. Milberg, E. Hilker, S. Ramtin, Y. Cakir, J. Stypmann, M. A. Engelen, G. Mönnig, N. Osada, G. Breithardt, W. Haverkamp, and L. Eckardt. (2007). Proarrhythmia as a class effect of quinolones: Increased dispersion of repolarization and triangulation of action potential predict Torsades de Pointes. J. Cardiovasc. Electrophysiol. 18:647–654.
  • D. J. Miletich, A. Khan, R. F. Albrecht, and A. Jozefiak. (1983). Use of heart cell cultures as a tool for the evaluation of halothane arrhythmia. Toxicol. Appl. Pharmacol. 70:181–187.
  • U. Mohamed, C. Napolitano, and S. G. Priori. (2007). Molecular and electrophysiological bases of catecholaminergic polymorphic ventricular tachycardia. J. Cardiovasc. Electrophysiol. 18:791–797.
  • M. A. Moore, R. B. Weiskopf, E. I. Eger, and C. Wilson. (1993). Arrhythmogenic doses of epinephrine are similar during desflurane or isoflurane anesthesia in humans. Anesthesiology 79:943–947.
  • L. S. Mullin, C. F. Reinhardt, and R. E. Hemingway. (1979). Cardiac arrhythmias and blood levels associated with inhalation of Halon 1301. Am. Ind. Hyg. Assoc. J. 40:653–658.
  • H. Naito, and C. N. Gillis. (1968). Anesthetics and response of atria to sympathetic nerve stimulation. Anesthesiology 29:259–266.
  • S. Nakao, H. Hirata, and Y. Kagawa. (1989). Effects of volatile anesthetics on cardiac calcium channels. Acta Anaesthesiol. Scand. 33:326–330.
  • A. W. Nathan, K. J. Hellestrand, R. S. Bexton, R. A. Spurrell, and A. J. Camm. (1985). The proarrhythmic effects of flecainide. Drugs 29 (Suppl. 4):45–53.
  • S. Nattel, and L. Carlsson. (2006). Innovative approaches to anti-arrhythmic drug therapy. Nat. Rev. Drug Discov. 5:1034–1049.
  • R. Navarro, R. B. Weiskopf, M. A. Moore, S. Lockhart, E. I. Eger, D. Koblin, G. Lu, and C. Wilson. (1994). Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology 80:545–549.
  • S. H. Ngai, P. M. Diaz, and S. Ozer. (1969). The uptake and release of norepinephrine: Effects of cyclopropane and halothane. Anesthesiology 31:45–52.
  • E. Niggli, A. Rüdisüli, P. Maurer, and R. Weingart. (1989). Effects of general anesthetics on current flow across membranes in guinea-pig myocytes. Am. J. Physiol. 256:C273–C281.
  • I. M. Nikoronov, T. J.J. Blanck, and E. Recio-Pinto. (1998). The effects of halothane on single human neuronal L-type calcium channels. Anesth. Analg. 86:885–895.
  • M. Okuda, I. Kunitsugu, S. Kobayakawa, and T. Hobara. (2001). Inhibitory effect of 1,1,1-trichloroethane on calcium channels of neurons. J. Toxicol. Sci. 26:169–176.
  • M. Otsuka. (1958). Die Wirkung von Adrenalin auf Purkinje-Fasern von Säugetierherzen. Pfluegers Arch. 266:512–517.
  • J. J. Pancrazio. (1996). Halothane and isoflurane preferentially depress a slowly inactivating component of Ca2 + channel current in guinea-pig myocytes. J. Physiol. (Lond.) 494:91–103.
  • A. J. Patel, E. Honore, F. Lesage, M. Fink, G. Romey, and M. Lazdunski. (1999). Inhalational anesthetics activate two-pore-domain background K+ channels. Nat/Neurosci. 2:422–426.
  • M. K. Patel, D. Mistry, J. E. JohnIII, and J. P. Mounsey. (2000). Sodium channel isoform-specific effects of halothane: Protein kinase C coexpression and slow inactivation gating. Br. J. Pharmacol. 130:1785–1792.
  • A. A. Paul, H. J. Witchel, and J. C. Hancox. (2002). Inhibition of the current of heterologously expressed HERG potassium channels by flecainide and comparison with quinidine, propafenone and lignocaine. Br. J. Pharmacol. 136:717–729.
