628
Views
43
CrossRef citations to date
0
Altmetric
Review Article

Model equations for the kinetics of covalent irreversible enzyme inhibition and spontaneous reactivation: Esterases and organophosphorus compounds

&
Pages 427-448 | Received 14 Aug 2008, Accepted 15 Aug 2008, Published online: 01 May 2009

References

  • Aldridge, W.N. (1950). Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues. Biochem. J. 46:451–460.
  • Aldridge, W.N., and Davison, A.N. (1952). The inhibition of erythrocyte cholinesterase by tri-esters of phosphoric acid. I. Diethyl p-nitrophenyl phosphate (E600) and analogues. Biochem. J. 51:62–70.
  • Aldridge, W.N., and Reiner, E. (1972). Enzyme inhibitors as substrates. North–Holland Publishing Company, Amsterdam.
  • Aurbek, N., Thiermann, H., Szinicz, L., Eyer, P., and Worek, F. (2006). Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase. Toxicol. 224:91–99.
  • Ballantyne, B., and Marrs, T.C. (1992). Clinical and experimental toxicology of organophosphates and carbamates. Butterworth–Heinemann, Oxford.
  • Bartling, A., Worek, F., Szinicz, L., and Thiermann, H. (2007). Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase. Toxicol. 233:166–172.
  • Barril, J., Estévez, J., Escudero, M.A., Céspedes, M.V., ñíguez, N., Sogorb, M.A., Monroy, A., and Vilanova, E. (1999). Peripheral nerve soluble esterase are spontaneously reactivated after inhibition by paraoxon: Implication for a new definition of neuropathy target esterase. Chem. Biol. Interaction. 119–120: 541–550.
  • Carr, R.L., and Chambers, J.E. (1996). Kinetic analysis of the in vitro inhibition, aging, and reactivation of brain acetylcholinesterase from rat and channel catfish by paraoxon and chlorpyrifos-oxon. Toxicol. Appl. Pharmacol. 139:365–373.
  • Carrera, V., Díaz-Alejo, N., Sogorb, M.A., Vicedo, J.L., and Vilanova, E. (1994) In vivo inhibition of soluble and particulate forms of organophosphorus neuropathy target esterase NTE in hen sciatic nerve. Toxicol. Lett. 71:47–51.
  • Chemnitius, J.M., Dewald, K., Kreuzer, H., and Zech, R. (1993). Computerized analysis of covalent inhibition kinetics for identification of heart muscle cholinesterase and brain carboxylesterase isoenzymes. Design of differential inhibition assays. Chem. Biol. Interact. 87:239–244.
  • Chemnitius, J.M., and Zech, R. (1983). Inhibition of brain carboxylesterases by neurotoxic and nonneurotoxic organophosphorus compounds. Mol. Pharmacol. 23:717–723.
  • Díaz-Alejo, N., Sogorb, M.A., Vicedo, J.L., and Vilanova, E. (1997). A stereospecific phosphotriesterase in hen liver and brain. Chem. Biol. Interactions 108:187–196.
  • Díaz-Alejo, N., Vicedo, J.L., Pellín, M.C., and Vilanova E. (1990). Hen liver and plasma can metabolize O-hexyl, O-dichlorophenyl phosphoroamidate (Hexyl-DCP) at a rate comparable to that in rats. Neurotoxicol. Teratol. 12:615–618.
  • Escudero, M.A., and Vilanova, E. (1997). Purification and characterization of naturally soluble neuropathy target esterase from chicken sciatic nerve by HPLC and Eastern Blot. J. Neurochem. 69:1975–1982.
  • Estevez, J., García-Pérez, A., Barril, J., Pellín, M.C., and Vilanova, E. (2004) The inhibition of the high sensitive peripheral nerve soluble esterases by mipafox. A new mathematical processing for the kinetics of inhibition of esterases by organophosphorus compounds. Toxicol. Lett. 151:243–249.
  • Garcia-Pérez, A.G., Barril, J., Estévez, J., and Vilanova, E. (2003). Properties of phenyl valerate esterase activities from chicken serum are comparable with soluble esterases of peripheral nerves in relation with organophosphorus compounds inhibition. Toxicol. Lett. 142:1–10.