  • G. Paulet, and Y. Lessard. (1975). The effect of difluorodichloromethane (FC-12) on isolated rat and rabbit heart. C. R. Seances Soc. Biol. Fil. 169:1048–1053.
  • F. Pillekamp, M. Reppel, K. Brockmeier, and J. Hescheler. (2006). Impulse propagation in late-stage embryonic and neonatal murine ventricular slices. J. Electrocardiol. 39:425.e1–425.e4.
  • S. G. Priori, and P. B. Corr. (1990). Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am. J. Physiol. 258:H1796–H1805.
  • R. M. Puttick, and D. A. Terrar. (1992). Effects of propofol and enflurane on action potentials, membrane currents and contration of guinea-pig isolated ventricular myocytes. Br. J. Pharmacol. 107:559–565.
  • K. S. Ramos, E. Chacon, and D. Acosta. Toxic responses of the heart and vascular systemCasarett & Doull's Toxicology. The Basic Science of Poisons C. D. Klaassen. McGraw-Hill, New York, (1996) 487–527.
  • L. Ratnakumari, and H. C. Hemmings. (1998). Inhibition of presynaptic sodium channels by halothane. Anesthesiology 88:1043–1054.
  • L. Ratnakumari, T. N. Vysotskaya, D. S. Duch, and H. C. Hemmings. (2000). Differential effects of anesthetic and non-anesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology 92:529–541.
  • W. S. Redfern, L. Carlsson, A. S. Davis, W. G. Lynch, I. MacKenzie, S. Palethorpe, P. K. Siegl, I. Strang, A. T. Sullivan, R. Wallis, A. J. Camm, and T. G. Hammond. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58:32–45.
  • N. Rehnqvist, C. G. Ericsson, S. Eriksson, G. Olsson, and G. Svensson. (1984). Comparative investigation of the antiarrhythmic effect of propafenone (Rytmonorm) and lidocaine in patients with ventricular arrhythmias during acute myocardial infarction. Acta Med. Scand. 216:525–530.
  • C. F. Reinhardt, A. Azar, M. E. Maxfield, P. E. Smith, and L. S. Mullin. (1971). Cardiac arrhythmias and aerosol “sniffing”. Arch. Environ. Health 22:265–279.
  • M. Reppel, P. Igelmund, U. Egert, F. Juchelka, J. Hescheler, and I. Drobschinskaya. (2007). Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cell. Physiol. Biochem. 19:213–224.
  • A. K. Reynolds. (1984). On the mechanism of myocardial sensitization to catecholamines by hydrocarbon anesthetics. Can. J. Physiol. Pharmacol. 62:183–198.
  • G. D. Ritchie, E. C. Kimmel, L. E. Bowen, J. E. Reboulet, and J. Rossi. (2001). Acute neurobehavioral effects in rats from exposure to HFC 134a or CFC 12. NeuroToxicology 22:233–248.
  • A. Rithalia, P. M. Hopkins, and S. M. Harrison. (2004). The effects of halothane, isoflurane, and sevoflurane on Ca2 + current and transient outward K+ current in subendocardial and subepicardial myocytes from the rat left ventricle. Anesth. Analg. 99:1615–1622.
  • D. M. Roden, J. R. Balser, A. L. George, and M. E. Anderson. (2002). Cardiac ion channels. Annu. Rev. Physiol. 64:431–475.
  • M. Rodstein, L. Wolloch, and R. S. Gubner. (1971). Mortality study of the significance of extrasystoles in an insured population. Circulation 44:617–625.
  • M. Rosengarten, and R. Brooks. (1987). Torsade de pointes ventricular tachycardia in a hypothyroid patient treated with propafenone. Can. J. Cardiol. 3:234–239.
  • U. Rudolph, and B. Antkowiak. (2004). Molecular and neuronal substrates for general anaesthetics. Nature Rev. Neurosci. 5:709–720.
  • U. Rudolph, and H. Möhler. (2004). Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu. Rev. Pharmacol. Toxicol. 44:475–498.
  • M. Sakata, H. Kazama, A. Miki, A. Yoshida, M. Haga, and M. Morita. (1981). Acute toxicity of fluorocarbon-22: Toxic symptoms, lethal concentration, and its fate in rabbit and mouse. Toxicol. Appl. Pharmacol. 59:64–70.
  • M. A. Samuels. (2007). The brain–heart connection. Circulation 116:77–84.