  • Hernandez, A.F., Amparo-Gomez, M., Perez, V., Garcia-Lario, J.V., Pena, G., Gil, F., Lopez, O., Rodrigo, L., Pino, G., and Pla, A. (2006). Influence of exposure to pesticides on serum components and enzyme activities of cytotoxicity among intensive agriculture farmers. Environ. Res. 102:70–76.
  • Hernandez, A., Gomez, M.A., Pena, G., Gil, F., Rodrigo, L., Villanueva, E., and Pla, A. (2004). Effect of long-term exposure to pesticides on plasma esterases from plastic greenhouse workers. J. Toxicol. Environ. Health. A 67:1095–1108.
  • Hovanec, J.W., Broomfield, C.A., Steinberg, G.M., Lanks, K.W., and Lieske, C.N. (1977). Spontaneous reactivation of acetylcholinesterase following organophosphate inhibition. I. An analysis of anomalous reactivation kinetics. Biochim. Biophys. Acta 483:312–319.
  • Jansen, E.F., Fellows-Nutting, M.D., and Balls, A.K. (1948). The reversible inhibition of acetylesterase by diisopropyl fluorophosphate and tetraethyl pyrophosphate. J. Biol. Chem. 175:975–987.
  • Jianmongkol, S., Marable, B.R., Berkman, C.E., Talley, T.T., Thompson, C.M., and Richardson, R.J. (1999). Kinetic evidence for different mechanisms of acetylcholinesterase inhibition by (1R)- and (1S)-stereoisomers of isomalathion. Toxicol. Appl. Pharmacol. 155:43–53.
  • Johnson, M.K., Vilanova, E., and Read, D.J. (1991). Anomalous biochemical responses in test of the delayed neuropathic potential of methamidophos (S-dimethyl phosphoramidates), its resolved isomers and of some higher O-alkyl homologues. Arch. Toxicol. 5:618–624.
  • Jokanovic´, M., Kosanovic´, M., and Maksimovic´, M. (1996) Interaction of organophosphorus compounds with carboxylesterases in the rat. Arch. Toxicol. 70:444–450.
  • Jokanovic´, M., and Stojiljkovic´, M.P. (2006) Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur. J. Pharmacol. 553:10–17.
  • Kardos, S.A., and Sultatos, L.G. (2000). Interactions of the organophosphates paraoxon and methyl paraoxon with mouse brain acetylcholinesterase. Toxicol. Sci. 58(1):118–126.
  • Kousba, A.A., Sultatos, L.G., Poet, T.S., and Timchalk, C. (2004). Comparison of chlorpyrifos-oxon and paraoxon acetylcholinesterase inhibition dynamics: Potential role of a peripheral binding site. Toxicol. Sci. 80:239–248.
  • Kropp, T.J., and Richardson, R.J. (2007). Mechanism of aging of mipafox-inhibited butyrylcholinesterase. Chem. Res. Toxicol. 20:504–510.
  • Main, A.R. (1964). Affinity and phosphorylation constants for the inhibition of esterases by organophosphates. Sci. 144:992–993.
  • Marquardt, D.W. (1963). An algorithm for least squares estimation of parameters. J. Soc. Ind. Appl. Math. 11:431–441.
  • Monroy-Noyola, A., Rojas, P., Vilanova, E., and Sogorb, M.A. (2007). Comparative hydrolysis of O-hexyl O-2,5-dichlorophenyl phosphoramidate and paraoxon in different tissues of vertebrates. Arch. Toxicol. 81:689–695.
  • Nash, J.C. (1979). Compact numerical methods for computers: Linear algebra and function minimization. Wiley, New York.
  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1986). Numerical recipes. Cambridge University Press, Cambridge.
  • Quesada, E., Castell, J.V., Vilanova, E., and Carrera, V. (2007). Over-expression of neuropathy target esterase activity in bovine chromaffin cell cultures by adenovirus-mediated gene transfer. Toxicol. Lett. 168:286–291.
  • Sanchez-Hernandez, J.C., and Moreno-Sanchez, B. (2002) Lizard cholinesterases as biomarkers of pesticide exposure: enzymological characterization. Environ. Toxicol. Chem. 21:2319–2325.