  • B. Sarubbi, V. Ducceschi, N. Briglia, R. Esposito, M. S. Mayer, A. Scialdone, L. Santangelo, and A. Iacono. (1996). Sotalol, propafenone, and flecainide: Compared multiparametric analysis of ventricular repolarization in subjects without organic cardiopathy. Cardiologia 41:645–651.
  • B. Sarubbi, V. Ducceschi, N. Briglia, M. S. Mayer, L. Santangelo, and A. Iacono. (1998). Compared effects of sotalol, flecainide and propafenone on ventricular repolarization in patients free of underlying structural heart disease. Int. J. Cardiol. 66:157–64.
  • H. Satoh, and K. Hashimoto. (1984). Effects of propafenone on the membrane currents of rabbit sino-atrial node cells. Eur. J. Pharmacol. 99:185–191.
  • M. Schlepper. (1987). Propafenone, a review of its profile. Eur. Heart J. 8 (suppl.A):27–32.
  • M. T. Slawsky, and N. A. Castle. (1994). K+ channel blocking actions of flecainide compared with those of propafenone and quinidine in adult rat ventricular myocytes. J. Pharmacol. Exp. Ther. 269:66–74.
  • W. T. Schmeling, D. C. Warltier, D. J. McDonald, K. E. Madsen, J. L. Atlee, and J. P. Kampine. (1991). Prolongation of the QT interval by enflurane, isoflurane, and halothane in humans. Anesth. Analg. 72:137–144.
  • E. P. Scholz, M. Alter, E. Zitron, C. Kiesecker, S. Kathöfer, D. Thomas, V. A.W. Kreye, J. Kreuzer, R. Becker, H. A. Katus, J. Greten, and C. A. Karle. (2006). In-vitro modulation of hERG channels by organochlorine solvent trichloromethane as potential explanation for proarrhythmic effects of chloroform. Toxicol. Lett. 165:156–166.
  • T. J. Shafer, P. J. Bushnell, V. A. Benignus, and J. J. Woodward. (2005). Perturbation of voltage-sensitive Ca2 + channel function by volatile organic solvents. J. Pharmacol. Exp. Ther. 315:1109–1118.
  • R. T. Shepherd. (1989). Mechanism of sudden death associated with volatile substance abuse. Hum. Toxicol. 8:287–292.
  • S. Shibata, K. Ono, and T. Iijima. (2004). Sevoflurane inhibition of the slowly activating delayed rectifier K+ current in guinea-pig ventricular cells. J. Pharmacol. Sci. 95:363–373.
  • W. J. Shin, and B. D. Winegar. (2003). Modulation of noninactivating K+ channels in rat cerebellar granule neurons by halothane, isoflurane, and sevoflurane. Anesth. Analg. 96:1340–1344.
  • M. Shiraishi, and R. A. Harris. (2004). Effects of alcohols and anesthetics on recombinant voltage-gated Na+ channels. J. Pharmacol. Exp. Ther. 309:987–994.
  • J. E. Sirois, Q. Lei, E. M. Talley, C. Lynch, and D. A. Bayliss. (2000). The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci. 20:6347–6354.
  • M. Skrzypiec-Spring, B. Grotthus, A. Szelag, and R. Schulz. (2007). Isolated heart perfusion according to Langendorff—Still viable in the new millenium. J. Pharmacol. Toxicol. Methods 55:113–126.
  • R. D. Smith, and C. E. Pettway. (1975). Absence of sensitization to epinephrine-induced cardiac arrhythmia and fibrillation in dogs and cats anesthetized with CI-744. Am. J. Vet. Res. 36:695–698.
  • R. Snyder, K. S. Bakshi, and B. M. Wagner. (1997). Abstracts of the workshop on toxicity of alternatives to chlorofluorocarbons. Inhal. Toxicol. 9:775–810.
  • J. M. Sonner, J. F. Antognini, R. C. Dutton, P. Flood, A. T. Gray, R. A. Harris, G. E. Homanics, J. Kendig, B. Orser, D. E. Raines, J. Trudell, B. Vissel, and E. I. Eger. (2003). Inhaled anesthetics and immobility: Mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth. Analg. 97:718–740.
  • A. Stadnicka, Z. J. Bosnjak, J. P. Kampine, and W. M. Kwok. (2000). Modulation of cardiac inward rectifier K+ current by halothane and isoflurane. Anesth. Analg. 90:824–833.
  • A. Stadnicka, W. M. Kwok, H. A. Hartmann, and Z. J. Bosnjak. (1999). Effects of halothane and isoflurane on fast and slow inactivation of human heart hH1a sodium channels. Anesthesiology 90:1671–1683.
  • E. M. Steidl, E. Neveu, D. Bertrand, and B. Buisson. (2006). The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res. 1096:70–84.
  • G. Steinbeck. Tachykarde RhythmusstörungenHerzrhythmusstörungen B. Lüderitz. Springer, Berlin-Heidelberg-, New York, (1983) 617–641.
  • K. Sumikawa, N. Ishizaka, and M. Suzaki. (1983). Arrhythmogenic plasma levels of epinephrine during halothane, enflurane, and pentobarbital anesthesia in the dog. Anesthesiology 58:322–325.
  • A. Suzuki, Z. J. Bosnjak, and W. M. Kwok. (2003). The effects of isoflurane on the cardiac slowly activating delayed-rectifier potassium channel in guinea-pig ventricular myocytes. Anesth. Analg. 96:1308–1315.
  • A. Takahara, A. Sugiyama, and K. Hashimoto. (2005a). Reduction of repolarization reserve by halothane anaesthesia sensitizes the guinea-pig heart for drug-induced QT interval prolongation. Br. J. Pharmacol. 146:561–567.
  • A. Takahara, A. Sugiyama, Y. Satoh, K. Wang, S. Honsho, and K. Hashimoto. (2005b). Halothane sensitizes the canine heart to pharmacological IKr blockade. Eur. J. Pharmacol. 507:169–177.
  • H. Takahashi, R. M. Puttick, and D. A. Terrar. (1994). The effects of propofol and enflurane on single calcium channel currents of guinea-pig isolated ventricular myocytes. Br. J. Pharmacol. 111:1147–1153.
  • M. Takenoshita, and J. H. Steinbach. (1991). Halothane blocks low-voltage-activated calcium current in rat sensory neurons. J. Neurosci. 11:1404–1412.
  • P. W.L. Tas, H. G. Kress, and K. Koschel. (1987). Volatile anesthetics and n-alkanols inhibit the uptake of noradrenaline into pheochromocytoma cells. Anaesthesist 36:340–344.
  • H. E.D.J. Ter Keurs, and P. A. Boyden. (2007). Calcium and arrhythmogenesis. Physiol. Rev. 87:457–506.
  • D. A. Terrar, and J. G. Victory. (1988). Influence of halothane on electrical coupling in cell pairs isolated from guinea-pig ventricle. Br. J. Pharmacol. 94:509–514.
  • C. Terrenoire, I. Lauritzen, F. Lesage, G. Romey, and M. Lazdunski. (2001). A TREK–1-like potassium channel in atrial cells inhibited by β -adrenergic stimulation and activated by volatile anesthetics. Circ. Res. 89:336–342.
  • C. Terrenoire, V. Piriou, R. Bonvallet, C. Chouabe, L. Espinosa, O. Rougier, and Y. Tourneur. (2000). Opposite effects of halothane on guinea-pig ventricular action potential duration. Eur. J. Pharmacol. 390:95–101.
  • J. Thevenin, A. Da Costa, F. Roche, C. Romeyer, M. Messier, and K. Isaaz. (2003). Flecainide induced ventricular tachycardia (torsades de pointes). Pacing Clin. Electrophysiol. 26:1907–1908.
  • E. B. Thompson, and F. T. Galysh. (1973). Quantitative assessment of anesthetic-induced cardiac sensitization to epinephrine. Anesth. Analg. 52:800–806.
  • K. A. Thompson, D. H.S. Iansmith, L. A. Siddoway, R. L. Woosley, and D. M. Roden. (1988). Potent electrophysiologic effects of the major metabolites of propafenone in canine Purkinje fibers. J. Pharmacol. Exp. Ther. 244:950–955.
  • W. J. Tranquilli, J. C. Thurmon, G. J. Benson, and L. E. Davis. (1986). Alteration in the arrhythmogenic dose of epinephrine (ADE) following xylazine administration to halothane-anesthetized dogs. J. Vet. Pharmacol. Ther. 9:198–203.
  • H. J. Trochimowicz, A. Azar, J. B. Terrill, and L. S. Mullin. (1974). Blood levels of fluorocarbon related to cardiac sensitization: Part II. Am. Ind. Hyg. Assoc. J. 35:632–639.