  • Silva Filho, M.V., Oliveira, M.M., Salles, J.B., Bastos, V.L., Cassano, V.P., and Bastos, J.C. (2004). Methyl-paraoxon comparative inhibition kinetics for acetylcholinesterases from brain of neotropical fishes. Toxicol. Lett. 153(2):247–254.
  • Skrinjaric-Spoljar, M., Simeon, V., and Reiner, E. (1973). Spontaneous reactivation and aging of dimethylphosphorylated acetylcholinesterase and cholinesterase. Biochim. Biophys. Acta 315:363–369.
  • Sogorb, M.A., álvarez-Escalante, C., Carrera, V., and Vilanova, E. (2007). An in vitro approach for demonstrating the critical role of serum albumin in the detoxication of the carbamate carbaryl at in vivo toxicologically relevant concetrations. Arch. Toxicol. 81:113–119.
  • Sogorb, M.A., Carrera, V., and Vilanova, E. (2004). Future applications of phosphotriesterases in the prophylaxis and treatment of organophosphorus insecticide and nerve agent poisonings. Toxicol. Lett. 151(1):219–233.
  • Sogorb, M.A., Diaz-Alejo, N., Escudero, M.A., and Vilanova, E. (1997). Phosphotriesterase activity identified in purified serum albumins. Arch. Toxicol. 72:219–226.
  • Sogorb, M.A., Ganga, R., Vilanova, E., and Soler, F. (2007). Plasma phenylacetate and 1- naphthyl acetate hydrolyzing activities of wild birds as possible non-invasive biomarkers of exposure to organophosphorus and carbamate insecticides. Toxicol. Lett. 168:278–285.
  • Sogorb, M.A., Viniegra, S., Reig, J.A., and Vilanova, E. (1994). Partial characterization of neuropathy target esterase and related phenyl valerate esterases from bovine adrenal medulla. Toxicol. Lett. 74(Suppl 1):S80.
  • Sogorb, M.A., and Vilanova, E. (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Lett. 128:215–228.
  • Sogorb, M.A., Vilanova, E., and Díaz Alejo, N., (1993). The kinetics of o hexy o 2-5-dichlorophenyl phosphoramidate hydrolysing activity. Chem. Biol. Interact. 87:117–125.
  • Sogorb, M.A., Plá, A., and Vandilanova, E. (1996). Las esterasas que hidrolizan compuestos organofosforados: Un mecanismo eficaz de detoxificación. Rev. Toxicol. 13:43–48.
  • Sogorb, M.A., Monroy-Noyola, A., and Vilanova, E. (2002). Importancia de la hidrólisis estereoespecífica en la evaluación de riesgos tóxicos de insecticidas fosforamidatos. Rev. Toxicol. 19:61–68.
  • Shrager, R.I. (1970). Regression with linear constraints: An extension of the magnified diagonal method. J. ACM 17:446–452.
  • Shrager, R.I. (1972). Quadratic programming for nonlinear regression. Commun. ACM 15:41–45.
  • Vilanova, E., and Sogorb, M.A. (1999). The role of phosphotriesterases in the detoxication of organophosphorus compounds. Crit. Rev. Toxicol. 29:21–57.
  • Vilanova, E., Johnson, M.K., and Vicedo, J.L. (1987) The interaction of some unsubstituted phosphoramidates analogues of methamidophos O, S-dimethyl phosphorothioamidate with acetylcholinesterase and neuropathy target esterase of hen brain. Pestic. Biochem. Physiol. 28:224–238
  • Worek, F., Aurbek, N., Koller, M., Becker, C., Eyer, P., and Thiermann, H. (2007). Kinetic analysis of reactivation and aging of human acetylcholinesterase inhibited by different phosphoramidates. Biochem. Pharmacol. 73:1807–1817.
  • Worek, F., Diepold, C., and Eyer, P. (1999). Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics. Arch. Toxicol. 73:7–14.
  • Worek, F., Szinicza, L., Eyerb P., and Thiermann, H. (2005). Evaluation of oxime efficacy in nerve agent poisoning: Development of a kinetic-based dynamic model. Toxicol. Appl. Pharmacol. 209:193–202.
  • Worek, F., Thiermann, H., Szinicz, L., and Eyer, P. (2004). Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem. Pharmacol. 68:2237–2248.
  • World Health Organisation. (1986). Organophosphorus insecticides: A general introduction. World Health Organization, Geneva.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.