  • L. A. Turner, J. Marijic, J. P. Kampine, and Z. J. Bosnjak. (1990). A comparison of the effects of halothane and tetrodotoxin on the regional repolarization characteristics of canine Purkinje fibers. Anesthesiology 73:1158–1168.
  • L. A. Turner, S. Polic, R. G. Hoffmann, J. P. Kampine, and Z. J. Bosnjak. (1993a). Actions of halothane and isoflurane on Purkinje fibers in the infarcted canine heart: Conduction, regional refractoriness, and reentry. Anesth. Analg. 76:718–725.
  • L. A. Turner, S. Polic, R. G. Hoffmann, J. P. Kampine, and Z. J. Bosnjak. (1993b). Actions of volatile anesthetics on ischemic and nonischemic Purkinje fibers in the infarcted canine heart: Regional action potential characteristics. Anesth. Analg. 76:726–733.
  • S. Ueno, J. R. Trudell, E. I. Eger, and R. A. Harris. (1999). Actions of fluorinated alkanols on GABAA receptors: Relevance to theories of narcosis. Anesth. Analg. 88:877–883.
  • J. P. Valentin, P. Hoffmann, F. De Clerck, T. G. Hammond, and L. Hondeghem. (2004). Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J. Pharmacol. Toxicol. Methods 49:171–181.
  • F. Vanhoutte, J. Vereecke, E. Carmeliet, and N. Verbeke. (1991). Effects of the enantiomers of flecainide on action potential characteristics in the guinea-pig papillary muscle. Arch. Int. Pharmacol. Ther. 310:102–114.
  • C. S. Venugopalan, E. Holmes, and N. A. O'Malley. (1989). Comparison of arrhythmogenic doses of epinephrine in heartworm-infected and noninfected dogs. Am. J. Vet. Res. 50:1872–1876.
  • A. Vinegar, and G. W. Jepson. (1996). Cardiac sensitization thresholds of halon replacement chemicals predicted in humans by physiologically-based pharmakokinetic modeling. Risk Anal. 16:571–579.
  • A. Vinegar, G. W. Jepson, M. Cisneros, R. Rubinstein, and W. J. Brock. (2000). Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling. Inhal. Toxicol. 12:751–763.
  • S. Vodanovic, L. A. Turner, R. G. Hoffmann, J. P. Kampine, and Z. J. Bosnjak. (1997). Actions of phenylephrine, isoproterenol, and epinephrine with halothane on endocardial conduction and activation in canine left ventricular papillary muscles. Anesthesiology 87:117–126.
  • M. A. Vos, J. M. van Opstal, J. D.M. Leunissen, and S. C. Verduyn. (2001). Electrophysiologic parameters and predisposing factors in the generation of drug-induced Torsades de Pointes arrhythmias. Pharmacol. Ther. 92:109–122.
  • C. P. Washburn, J. E. Sirois, E. M. Talley, P. G. Guyenet, and D. A. Bayliss. (2002). Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci. 22:1256–1265.
  • E. M. Waters, H. B. Gerstner, and J. E. Huff. (1977). Trichloroethylene—An overview. J. Toxicol. Environ. Health 2:671–707.
  • L. G. Weigl, and W. Schreibmayer. (2001). G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics. Mol. Pharmacol. 60:282–289.
  • H. U. Weigt, W. M. Kwok, G. C. Rehmert, and Z. J. Bosnjak. (1998a). Modulation of the cardiac sodium current by inhalational anesthetics in the absence and presence of β -stimulation. Anesthesiology 88:114–124.
  • H. U. Weigt, W. M. Kwok, G. C. Rehmert, and Z. J. Bosnjak. (1998b). Sensitization of the cardiac Na channel to α1-adrenergic stimulation by inhalation anesthetics. Evidence for distinct modulatory pathways. Anesthesiology 88:125–133.
  • H. U. Weigt, W. M. Kwok, G. C. Rehmert, L. A. Turner, and Z. J. Bosnjak. (1997a). Voltage-dependent effects of volatile anesthetics on cardiac sodium current. Anesth. Analg. 84:285–293.
  • H. U. Weigt, W. M. Kwok, G. C. Rehmert, L. A. Turner, and Z. J. Bosnjak. (1997b). Modulation of cardiac sodium current by α1-stimulation and volatile anesthetics. Anesthesiology 87:1507–1516.
  • H. U. Weigt, G. C. Rehmert, Z. J. Bosnijak, and W. M. Kwok. (1997). Conformational state-dependent effects of halothane on cardiac Na+ current. Anesthesiology 87:1494–1506.
  • J. Weissenburger, V. V. Nesterenko, and C. Antzelevitch. (2000). Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in-vivo: Torsades de Pointes develops with halothane but not pentobarbital anesthesia. J. Cardiovasc. Electrophysiol. 11:290–304.
  • J. F. White, and G. P. Carlson. (1981). Epinephrine-induced cardiac arrhythmias in rabbits exposed to trichloroethylene: Role of trichloroethylene metabolites. Toxicol. Appl. Pharmacol. 60:458–465.
  • F. Wickers, M. Haissaguere, and J. Palussiere. (1988). QT prolongation and induction of torsade de pointe by flecainide. Apropos of a case. Arch. Mal. Coeur Vaiss. 81:1283–1285.
  • D. J.C. Wilkinson, J. M. Thompson, G. W. Lambert, G. L. Jennings, R. G. Schwarz, D. Jefferys, A. G. Turner, and M. D. Esler. (1998). Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Arch. Gen. Psychiatry 55:511–520.
  • E. Winslow, and J. K. Campbell. (1991). Comparative frequency-dependent effects of three class Ic agents, ORG 7797, flecainide, and propafenone, on ventricular action potential duration. J. Cardiovasc. Pharmacol. 18:911–917.
  • H. J. Witchel, C. E. Dempsey, R. B. Sessions, M. Perry, J. T. Milnes, J. C. Hancox, and J. S. Mitcheson. (2004). The low-potency, voltage-dependent hERG blocker propafenone: Molecular determinants and drug trapping. Mol. Pharmacol. 66:1201–1212.
  • A. Woodall, N. Bracken, A. Qureshi, F. C. Howarth, and J. Singh. (2004). Halothane alters contractility and Ca2 + transport in ventricular myocytes from streptozotocin-induced diabetic rats. Mol. Cell. Biochem. 261:251–262.
  • B. H. Woollen, E. A. Guest, W. Howe, J. R. Marsh, H. K. Wilson, T. R. Auton, and P. G. Blain. (1990). Human inhalation pharmacokinetics of 1,1,2-trichloro-1,2,2-trifluoroethane (FC113). Int. Arch. Occup. Environ. Health 62:73–78.
  • B. H. Woollen, J. R. Marsh, J. D. Mahler, T. R. Auton, D. Makepeace, J. Cocker, and P. G. Blain. (1992). Human inhalation pharmacokinetics of chlorodifluoromethane (HCFC22). Int. Arch. Occup. Environ. Health 64:383–387.
  • G. X. Xiang, L. B. Pan, L. Huang, Z. Y. Yu, X. D. Song, J. Cheng, W. Xing, and Y. X. Zhou. (2007). Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in-vitro. Biosensors Bioelectron. 22:2478–2484.
  • M. Yamada, N. Hatakeyama, A. P. Malykhina, M. Yamazaki, Y. Momose, and H. I. Akbarali. (2006). The effects of sevoflurane and propofol on QT interval and heterologously expressed human ether-a-go-go-related gene currents in Xenopus oocytes. Anesth. Analg. 102:98–103.
  • K. Yamamoto, T. Tamura, R. Imai, and M. Yamamoto. (2001). Acute canine model for drug-induced Torsades de Pointes in drug safety evaluation—Influences of anesthesia and validation with quinidine and astemizole. Toxicol. Sci. 60:165–176.
  • C. S. Yost. (2000). Tandem pore domain K channels: An important site of volatile anesthetic action?. Curr. Drug Targets 1:207–217.
  • C. S. Yost. (2003). Update on tandem pore (2P) domain K+ channels. Curr. Drug Targets 4:347–351.
  • O. Zolk, and T. Eschenhagen. KardiotoxizitätLehrbuch der Toxikologie H. Marquardt, and S. Schäfer. Wissenschaftliche Verlagsgesellschaft, Stuttgart, (2004) 557–578.
  • B. N.M. Zordoky, and A. O.S. El-Kadi. (2007). H9c2 cell line is a valuable in-vitro model to study the drug metabolizing enzymes in the heart. J. Pharmacol. Toxicol. Methods 56:317–322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.